-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCITATION.cff
47 lines (47 loc) · 1.46 KB
/
CITATION.cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
cff-version: 1.2.0
title: 3d_very_deep_vae
message: Please cite this software using these metadata.
type: software
authors:
- given-names: Robert
family-names: Gray
email: [email protected]
affiliation: University College London
- given-names: Matthew
name-particle: M
family-names: Graham
email: [email protected]
affiliation: University College London
orcid: 'https://orcid.org/0000-0001-9104-7960'
- given-names: M Jorge
family-names: Cardoso
email: [email protected]
affiliation: King's College London
orcid: 'https://orcid.org/0000-0003-1284-2558'
- given-names: Sebastien
family-names: Ourselin
email: [email protected]
affiliation: King's College London
orcid: 'https://orcid.org/0000-0002-5694-5340'
- given-names: Geraint
family-names: Rees
email: [email protected]
affiliation: University College London
orcid: 'https://orcid.org/0000-0002-9623-7007'
- given-names: Parashkev
family-names: Nachev
email: [email protected]
affiliation: King's College London
orcid: 'https://orcid.org/0000-0002-2718-4423'
doi: 10.5281/zenodo.6782948
repository-code: 'https://github.com/r-gray/3d_very_deep_vae'
abstract: >-
PyTorch implementations of variational autoencoder
models for generating synthetic three-dimensional
images based on neuroimaging training data
keywords:
- pytorch
- variational autoencoder
- neuroimaging
- generative model
license: GPL-3.0