diff --git a/docs/examples/advanced/demo_fermi_foreshock.jl b/docs/examples/advanced/demo_fermi_foreshock.jl index 17e8c8a9..7cfa66ea 100644 --- a/docs/examples/advanced/demo_fermi_foreshock.jl +++ b/docs/examples/advanced/demo_fermi_foreshock.jl @@ -247,7 +247,7 @@ tspan = (0, 40) ## Number of particles trajectories = 1000; -# Case 1: 0 core field +# **Case 1**: 0 core field param = prepare(E, Bcase1; species=Electron); prob = ODEProblem(trace!, stateinit, tspan, param) @@ -262,13 +262,19 @@ imax = find_max_acceleration_index(sols) f = plot_multiple(sols[imax]) f = DisplayAs.PNG(f) #hide +# Trajectory of the most accelerated electron. + f = plot_dist(sols, t=tspan[1], case=1, slice=:xy) f = DisplayAs.PNG(f) #hide +# Initial velocity distribution. + f = plot_dist(sols, t=tspan[2], case=1, slice=:xy) f = DisplayAs.PNG(f) #hide -# Case 2: B fluctuation core field +# Final velocity distribution + +# **Case 2**: B fluctuation core field # In this case we use the native Boris pusher for demonstration. The smallest electron gyroperiod in the magnetosheath (B ∼ 20 nT) is about $2\times 10^{-3}\,\mathrm{s}$, and we use a time step $\Delta t = 2\times 10^4\mathrm{s}$. const δBfunc = let @@ -287,8 +293,14 @@ imax = find_max_acceleration_index(sols) f = plot_multiple(sols[imax]) f = DisplayAs.PNG(f) #hide +# Trajectory of the most accelerated electron. + f = plot_dist(sols, t=tspan[1], case=2, slice=:xy) f = DisplayAs.PNG(f) #hide +# Initial velocity distribution. + f = plot_dist(sols, t=tspan[2], case=2, slice=:xy) -f = DisplayAs.PNG(f) #hide \ No newline at end of file +f = DisplayAs.PNG(f) #hide + +# Final velocity distribution \ No newline at end of file