forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
python_variable.h
115 lines (96 loc) · 3.43 KB
/
python_variable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#pragma once
#include <ATen/core/Tensor.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/pythoncapi_compat.h>
#include <memory>
#include <ATen/core/function_schema.h>
#include <pybind11/pybind11.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/utils/pybind.h>
namespace py = pybind11;
// Python object that backs torch.autograd.Variable
struct THPVariable {
PyObject_HEAD;
// Payload
c10::MaybeOwned<at::Tensor> cdata;
// Hooks to be run on backwards pass (corresponds to Python attr
// '_backwards_hooks', set by 'register_hook')
PyObject* backward_hooks = nullptr;
// Hooks to be run in the backwards pass after accumulate grad,
// i.e., after the .grad has been set (corresponds to Python attr
// '_post_accumulate_grad_hooks', set by 'register_post_accumulate_grad_hook')
PyObject* post_accumulate_grad_hooks = nullptr;
};
TORCH_PYTHON_API void registerPythonTensorClass(
const std::string& device,
PyObject* python_tensor_class);
TORCH_PYTHON_API void activateCUDATrace();
TORCH_PYTHON_API extern PyObject* THPVariableClass;
TORCH_PYTHON_API extern PyObject* ParameterClass;
bool THPVariable_initModule(PyObject* module);
TORCH_PYTHON_API PyObject* THPVariable_Wrap(at::TensorBase var);
static inline bool THPVariable_CheckTypeExact(PyTypeObject* tp) {
// Check that a python object is a `Tensor`, but not a `Tensor` subclass.
// (A subclass could have different semantics.) The one exception is
// Parameter, which is used for Python bookkeeping but is equivalent to
// Tensor as far as C++ is concerned.
return (
tp == (PyTypeObject*)THPVariableClass ||
tp == (PyTypeObject*)ParameterClass);
}
static inline bool THPVariable_CheckExact(PyObject* obj) {
return THPVariable_CheckTypeExact(Py_TYPE(obj));
}
inline bool THPVariable_Check(PyObject* obj) {
if (!THPVariableClass)
return false;
// Fast path
if (THPVariable_CheckExact(obj)) {
return true;
}
const auto result = PyObject_IsInstance(obj, THPVariableClass);
if (result == -1)
throw python_error();
return result;
}
inline const at::Tensor& THPVariable_Unpack(THPVariable* var) {
return *var->cdata;
}
inline const at::Tensor& THPVariable_Unpack(PyObject* obj) {
return THPVariable_Unpack(reinterpret_cast<THPVariable*>(obj));
}
std::pair<py::object, py::dict> parseIValuesToPyArgsKwargs(
const c10::OperatorHandle& op,
const std::vector<c10::IValue>& arguments);
void pushPyOutToStack(
const c10::OperatorHandle& op,
torch::jit::Stack* stack,
py::object out,
const char* msg);
inline PyObject* THPVariable_WrapList(
const torch::autograd::variable_list& inputs) {
PyObject* pyinput = PyList_New(inputs.size());
for (const auto i : c10::irange(inputs.size())) {
PyList_SET_ITEM(pyinput, i, THPVariable_Wrap(inputs[i]));
}
return pyinput;
}
inline torch::autograd::variable_list THPVariable_UnpackList(
PyObject* pyresult) {
TORCH_CHECK(PyList_CheckExact(pyresult));
auto result_len = PyList_GET_SIZE(pyresult);
torch::autograd::variable_list result;
result.reserve(result_len);
for (const auto i : c10::irange(result_len)) {
PyObject* item = PyList_GET_ITEM(pyresult, i);
if (!Py_IsNone(item)) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(THPVariable_Check(item));
result.emplace_back(THPVariable_Unpack(item));
} else {
result.emplace_back();
}
}
return result;
}