forked from lucyzimmo/Food-Planning-Model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproportional.py
51 lines (38 loc) · 2.41 KB
/
proportional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
"""This script calculates the initial supermarket allocation based on population proportion
for Imperial County, California."""
import pandas as pd
# Load the provided data
file_path = 'data/food_access_research_atlas.csv'
food_data = pd.read_csv(file_path)
# Filter data for Imperial County, California
imperial_county_data = food_data[(food_data['County'] == 'Imperial') & (food_data['State'] == 'California')]
# Select relevant columns for supermarket allocation baseline
# Population (POP2010) and SNAP usage (TractSNAP) for additional analysis if needed
selected_columns = ['CensusTract', 'POP2010', 'TractSNAP', 'MedianFamilyIncome']
imperial_county_data = imperial_county_data[selected_columns]
# Define the total number of supermarkets to be distributed
TOTAL_NEW_SUPERMARKETS = 100 # to act as a percentage
# Step 1: Calculate Population Proportion
total_population = imperial_county_data['POP2010'].sum()
imperial_county_data['Population_Proportion'] = imperial_county_data['POP2010'] / total_population
# Step 2: Initial Supermarket Allocation Based on Population Proportion
imperial_county_data['Initial_Supermarkets'] = (imperial_county_data['Population_Proportion'] * TOTAL_NEW_SUPERMARKETS).round()
# Step 3: Adjust to Match TOTAL_NEW_SUPERMARKETS exactly
initial_total = imperial_county_data['Initial_Supermarkets'].sum()
# Calculate difference to adjust to TOTAL_NEW_SUPERMARKETS
difference = TOTAL_NEW_SUPERMARKETS - int(initial_total)
# Adjustment based on population proportion
if difference > 0:
# Add supermarkets to tracts with the highest population proportion
imperial_county_data = imperial_county_data.sort_values('Population_Proportion', ascending=False)
imperial_county_data.iloc[:difference, imperial_county_data.columns.get_loc('Initial_Supermarkets')] += 1
elif difference < 0:
# Remove supermarkets from tracts with the lowest population proportion
imperial_county_data = imperial_county_data.sort_values('Population_Proportion')
imperial_county_data.iloc[:abs(difference), imperial_county_data.columns.get_loc('Initial_Supermarkets')] -= 1
# Renaming column for clarity
imperial_county_data = imperial_county_data.rename(columns={'Initial_Supermarkets': 'Assigned_Supermarkets'})
# Save as output file
output_file_path = 'assigned_supermarket_proportional.csv'
imperial_county_data.to_csv(output_file_path, index=False)
print(f"Supermarket allocation results saved to: {output_file_path}")