forked from karapostK/modprotodebias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_adversarial.py
257 lines (209 loc) · 8.71 KB
/
train_adversarial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import torch
from torch import nn
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
from tqdm import trange
import wandb
from conf.conf_parser import parse_conf
from fair.fair_eval import evaluate
from fair.neural_head import MultiHead
from fair.utils import generate_log_str, get_rec_model, get_mod_weights_settings, \
get_dataloaders, get_user_group_data, get_evaluators, summarize, get_mod_weights_module, get_users_gradient_scaling
from train.gradient_manipulation import GradientScalingLayer
from train.rec_losses import RecSampledSoftmaxLoss
from utilities.utils import reproducible, fetch_rec_model_config
def train_adversarial(debias_conf: dict):
debias_conf = parse_conf(debias_conf, 'debiasing')
rec_conf = fetch_rec_model_config(debias_conf['pre_trained_model_id'])
# --- Preparing the Rec Model, Data & Evaluators --- #
# Data
data_loaders = get_dataloaders({
**rec_conf,
**debias_conf,
})
user_to_user_group, n_groups, ce_weights = get_user_group_data(
train_dataset=data_loaders['train'].dataset,
group_type=debias_conf['group_type'],
dataset_name=rec_conf['dataset']
)
# Recommender Model
rec_model = get_rec_model(
rec_conf=rec_conf,
dataset=data_loaders['train'].dataset
)
# Evaluators
rec_evaluator, fair_evaluator = get_evaluators(
n_groups=n_groups,
user_to_user_group=user_to_user_group,
dataset_name=rec_conf['dataset'],
group_type=debias_conf['group_type']
)
# --- Setting up the Model (Probe/Adversary) --- #
reproducible(debias_conf['seed'])
# Neural Head
layers_config = [debias_conf['latent_dim']] + debias_conf['inner_layers_config'] + [n_groups]
adv_head = MultiHead(
debias_conf['adv_n_heads'],
layers_config,
debias_conf['gradient_scaling']
)
print()
print('Adversarial Head Summary: ')
summarize(adv_head, input_size=(10, debias_conf['latent_dim']), dtypes=[torch.float])
print()
# Modular Weights
n_delta_sets, user_to_delta_set = get_mod_weights_settings(
debias_conf['delta_on'],
data_loaders['train'].dataset,
group_type=debias_conf['group_type']
)
mod_weights = get_mod_weights_module(
how_use_deltas=debias_conf['how_use_deltas'],
latent_dim=debias_conf['latent_dim'],
n_delta_sets=n_delta_sets,
user_to_delta_set=user_to_delta_set,
init_std=debias_conf['init_std'],
use_clamping=debias_conf['use_clamping']
)
# Gradient Scaling Layer
user_gradient_scaling = get_users_gradient_scaling(
data_loaders['train'].dataset,
debias_conf['user_updates_normalization']
)
gs_layer = GradientScalingLayer(user_gradient_scaling)
# Optimizer & Scheduler
optimizer = torch.optim.AdamW(
[
{
'params': mod_weights.parameters(),
'lr': debias_conf['lr_deltas']
},
{
'params': adv_head.parameters(),
'lr': debias_conf['lr_adv']
},
],
weight_decay=debias_conf['wd']
)
scheduler = CosineAnnealingLR(optimizer, T_max=debias_conf['n_epochs'], eta_min=debias_conf['eta_min'])
# Loss
adv_loss = nn.CrossEntropyLoss(weight=ce_weights.to(debias_conf['device']))
rec_loss = RecSampledSoftmaxLoss.build_from_conf(rec_conf, data_loaders['train'].dataset)
# Save path
os.makedirs(os.path.dirname(debias_conf['save_path']), exist_ok=True)
wandb.config.update(debias_conf, allow_val_change=True)
# --- Training the Model --- #
user_to_user_group = user_to_user_group.to(debias_conf['device'])
rec_model.to(debias_conf['device'])
mod_weights.to(debias_conf['device'])
adv_head.to(debias_conf['device'])
gs_layer.to(debias_conf['device'])
best_recacc_value = -torch.inf
best_recacc_epoch = -1
worst_bacc_value = torch.inf
worst_bacc_epoch = -1
wandb.watch(mod_weights, log='all')
tqdm_epoch = trange(debias_conf['n_epochs'])
for curr_epoch in tqdm_epoch:
print(f"Epoch {curr_epoch}")
avg_epoch_loss = 0
avg_adv_loss = 0
avg_rec_loss = 0
tqdm_step = tqdm(data_loaders['train'])
for u_idxs, i_idxs, labels in tqdm_step:
u_idxs = u_idxs.to(debias_conf['device'])
i_idxs = i_idxs.to(debias_conf['device'])
labels = labels.to(debias_conf['device'])
i_repr = rec_model.get_item_representations(i_idxs)
u_p, u_other = rec_model.get_user_representations(u_idxs)
# Perturbing
u_p = mod_weights(u_p, u_idxs)
# Possibly scaling the gradients
u_p = gs_layer(u_p, u_idxs)
### Rec Loss ###
u_repr = u_p, u_other
rec_scores = rec_model.combine_user_item_representations(u_repr, i_repr)
rec_loss_value = rec_loss.compute_loss(rec_scores, labels)
### Adversarial Head ###
adv_out = adv_head(u_p) # Shape is [batch_size, n_heads, n_groups]
adv_out = adv_out.reshape(-1, n_groups)
adv_labels = torch.repeat_interleave(user_to_user_group[u_idxs], repeats=debias_conf['adv_n_heads'])
adv_loss_value = adv_loss(adv_out, adv_labels)
### Total Loss ###
tot_loss = debias_conf['lam_rec'] * rec_loss_value + debias_conf['lam'] * adv_loss_value
avg_epoch_loss += tot_loss.item()
avg_adv_loss += adv_loss_value.item()
avg_rec_loss += rec_loss_value.item()
tot_loss.backward()
optimizer.step()
optimizer.zero_grad()
# Setting the description of the tqdm bar
tqdm_step.set_description(
"tot_loss: {:.3f} | adv_loss: {:.3f} | rec_loss: {:.3f} ".format(
tot_loss.item(), adv_loss_value.item(), rec_loss_value.item()
))
tqdm_step.update()
epoch_lrs = scheduler.get_last_lr()
scheduler.step()
avg_epoch_loss /= len(data_loaders['train'])
avg_adv_loss /= len(data_loaders['train'])
avg_rec_loss /= len(data_loaders['train'])
tqdm_epoch.set_description(
"avg_tot_loss: {:.3f} | avg_adv_loss: {:.3f} | avg_rec_loss: {:.3f}".format(
avg_epoch_loss, avg_adv_loss, avg_rec_loss
)
)
tqdm_epoch.update()
rec_results, fair_results = evaluate(
rec_model=rec_model,
neural_head=adv_head,
mod_weights=mod_weights,
eval_loader=data_loaders['val'],
rec_evaluator=rec_evaluator,
fair_evaluator=fair_evaluator,
device=debias_conf['device'],
verbose=True
)
print(f"Epoch {curr_epoch} - ", generate_log_str(fair_results, n_groups))
saving_dict = {
'mod_weights': mod_weights.state_dict(),
'epoch': curr_epoch,
'rec_results': rec_results,
'fair_results': fair_results,
}
if rec_results['ndcg@10'] > best_recacc_value:
print(f"Epoch {curr_epoch} found best value.")
best_recacc_value = rec_results['ndcg@10']
best_recacc_epoch = curr_epoch
# Save
torch.save(saving_dict, os.path.join(debias_conf['save_path'], 'best_recacc.pth'))
if fair_results['balanced_acc'] < worst_bacc_value:
print(f"Epoch {curr_epoch} found worst value.")
worst_bacc_value = fair_results['balanced_acc']
worst_bacc_epoch = curr_epoch
# Save
torch.save(saving_dict, os.path.join(debias_conf['save_path'], 'worst_bacc.pth'))
if curr_epoch % 5 == 0:
torch.save(saving_dict, os.path.join(debias_conf['save_path'], f'epoch_{curr_epoch}.pth'))
# Save last
torch.save(saving_dict, os.path.join(debias_conf['save_path'], 'last.pth'))
wandb.log(
{
**rec_results,
**fair_results,
'best_recacc_value': best_recacc_value,
'worst_bacc_value': worst_bacc_value,
'best_recacc_epoch': best_recacc_epoch,
'worst_bacc_epoch': worst_bacc_epoch,
'avg_epoch_loss': avg_epoch_loss,
'avg_adv_loss': avg_adv_loss,
'avg_rec_loss': avg_rec_loss,
'epoch_lr_deltas': epoch_lrs[0],
'epoch_lr_adv': epoch_lrs[1],
'max_delta': mod_weights.deltas.max().item(),
'min_delta': mod_weights.deltas.min().item(),
'mean_delta': mod_weights.deltas.mean().item(),
}
)
return n_delta_sets, user_to_delta_set