-
Notifications
You must be signed in to change notification settings - Fork 40
/
face_parsing_test.py
141 lines (127 loc) · 6.13 KB
/
face_parsing_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import cv2
import time
import numpy as np
import torch
from argparse import ArgumentParser
from ibug.face_detection import RetinaFacePredictor
from ibug.face_parsing import FaceParser as RTNetPredictor
from ibug.face_parsing.utils import label_colormap
def main() -> None:
# Parse command-line arguments
parser = ArgumentParser()
parser.add_argument(
'--input', '-i', help='Input video path or webcam index (default=0)', default=0)
parser.add_argument(
'--output', '-o', help='Output file path', default=None)
parser.add_argument('--fourcc', '-f', help='FourCC of the output video (default=mp4v)',
type=str, default='mp4v')
parser.add_argument('--benchmark', '-b', help='Enable benchmark mode for CUDNN',
action='store_true', default=False)
parser.add_argument('--no-display', help='No display if processing a video file',
action='store_true', default=False)
parser.add_argument('--threshold', '-t', help='Detection threshold (default=0.8)',
type=float, default=0.8)
parser.add_argument('--encoder', '-e', help='Method to use, can be either rtnet50 or rtnet101 (default=rtnet50)',
default='rtnet50') # choices=['rtnet50', 'rtnet101', 'resnet50'])
parser.add_argument('--decoder', help='Method to use, can be either rtnet50 or rtnet101 (default=rtnet50)',
default='fcn', choices=['fcn', 'deeplabv3plus'])
parser.add_argument('-n', '--num-classes', help='Face parsing classes (default=11)', type=int, default=11)
parser.add_argument('--max-num-faces', help='Max number of faces',
default=50)
parser.add_argument('--weights', '-w',
help='Weights to load, can be either resnet50 or mobilenet0.25 when using RetinaFace',
default=None)
parser.add_argument('--device', '-d', help='Device to be used by the model (default=cuda:0)',
default='cuda:0')
args = parser.parse_args()
# Set benchmark mode flag for CUDNN
torch.backends.cudnn.benchmark = args.benchmark
# args.method = args.method.lower().strip()
vid = None
out_vid = None
has_window = False
face_detector = RetinaFacePredictor(threshold=args.threshold, device=args.device,
model=(RetinaFacePredictor.get_model('mobilenet0.25')))
face_parser = RTNetPredictor(
device=args.device, ckpt=args.weights, encoder=args.encoder, decoder=args.decoder, num_classes=args.num_classes)
colormap = label_colormap(args.num_classes)
print('Face detector created using RetinaFace.')
try:
# Open the input video
using_webcam = not os.path.exists(args.input)
vid = cv2.VideoCapture(int(args.input) if using_webcam else args.input)
assert vid.isOpened()
alphas = np.linspace(0.75, 0.25, num=args.max_num_faces)
if using_webcam:
print(f'Webcam #{int(args.input)} opened.')
else:
print(f'Input video "{args.input}" opened.')
# Open the output video (if a path is given)
if args.output is not None:
out_vid = cv2.VideoWriter(args.output, fps=vid.get(cv2.CAP_PROP_FPS),
frameSize=(int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))),
fourcc=cv2.VideoWriter_fourcc(*args.fourcc))
assert out_vid.isOpened()
# Process the frames
frame_number = 0
window_title = os.path.splitext(os.path.basename(__file__))[0]
print('Processing started, press \'Q\' to quit.')
while True:
# Get a new frame
_, frame = vid.read()
if frame is None:
break
else:
# Detect faces
start_time = time.time()
faces = face_detector(frame, rgb=False)
elapsed_time = time.time() - start_time
# Textural output
print(f'Frame #{frame_number} processed in {elapsed_time * 1000.0:.04f} ms: ' +
f'{len(faces)} faces detected.')
if len(faces) == 0:
continue
# Parse faces
start_time = time.time()
masks = face_parser.predict_img(frame, faces, rgb=False)
elapsed_time = time.time() - start_time
# Textural output
print(f'Frame #{frame_number} processed in {elapsed_time * 1000.0:.04f} ms: ' +
f'{len(masks)} faces parsed.')
# # Rendering
dst = frame
for i, (face, mask) in enumerate(zip(faces, masks)):
bbox = face[:4].astype(int)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color=(
0, 0, 255), thickness=2)
alpha = alphas[i]
index = mask > 0
res = colormap[mask]
dst[index] = (1 - alpha) * frame[index].astype(float) + \
alpha * res[index].astype(float)
dst = np.clip(dst.round(), 0, 255).astype(np.uint8)
frame = dst
# Write the frame to output video (if recording)
if out_vid is not None:
out_vid.write(frame)
# Display the frame
if using_webcam or not args.no_display:
has_window = True
cv2.imshow(window_title, frame)
key = cv2.waitKey(1) % 2 ** 16
if key == ord('q') or key == ord('Q'):
print('\'Q\' pressed, we are done here.')
break
frame_number += 1
finally:
if has_window:
cv2.destroyAllWindows()
if out_vid is not None:
out_vid.release()
if vid is not None:
vid.release()
print('All done.')
if __name__ == '__main__':
main()