-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_bc.py
239 lines (199 loc) · 7.99 KB
/
train_bc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from dataclasses import dataclass, field
from typing import Optional
import os
import sys
import yaml
import pyrallis
import numpy as np
import torch
import common_utils
from bc.dataset import DatasetConfig, RobomimicDataset
from bc.bc_policy import StateBcPolicy, StateBcPolicyConfig
from bc.bc_policy import BcPolicy, BcPolicyConfig
from evaluate import run_eval_mp
from env.robosuite_wrapper import PixelRobosuite
@dataclass
class MainConfig(common_utils.RunConfig):
dataset: DatasetConfig = field(default_factory=lambda: DatasetConfig())
state_policy: StateBcPolicyConfig = field(default_factory=lambda: StateBcPolicyConfig())
policy: BcPolicyConfig = field(default_factory=lambda: BcPolicyConfig())
# training
seed: int = 1
load_model: str = "none"
num_epoch: int = 20
epoch_len: int = 10000
batch_size: int = 256
lr: float = 1e-4
grad_clip: float = 5
weight_decay: float = 0
# eval
num_eval_episode: int = 50
# to be overwritten by run() to facilitate model loading
task_name: str = ""
robots: list[str] = field(default_factory=lambda: [])
image_size: int = -1
rl_image_size: int = -1
# log
save_dir: str = "exps/bc/run1"
use_wb: int = 0
save_per: int = -1
@property
def prop_stack(self):
return self.dataset.prop_stack
def run(cfg: MainConfig, policy):
dataset = RobomimicDataset(cfg.dataset)
if not cfg.dataset.real_data:
cfg.task_name = dataset.cfg.task_name
cfg.robots = dataset.cfg.robot
cfg.image_size = dataset.env_params["image_size"]
cfg.rl_image_size = dataset.env_params["rl_image_size"]
pyrallis.dump(cfg, open(cfg.cfg_path, "w")) # type: ignore
print(common_utils.wrap_ruler("config"))
with open(cfg.cfg_path, "r") as f:
print(f.read(), end="")
cfg_dict = yaml.safe_load(open(cfg.cfg_path, "r"))
if policy is None:
if cfg.dataset.use_state:
policy = StateBcPolicy(dataset.obs_shape, dataset.action_dim, cfg.state_policy)
else:
policy = BcPolicy(
dataset.obs_shape,
dataset.prop_shape,
dataset.action_dim,
dataset.cfg.rl_cameras,
cfg.policy,
)
policy = policy.to("cuda")
print(common_utils.wrap_ruler("policy weights"))
print(policy)
common_utils.count_parameters(policy)
if cfg.weight_decay == 0:
print("Using Adam optimzer")
optim = torch.optim.Adam(policy.parameters(), cfg.lr)
else:
print("Using AdamW optimzer")
optim = torch.optim.AdamW(policy.parameters(), cfg.lr, weight_decay=cfg.weight_decay)
stat = common_utils.MultiCounter(
cfg.save_dir,
bool(cfg.use_wb),
wb_exp_name=cfg.wb_exp,
wb_run_name=cfg.wb_run,
wb_group_name=cfg.wb_group,
config=cfg_dict,
)
saver = common_utils.TopkSaver(cfg.save_dir, 2)
stopwatch = common_utils.Stopwatch()
best_score = 0
optim_step = 0
for epoch in range(cfg.num_epoch):
stopwatch.reset()
for _ in range(cfg.epoch_len):
with stopwatch.time("sample"):
batch = dataset.sample_bc(cfg.batch_size, "cuda:0")
with stopwatch.time("train"):
loss = policy.loss(batch)
optim.zero_grad()
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_( # type: ignore
policy.parameters(), max_norm=cfg.grad_clip
)
optim.step()
stat["train/loss"].append(loss.item())
stat["train/grad_norm"].append(grad_norm.item())
optim_step += 1
epoch_time = stopwatch.elapsed_time_since_reset
stat["other/speed"].append(cfg.epoch_len / epoch_time)
if cfg.dataset.real_data:
saved = saver.save(policy.state_dict(), epoch, save_latest=True)
if cfg.save_per > 0 and (epoch + 1) % cfg.save_per == 0:
saver.save(policy.state_dict(), epoch, force_save_name=f"epoch{epoch+1}")
else:
with stopwatch.time("eval"):
seed = epoch * cfg.num_eval_episode + 1
scores = evaluate(policy, dataset, seed=seed, num_game=cfg.num_eval_episode)
score = float(np.mean(scores))
saved = saver.save(policy.state_dict(), score, save_latest=True)
best_score = max(best_score, score)
stat["score"].append(score)
stat["score(best)"].append(best_score)
if (epoch + 1) % 5 == 0 or (epoch == cfg.num_epoch - 1):
# eval the last checkpoint
scores = evaluate(policy, dataset, num_game=100, seed=1)
stat["last_ckpt_score"].append(np.mean(scores))
stat.summary(epoch)
stopwatch.summary()
if saved:
print("model saved!")
if not cfg.dataset.real_data:
# eval the best performing model again
best_model = saver.get_best_model()
policy.load_state_dict(torch.load(best_model))
scores = evaluate(policy, dataset, num_game=100, seed=1)
stat["best_ckpt_score"].append(np.mean(scores))
stat.summary(cfg.num_epoch)
# quit!
assert False
def evaluate(policy, dataset: RobomimicDataset, seed, num_game):
return run_eval_mp(
dataset.env_params, policy, num_game=num_game, seed=seed, num_proc=10, verbose=False
)
def _load_model(weight_file, env: PixelRobosuite, device, cfg: Optional[MainConfig] = None):
if cfg is None:
cfg_path = os.path.join(os.path.dirname(weight_file), f"cfg.yaml")
cfg = pyrallis.load(MainConfig, open(cfg_path, "r")) # type: ignore
print("observation shape: ", env.observation_shape)
if cfg.dataset.use_state:
policy = StateBcPolicy(env.observation_shape, env.action_dim, cfg.state_policy)
else:
policy = BcPolicy(
env.observation_shape, env.prop_shape, env.action_dim, env.rl_cameras, cfg.policy
)
policy.load_state_dict(torch.load(weight_file))
return policy.to(device)
# function to load bc models
def load_model(weight_file, device, *, verbose=True):
run_folder = os.path.dirname(weight_file)
cfg_path = os.path.join(run_folder, f"cfg.yaml")
if verbose:
print(common_utils.wrap_ruler("config of loaded agent"))
with open(cfg_path, "r") as f:
print(f.read(), end="")
print(common_utils.wrap_ruler(""))
cfg = pyrallis.load(MainConfig, open(cfg_path, "r")) # type: ignore
assert not cfg.dataset.real_data
env_params = dict(
env_name=cfg.task_name,
robots=cfg.robots,
episode_length=cfg.dataset.eval_episode_len,
reward_shaping=False,
image_size=cfg.image_size,
rl_image_size=cfg.rl_image_size,
camera_names=cfg.dataset.rl_cameras,
rl_cameras=cfg.dataset.rl_cameras,
device=device,
use_state=cfg.dataset.use_state,
obs_stack=cfg.dataset.obs_stack,
state_stack=cfg.dataset.state_stack,
prop_stack=cfg.dataset.prop_stack,
)
env = PixelRobosuite(**env_params) # type: ignore
if cfg.dataset.use_state:
print(f"state_stack: {cfg.dataset.state_stack}, observation shape: {env.observation_shape}")
else:
print(f"obs_stack: {cfg.dataset.obs_stack}, observation shape: {env.observation_shape}")
policy = _load_model(weight_file, env, device, cfg)
return policy, env, env_params
if __name__ == "__main__":
import rich.traceback
# make logging more beautiful
rich.traceback.install()
torch.set_printoptions(linewidth=100)
cfg = pyrallis.parse(config_class=MainConfig) # type: ignore
common_utils.set_all_seeds(cfg.seed)
log_path = os.path.join(cfg.save_dir, "train.log")
sys.stdout = common_utils.Logger(log_path, print_to_stdout=True)
if cfg.load_model is not None and cfg.load_model != "none":
policy = load_model(cfg.load_model, "cuda")[0]
else:
policy = None
run(cfg, policy=policy)