forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_shape_analysis.cpp
499 lines (427 loc) · 18.9 KB
/
test_shape_analysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#include <gtest/gtest.h>
#include <ATen/ATen.h>
#include <ATen/core/interned_strings.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
#include <torch/csrc/jit/passes/symbolic_shape_cache.h>
#include <torch/csrc/jit/passes/symbolic_shape_runtime_fusion.h>
#include <torch/csrc/jit/passes/utils/subgraph_utils.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/cuda.h>
#include <unordered_map>
namespace torch {
namespace jit {
namespace {
Node* findNode(std::shared_ptr<Graph>& g, Symbol k) {
DepthFirstGraphNodeIterator graph_it(g);
for (auto node = graph_it.next(); node != nullptr; node = graph_it.next()) {
if (node->kind() == k) {
return node;
}
}
TORCH_INTERNAL_ASSERT(false, "Couldn't find node");
}
} // namespace
TEST(ShapeAnalysisTest, DynamicShapesFusion) {
// Test Generalizing shapes to symbolic dimensions, guarding those symbolic
// dimensions and passing in runtime computed symbolic dimensions via inlined
// shape functions
std::shared_ptr<Graph> subgraph = std::make_shared<Graph>();
const auto graph_string = R"IR(
graph(%x.1 : Tensor, %y.1 : Tensor, %z: Tensor):
%11 : int = prim::Constant[value=0]()
%3 : Tensor = aten::tanh(%x.1)
%out1.1 : Tensor = aten::erf(%3)
%out2.1 : Tensor = aten::relu(%y.1)
%10 : Tensor[] = prim::ListConstruct(%out1.1, %out2.1)
%25 : Tensor = aten::cat(%10, %11)
%28 : Tensor = aten::hardswish(%25)
%29 : Tensor = aten::mul(%28, %z)
return (%28))IR";
torch::jit::parseIR(graph_string, subgraph.get());
/*
set up fused TensorExprGroup
*/
std::shared_ptr<Graph> g = std::make_shared<Graph>();
auto x_inp = g->addInput("x_inp");
auto y_inp = g->addInput("y_inp");
auto z_inp = g->addInput("z_inp");
auto x_type = TensorType::create(at::rand({10, 5}));
auto y_type = TensorType::create(at::rand({4, 5}));
auto z_type = TensorType::create(at::rand({1, 1}));
x_inp->setType(x_type);
y_inp->setType(y_type);
z_inp->setType(z_type);
subgraph->inputs().at(0)->setType(x_type);
subgraph->inputs().at(1)->setType(y_type);
subgraph->inputs().at(2)->setType(z_type);
subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5})));
auto output = g->insertNode(g->create(prim::TensorExprGroup))->output();
subgraph->outputs().at(0)->setType(TensorType::create(at::rand({14, 5})));
output->node()->addInput(x_inp);
output->node()->addInput(y_inp);
output->node()->addInput(z_inp);
output->node()->g_(attr::Subgraph, subgraph);
auto success = GenerateGuard(output->node());
TORCH_INTERNAL_ASSERT(success);
testing::FileCheck()
.check("TensorExprDynamicGuard")
->check_next("prim::If")
->check("aten::add")
->check("TensorExprGroup")
->check_same("symbolic_shape_inputs")
->check("block1")
->check("aten::cat")
->run(*g);
// clang-format off
/* Graph Should Look Something like: (note: strides not yet handled)
graph(%x_inp : Float(10, 5, strides=[5, 1], requires_grad=0, device=cpu),
%y_inp : Float(4, 5, strides=[5, 1], requires_grad=0, device=cpu),
%z_inp : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)):
%4 : bool = prim::TensorExprDynamicGuard[types=[Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu), Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu)]](%x_inp, %y_inp, %z_inp)
%5 : Tensor = prim::If(%4)
block0():
%15 : int[] = aten::size(%x_inp)
%16 : int[] = aten::size(%y_inp)
%17 : int = prim::Constant[value=1]()
%18 : int = prim::Constant[value=0]()
%elem.3 : int = aten::__getitem__(%15, %18) # <string>:40:10
%elem.5 : int = aten::__getitem__(%15, %17) # <string>:40:10
%elem.11 : int = aten::__getitem__(%16, %18) # <string>:40:10
%cat_dim_size.48 : int = aten::add(%elem.3, %elem.11) # <string>:321:29
%3 : Tensor = prim::TensorExprGroup_0[symbolic_shape_inputs=[-5, -4, -3, -2]](%x_inp, %y_inp, %z_inp, %cat_dim_size.48, %elem.11, %elem.5, %elem.3)
-> (%3)
block1():
// FallbackGraph is inlined
%14 : Tensor = prim::FallbackGraph_1(%x_inp, %y_inp, %z_inp)
-> (%14)
return ()
with prim::TensorExprGroup_0 = graph(%x.1 : Float(SS(-2), SS(-3), strides=[5, 1], requires_grad=0, device=cpu),
%y.1 : Float(SS(-4), SS(-3), strides=[5, 1], requires_grad=0, device=cpu),
%z : Float(1, 1, strides=[1, 1], requires_grad=0, device=cpu),
%SS_5 : int,
%SS_4 : int,
%SS_3 : int,
%SS_2 : int):
%3 : int = prim::Constant[value=0]()
%4 : Tensor(SS(-2), SS(-3)) = aten::tanh(%x.1)
%5 : Tensor(SS(-2), SS(-3)) = aten::erf(%4)
%6 : Tensor(SS(-4), SS(-3)) = aten::relu(%y.1)
%7 : Tensor[] = prim::ListConstruct(%5, %6)
%8 : Tensor(SS(-5), SS(-3)) = aten::cat(%7, %3)
%9 : Tensor(SS(-5), SS(-3)) = aten::hardswish(%8)
%10 : Tensor(SS(-5), SS(-3)) = aten::mul(%9, %z)
return (%9)
*/
// clang-format on
DepthFirstGraphNodeIterator graph_it(g);
Node* te_group = findNode(g, prim::TensorExprGroup);
/*
Test that input to the kernel - (10, 5), (4, 5), (1, 1) - are correctly
generalized to sym dimensions, and that the output - (10 + 4, 5)
correctly preserves non-catted dim as sym shape and catted dim as new sym
shape
*/
auto tensorexpr_graph = te_group->g(attr::Subgraph);
auto inp1 = tensorexpr_graph->inputs().at(0)->type()->expect<TensorType>();
auto inp2 = tensorexpr_graph->inputs().at(1)->type()->expect<TensorType>();
auto inp3 = tensorexpr_graph->inputs().at(2)->type()->expect<TensorType>();
auto out = tensorexpr_graph->outputs().at(0)->type()->expect<TensorType>();
// 1 dims are preserved
auto inp3_sizes = inp3->sizes().concrete_sizes();
TORCH_INTERNAL_ASSERT(inp3_sizes);
TORCH_INTERNAL_ASSERT(
inp3_sizes->size() == 2 && inp3_sizes->at(0) == 1 &&
inp3_sizes->at(1) == 1);
// 5 made into sym shape
ASSERT_EQ(
inp1->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value());
ASSERT_EQ(
out->symbolic_sizes()[1].value(), inp2->symbolic_sizes()[1].value());
// 4, 10, 14 are different sym shapes
ASSERT_NE(
inp1->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value());
ASSERT_NE(
out->symbolic_sizes()[0].value(), inp1->symbolic_sizes()[0].value());
ASSERT_NE(
out->symbolic_sizes()[0].value(), inp2->symbolic_sizes()[0].value());
/*
Test guard behaves correctly at runtime and symbolic shapes are computed
correctly. As we don't have TE Kernel support for dynamic shapes we're
going to return all of the computed runtime symbolic dimensions as outputs
of the graph on guard success, and return None on guard failure
*/
// Setting up guard to return sym shapes on guard success and None on failure
Node* if_node = findNode(g, prim::If);
IfView if_v(if_node);
if_node->eraseOutput(0);
if_v.thenBlock()->eraseOutput(0);
if_v.elseBlock()->eraseOutput(0);
WithInsertPoint guard(if_node);
auto none_val = g->insertConstant(IValue());
auto sym_shapes = te_group->is(Symbol::attr("symbolic_shape_inputs"));
auto offset = te_group->inputs().size() - sym_shapes.size();
for (size_t i = 0; i < sym_shapes.size(); ++i) {
if_v.thenBlock()->insertOutput(i, te_group->inputs().at(offset + i));
if_v.elseBlock()->insertOutput(i, none_val);
if_node->insertOutput(i)->setType(OptionalType::create(IntType::get()));
}
auto new_outputs = g->createTuple(if_node->outputs())->insertAfter(if_node);
g->registerOutput(new_outputs->output());
te_group->destroy();
findNode(g, prim::FallbackGraph)->destroy();
// Testing bad inputs
auto first_inp = at::rand({2, 5});
std::vector<std::vector<at::Tensor>> second_inps = {
{at::rand({3, 4}), at::rand({1, 1})}, // sym shape mismatch
{at::rand({5, 2}).transpose(0, 1), at::rand({1, 1})}, // discontiguous
{at::zeros({2, 5}).to(at::ScalarType::Int),
at::rand({1, 1})}, // wrong dtype
{at::rand({2, 5, 1}), at::rand({1, 1})}, // wrong # dims
{at::rand({2, 5}).requires_grad_(true),
at::rand({1, 1})}, // requires grad
{at::rand({2, 5}), at::rand({1, 12})}, // concrete dim mismatch (1)
};
if (torch::cuda::is_available()) {
second_inps.push_back({at::rand({2, 5}).cuda(), at::rand({1, 1})});
}
for (const auto& last_inps : second_inps) {
// todo - reusing interpreter across iters gave error
Code code(g, "");
InterpreterState interp(code);
auto stack = createStack({at::rand({2, 5}), last_inps[0], last_inps[1]});
interp.run(stack);
TORCH_INTERNAL_ASSERT(pop(stack).toTuple()->elements().at(0).isNone());
}
// Test good inputs
Code code(g, "");
InterpreterState interp(code);
std::vector<at::Tensor> inps = {
at::rand({2, 5}), at::rand({4, 5}), at::rand({1, 1})};
Stack stack(inps.begin(), inps.end());
interp.run(stack);
auto tuple = pop(stack).toTuple();
TORCH_INTERNAL_ASSERT(tuple->elements().at(0).isInt());
// Testing that the sym shape calculation was correct
for (size_t i = 0; i < sym_shapes.size(); ++i) {
auto sym_shape = sym_shapes[i];
auto computed_value = tuple->elements().at(i).toInt();
if (sym_shape == inp1->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 2);
} else if (sym_shape == inp1->symbolic_sizes().at(1).value()) {
ASSERT_EQ(computed_value, 5);
} else if (sym_shape == inp2->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 4);
} else if (sym_shape == out->symbolic_sizes().at(0).value()) {
ASSERT_EQ(computed_value, 6);
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
}
TEST(ShapeAnalysisTest, MovingConstantOutOfFusionGroups) {
std::shared_ptr<Graph> subgraph = std::make_shared<Graph>();
const auto graph_string = R"IR(
graph(%x.1 : Tensor):
%none : NoneType = prim::Constant()
%size1 : int = prim::Constant[value=1]()
%size10 : int = prim::Constant[value=10]()
%sizes : int[] = prim::ListConstruct(%size10, %size1)
%device : Device = prim::Constant[value="cpu"]()
%10 : Tensor = aten::ones(%sizes, %none, %none, %device, %none)
%3 : Tensor = aten::tanh(%x.1)
%29 : Tensor = aten::mul(%3, %10)
return (%29))IR";
torch::jit::parseIR(graph_string, subgraph.get());
ConstantPropagation(subgraph);
std::shared_ptr<Graph> g = std::make_shared<Graph>();
auto x_inp = g->addInput("x_inp");
auto x_type = TensorType::create(at::rand({10, 5}));
x_inp->setType(x_type);
subgraph->inputs().at(0)->setType(x_type);
subgraph->outputs().at(0)->setType(x_type);
auto output = g->insertNode(g->create(prim::TensorExprGroup))->output();
output->node()->addInput(x_inp);
output->node()->g_(attr::Subgraph, subgraph);
auto success = GenerateGuard(output->node());
TORCH_INTERNAL_ASSERT(success);
// Check that the constants have been moved out of the fused graph.
// This should result in not have any conditionals other than the one
// checking the result of TensorExprDynamicGuard.
testing::FileCheck()
.check("TensorExprDynamicGuard")
->check_next("prim::If")
->check_not("prim::If") // no other IFs due to constants.
->check("TensorExprGroup")
->check("block1")
->check("FallbackGraph")
->run(*g);
}
namespace {
c10::optional<int64_t> sym_dim = c10::nullopt;
// NOLINTNEXTLINE(bugprone-easily-swappable-parameters)
void assertShapeEqual(c10::SymbolicShape& a, c10::SymbolicShape& e) {
auto a_canonical = CanonicalizedSymbolicShape(a);
auto e_canonical = CanonicalizedSymbolicShape(e);
EXPECT_EQ(a_canonical, e_canonical);
}
void assertShapeEqual(
c10::optional<std::vector<c10::SymbolicShape>>& actual,
std::vector<c10::optional<int64_t>> expected) {
ASSERT_TRUE(actual.has_value());
ASSERT_EQ(actual->size(), 1);
auto symb_expected = c10::SymbolicShape(expected);
assertShapeEqual(actual->at(0), symb_expected);
}
const FunctionSchema* getSchema(const char* name) {
return &(getOperatorForLiteral(name)->schema());
}
} // namespace
TEST(ShapeAnalysisTest, SymbolicShapeAPI) {
// Figure out how to fetch a function schema
// Ask someone else how to create a function schema / operator in C++
auto schema = getSchema(
"aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor");
c10::IValue const_size_1 = std::vector<int64_t>{64, 56, 56};
c10::IValue const_size_2 = std::vector<int64_t>{1, 56, 56};
// Check vector initializer list syntax
c10::SymbolicShape ss_concrete =
std::vector<c10::optional<int64_t>>{1, 56, 56};
c10::SymbolicShape ss1 = std::vector<c10::optional<int64_t>>{sym_dim, 56, 56};
c10::SymbolicShape ss2 =
std::vector<c10::optional<int64_t>>{64, sym_dim, sym_dim};
c10::SymbolicShape ss3 =
std::vector<c10::optional<int64_t>>{sym_dim, sym_dim, sym_dim, sym_dim};
auto res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, const_size_1});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, const_size_2});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_1, ss1});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{const_size_2, ss1});
assertShapeEqual(res, {sym_dim, 56, 56});
res = calculateSymbolicShapesOnOp(
schema, std::vector<SSAInput>{ss_concrete, ss2});
assertShapeEqual(res, {64, 56, 56});
res = calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{ss2, ss3});
assertShapeEqual(res, {sym_dim, 64, sym_dim, sym_dim});
}
TEST(ShapeAnalysisTest, BoundedSymbolicShapes) {
auto schema = getSchema("aten::nonzero(Tensor self) -> (Tensor)");
// Test that we generate symbolic shapes for the output of a nonzero op
c10::IValue const_size_1 = std::vector<int64_t>{5, 10};
auto res =
calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{const_size_1});
assertShapeEqual(res, {sym_dim, 2});
// Test that nonzero can also create concrete shapes
c10::IValue const_size_2 = std::vector<int64_t>({1, 0});
res =
calculateSymbolicShapesOnOp(schema, std::vector<SSAInput>{const_size_2});
assertShapeEqual(res, {0, 2});
}
TEST(ShapeAnalysisTest, SymbolicShapeCaching) {
clear_shape_cache();
auto schema = getSchema("aten::mm(Tensor self, Tensor mat2) -> Tensor");
c10::IValue const_size_1 = std::vector<int64_t>{64, 56};
c10::IValue const_size_2 = std::vector<int64_t>{64, 56};
c10::IValue const_size_3 = std::vector<int64_t>{64, 20};
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss2 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss3 = c10::SymbolicShape({sym_dim, sym_dim});
auto res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_1});
assertShapeEqual(res, {sym_dim, 56});
auto res1_val = res->at(0);
// The exact same arguments should return the exact same result
res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_1});
auto res2_val = res->at(0);
EXPECT_EQ(res1_val, res2_val);
EXPECT_EQ(get_shape_cache_size(), 1);
// Same shape but different symbols should return same shape
// but different symbolic indices
res = calculateSymbolicShapesOnOp(schema, {ss2, const_size_2});
auto res3_val = res->at(0);
assertShapeEqual(res3_val, res2_val);
EXPECT_NE(res3_val, res2_val);
EXPECT_EQ(get_shape_cache_size(), 1);
// Different concrete shape should be cached separately
res = calculateSymbolicShapesOnOp(schema, {ss1, const_size_3});
assertShapeEqual(res, {sym_dim, 20});
EXPECT_EQ(get_shape_cache_size(), 2);
res = calculateSymbolicShapesOnOp(schema, {ss3, const_size_3});
assertShapeEqual(res, {sym_dim, 20});
EXPECT_EQ(get_shape_cache_size(), 3);
res = calculateSymbolicShapesOnOp(schema, {ss3, ss3});
assertShapeEqual(res, {sym_dim, sym_dim});
EXPECT_EQ(get_shape_cache_size(), 4);
}
TEST(ShapeAnalysisTest, ShapeCacheMultipleFns) {
clear_shape_cache();
auto squeeze_op =
getSchema("aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)");
auto mul_tensor =
getSchema("aten::mul.Tensor(Tensor self, Tensor other) -> Tensor");
auto mul_scalar =
getSchema("aten::mul.Scalar(Tensor self, Scalar other) -> Tensor");
auto div_tensor =
getSchema("aten::div.Tensor(Tensor self, Tensor other) -> Tensor");
auto matmul = getSchema("aten::mm(Tensor self, Tensor mat2) -> Tensor");
c10::IValue const_int = 1;
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
auto res = calculateSymbolicShapesOnOp(squeeze_op, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
// Show that cache can handle multiple functions
res = calculateSymbolicShapesOnOp(mul_scalar, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 2);
res = calculateSymbolicShapesOnOp(mul_tensor, {ss1, ss1});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 3);
// Even when the expected outcome is the same, should not collide
res = calculateSymbolicShapesOnOp(div_tensor, {ss1, ss1});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 4);
// Don't lose cached objects
res = calculateSymbolicShapesOnOp(mul_scalar, {ss1, const_int});
assertShapeEqual(res, {sym_dim, 64});
EXPECT_EQ(get_shape_cache_size(), 4);
res = calculateSymbolicShapesOnOp(matmul, {ss1, ss1});
// SSA can infer that sym_dim is 64 as both tensors
// use the same sym_dim
assertShapeEqual(res, {64, 64});
EXPECT_EQ(get_shape_cache_size(), 5);
}
TEST(ShapeAnalysisTest, TestShapeMultipleReturns) {
clear_shape_cache();
auto max_dim_op = getSchema(
"aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)");
c10::IValue const_int = 1;
c10::IValue false_ival = false;
c10::SymbolicShape ss1 = c10::SymbolicShape({sym_dim, 64});
c10::SymbolicShape ss2 = c10::SymbolicShape({sym_dim, 64});
auto res =
calculateSymbolicShapesOnOp(max_dim_op, {ss1, const_int, false_ival});
c10::SymbolicShape expected_res =
c10::SymbolicShape(std::vector<c10::optional<int64_t>>{sym_dim});
assertShapeEqual(res->at(0), expected_res);
// res0 and res1 should share the same symbolic symbol
EXPECT_EQ(res->at(0), res->at(1));
// Also test that the shape cache also returns consistent result shapes
res = calculateSymbolicShapesOnOp(max_dim_op, {ss2, const_int, false_ival});
assertShapeEqual(res->at(0), expected_res);
EXPECT_EQ(res->at(0), res->at(1));
EXPECT_EQ(get_shape_cache_size(), 1);
}
} // namespace jit
} // namespace torch