forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_interpreter.cpp
296 lines (267 loc) · 9.76 KB
/
test_interpreter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <ATen/Parallel.h>
#include <c10/core/DeviceType.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/runtime/instruction.h>
#include <torch/jit.h>
#include <torch/script.h>
#include <torch/torch.h>
namespace torch {
namespace jit {
class TypeCheckTest : public ::testing::Test {
protected:
TypeCheckTest() : interp(makeInterp()) {}
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
InterpreterState interp;
private:
static InterpreterState makeInterp() {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%a.1 : Tensor,
%b.1 : Tensor):
%t0 : Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), %t1 : Float(3, 3, strides=[3, 1]), %type_matched : bool = prim::TypeCheck[types=[Float(2, 2, strides=[2, 1], device=cpu, requires_grad=1), Float(3, 3, strides=[3, 1])]](%a.1, %b.1)
return (%t0, %t1, %type_matched)
)IR",
&*graph,
vmap);
Code function(graph, "");
return InterpreterState(function);
}
};
TEST_F(TypeCheckTest, MatchingType) {
// TypeCheck yields to true! Shape, grad and device matches.
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_TRUE(exactlyEqual(stack[0].toTensor(), a));
ASSERT_TRUE(exactlyEqual(stack[1].toTensor(), b));
ASSERT_TRUE(stack[2].toBool());
}
TEST_F(TypeCheckTest, SizeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 2}, at::kFloat); // Size mismatch
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, GradientMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(false); // Gradient mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, ScalarTypeMismatch) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a = a.to(at::kCPU);
a.set_requires_grad(true);
a = a.to(at::kInt); // Scalar type mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
TEST_F(TypeCheckTest, DeviceMismatch_CUDA) {
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({3, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCUDA); // Device mismatch
std::vector<IValue> stack({a, b});
interp.run(stack);
ASSERT_FALSE(stack[2].toBool());
}
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, EmptyCheckRaises) {
// // Test empty Typecheck raises an internal assertion
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck()
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
// TODO: These tests weren't doing anything.
// TEST(TypeCheckErrorTest, WrongInputOutputCountRaises) {
// // Test for assertion if num_inputs + 1 != num_outputs
// auto graph = std::make_shared<Graph>();
// std::unordered_map<std::string, Value*> vmap;
// EXPECT_ANY_THROW(parseIR(
// R"IR(
// graph(%a.1 : Tensor,
// %b.1 : Tensor):
// %type_matched : bool = prim::TypeCheck(%a.1)
// return (%type_matched)
// )IR",
// &*graph,
// vmap));
// }
TEST(InterpreterTest, Basic_CUDA) {
constexpr int batch_size = 4;
constexpr int input_size = 256;
constexpr int seq_len = 32;
int hidden_size = 2 * input_size;
auto input = at::randn({seq_len, batch_size, input_size}, at::kCUDA);
auto hx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto cx = at::randn({batch_size, hidden_size}, at::kCUDA);
auto w_ih = t_def(at::randn({4 * hidden_size, input_size}, at::kCUDA));
auto w_hh = t_def(at::randn({4 * hidden_size, hidden_size}, at::kCUDA));
auto lstm_g = build_lstm();
Code lstm_function(lstm_g, "");
InterpreterState lstm_interp(lstm_function);
auto outputs = run(lstm_interp, {input[0], hx, cx, w_ih, w_hh});
std::tie(hx, cx) = lstm(input[0], hx, cx, w_ih, w_hh);
ASSERT_TRUE(exactlyEqual(outputs[0], hx));
ASSERT_TRUE(exactlyEqual(outputs[1], cx));
}
TEST(InterpreterTest, IgnorableArgsInSchema) {
auto graph = build_mobile_export_analysis_graph();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 2);
ASSERT_TRUE(op_to_specified_args["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args["aten::slice.str"] == 4);
auto graph_vararg = build_mobile_export_analysis_graph_with_vararg();
MobileCode function_vararg(graph_vararg, "");
auto op_to_specified_args_vararg = function_vararg.op_to_num_specified_args();
// should never register it
ASSERT_TRUE(
op_to_specified_args_vararg.find("prim::tolist") ==
op_to_specified_args_vararg.end());
auto graph_nested = build_mobile_export_analysis_graph_nested();
MobileCode function_nested(graph_nested, "");
auto op_to_specified_args_nested = function_nested.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.Tensor"] == 4);
ASSERT_TRUE(op_to_specified_args_nested["aten::slice.str"] == 4);
auto graph_non_const = build_mobile_export_analysis_graph_non_const();
MobileCode function_non_const(graph_non_const, "");
auto op_to_specified_args_non_const =
function_non_const.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args_non_const["aten::conv2d"] == 6);
}
TEST(InterpreterTest, IgnorableArgsInSchemaWithOut) {
auto graph = build_mobile_export_with_out();
MobileCode function(graph, "");
auto op_to_specified_args = function.op_to_num_specified_args();
ASSERT_TRUE(op_to_specified_args.size() == 1);
// this should be 3 when the add_out flag is set to True
ASSERT_TRUE(op_to_specified_args["aten::add.out"] == 3);
}
TEST(InterpreterTest, runAsyncBasicTest) {
/*
TODO: there are some problem with C++ parsing script program involving
fork. Use the test module below for now.
issue about this: github.com/pytorch/pytorch/issues/46368
The test module file is generated by following:
class DemoModule(torch.nn.Module):
def forward(self):
r1 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
r2 = torch.jit.fork(torch.mm, torch.rand(100,100),torch.rand(100,100))
return r1.wait() + r2.wait()
demo = DemoModule()
torch.jit.save(torch.jit.script(demo), 'test_interpreter_async.pt')
*/
std::string filePath(__FILE__);
auto testModelFile = filePath.substr(0, filePath.find_last_of("/\\") + 1);
testModelFile.append("test_interpreter_async.pt");
auto model = load(testModelFile);
auto graph = model.get_method("forward").graph();
Code function(graph, "");
auto asyncCounter = 0;
std::mutex mtx;
// a dummy executor which actually use at::launch, but add up a counter
auto launcher = [&](std::function<void()> f) {
mtx.lock();
++asyncCounter;
mtx.unlock();
at::launch(f);
};
std::vector<IValue> stack;
// NOLINTNEXTLINE(modernize-use-emplace)
stack.push_back(model._ivalue());
InterpreterState interp(function, launcher);
interp.runAsync(stack)->wait();
ASSERT_TRUE(asyncCounter > 0);
}
TEST(
EnableRethrowCaughtExceptionTest,
EnableRethrowCaughtExceptionTestRethrowsCaughtException) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(
R"IR(
graph(%0 : Tensor,
%1 : Tensor):
%2 : int = prim::Constant[value=2]()
%3 : Tensor = aten::add(%0, %1, %2)
return (%3)
)IR",
&*graph,
vmap);
Code function(graph, "");
InterpreterState interp = InterpreterState(function);
auto a = at::zeros({2, 2}, at::kFloat);
auto b = at::ones({2, 3}, at::kFloat);
a.set_requires_grad(true);
a = a.to(at::kCPU);
std::vector<IValue> stack({a, b});
bool original_flag_value = FLAGS_torch_jit_enable_rethrow_caught_exception;
bool exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = false;
interp.run(stack);
} catch (std::runtime_error& e) {
exception_handled = true;
std::string exception_msg = e.what();
EXPECT_THAT(
exception_msg,
::testing::HasSubstr("%3 : Tensor = aten::add(%0, %1, %2)"));
EXPECT_THAT(
exception_msg,
::testing::HasSubstr(
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1"));
}
EXPECT_TRUE(exception_handled);
exception_handled = false;
try {
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
interp.run(stack);
} catch (c10::Error& e) {
exception_handled = true;
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
EXPECT_TRUE(exception_handled);
FLAGS_torch_jit_enable_rethrow_caught_exception = true;
c10::intrusive_ptr<Future> future = interp.runAsync(stack);
future->wait();
ASSERT_TRUE(future->completed());
ASSERT_TRUE(future->hasError());
try {
std::rethrow_exception(future->exception_ptr());
} catch (c10::Error& e) {
std::string exception_msg = e.what_without_backtrace();
EXPECT_STREQ(
exception_msg.c_str(),
"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1");
}
FLAGS_torch_jit_enable_rethrow_caught_exception = original_flag_value;
}
} // namespace jit
} // namespace torch