forked from Bayer-Group/genie-parser
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_vcf_consortium.py
executable file
·153 lines (130 loc) · 5.12 KB
/
create_vcf_consortium.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
import gzip
import hashlib
import os
import re
import pandas as pd
genie_dir = "../Data/Original/consortium/Main_GENIE_cBioPortal_Releases/16.2-consortium"
mut_file = os.path.join(genie_dir, "data_mutations_extended.txt")
vcf_file = os.path.join(genie_dir, "genie.vcf.gz")
class GenPosChecker:
# This class is needed for adding missing leftmost bases of indels
def __init__(self, gencode_dir=os.path.join(os.getenv("HOME"), "gencode", "chr")):
self.chromosome_cache = dict()
self.gencode_dir = gencode_dir
def _find_chr_file(self, chromosome):
c = re.sub("chr", "", str(chromosome))
if c == "23":
c = "X"
if c == "MT":
c = "M"
pattern = f".*chr{c}.fa.gz"
files = os.listdir(self.gencode_dir)
file = [x for x in files if re.match(pattern, x)][0]
file = os.path.join(self.gencode_dir, file)
return file
def _read_chr(self, file_name):
with gzip.open(file_name, "rt") as file:
# Read the line with the sequence name
file.readline()
# Read the sequence
seq = "".join(x.strip() for x in file)
return seq
def get_chr_seq(self, chromosome):
c = str(chromosome)
if c not in self.chromosome_cache:
chr_file = self._find_chr_file(c)
self.chromosome_cache[c] = self._read_chr(chr_file)
return self.chromosome_cache[c]
def get_chr_sub_seq(self, chromosome, start, stop, first_pos=1):
seq = self.get_chr_seq(chromosome)
start = max(0, start - first_pos)
stop = min(len(seq), stop - first_pos + 1)
return seq[start:stop]
def get_reverse_complement(self, seq):
compl = {"A": "T", "T": "A", "C": "G", "G": "C"}
seq = seq[::-1]
seq = "".join([compl[b] for b in seq])
return seq
def get_strand(self, chromosome, pos, ref, prefix_len=0, first_pos=1):
ref_rc = self.get_reverse_complement(ref)
pos = pos - prefix_len - first_pos
seq = self.get_chr_seq(chromosome)
subseq = seq[pos : (pos + len(ref))]
if subseq == ref:
return "+"
elif subseq == ref_rc:
return "-"
else:
return None
def get_sha256(row):
vid = ":".join(
[
row.Chromosome,
str(row.Start_Position),
row.Reference_Allele,
row.Tumor_Seq_Allele2,
]
)
return hashlib.sha256(vid.encode("UTF-8")).hexdigest()
def long_chromosome_names(series):
s = "chr" + series.map(str)
s = s.str.replace("chrMT", "chrM")
return s
gpc = GenPosChecker()
df = pd.read_table(mut_file, low_memory=False)
df = df[["Chromosome", "Start_Position", "Reference_Allele", "Tumor_Seq_Allele2"]]
df = df.drop_duplicates()
df["ID"] = df.apply(get_sha256, axis=1)
# Fix indels with missing leftmost common nucleotide
df["Reference_Allele"] = df["Reference_Allele"].replace("-", "")
df["Tumor_Seq_Allele2"] = df["Tumor_Seq_Allele2"].replace("-", "")
for idx, row in df.iterrows():
if row.Reference_Allele and row.Tumor_Seq_Allele2:
continue
# As it seems, if no reference allele was specified for an insertion
# (i.e., Reference_Allele == "-"), then the Start_Position refers to
# the nucleotide left of the insertion, so this is the position _after_
# which the insertion is added. The Start_Position and End_Position then
# are the positions between which the sequence is inserted. To get a
# standard VCF, the reference allele needs to be replaced with the base at
# Start_Position, no shift of the Start_Position is needed in that case.
# For deletions, the position left of the deletion needs to be added, so
# the Start_Position needs to be decremented and the base at that position
# needs to be added to the reference and alternative alleles.
offset = 0
if not row.Tumor_Seq_Allele2: # deletion
offset = 1
leading_base = gpc.get_chr_sub_seq(
row.Chromosome, row.Start_Position - offset, row.Start_Position - offset
)
df.loc[idx, "Reference_Allele"] = leading_base + df.loc[idx, "Reference_Allele"]
df.loc[idx, "Tumor_Seq_Allele2"] = leading_base + df.loc[idx, "Tumor_Seq_Allele2"]
df.loc[idx, "Start_Position"] -= offset
vcf = pd.DataFrame(
{
"#CHROM": long_chromosome_names(df.Chromosome),
"POS": df.Start_Position,
"ID": df.ID,
"REF": df.Reference_Allele,
"ALT": df.Tumor_Seq_Allele2,
"QUAL": ".",
"FILTER": "PASS",
"INFO": ".",
"FORMAT": "GT:VF",
"GENIE": "1/1:1.0",
}
).sort_values(["#CHROM", "POS"])
# Remove lines where REF and ALT are identical (in genie 15.0, there are 4
# such entries)
vcf = vcf[vcf.REF != vcf.ALT]
os.makedirs(os.path.dirname(vcf_file), exist_ok=True)
with gzip.open(vcf_file, "wt") as f:
f.writelines(
[
"##fileformat=VCFv4.3\n",
'##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">\n',
'##FORMAT=<ID=VF,Number=.,Type=Float,Description="Variant Frequency">\n',
]
)
vcf.to_csv(f, sep="\t", index=False)