-
Notifications
You must be signed in to change notification settings - Fork 0
/
lib.rs
869 lines (813 loc) · 31 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
//! Implementation of [Simulation of Simplicity by Edelsbrunner and Mücke](https://arxiv.org/pdf/math/9410209.pdf)
//!
//! Simulation of simplicity is a technique for ignoring
//! degeneracies when calculating geometric predicates,
//! such as the orientation of one point with respect to a list of points.
//! Each point **p**\_ *i* is perturbed by some polynomial
//! in ε, a sufficiently small positive number.
//! Specifically, coordinate *p\_(i,j)* is perturbed by ε^(3^(*d*\**i* - *j*)),
//! where *d* is more than the number of dimensions.
//!
//! # Predicates
//!
//! ## Orientation
//!
//! The orientation of 2 points **p**\_0, **p**\_1 in 1-dimensional space is
//! positive if **p**\_0 is to the right of **p**\_1 and negative otherwise.
//! We don't consider the case where **p**\_0 = **p**\_1 because of the perturbations.
//!
//! The orientation of *n* points **p**\_0, ..., **p**\_(n - 1) in (n - 1)-dimensional space is
//! the same as the orientation of **p**\_1, ..., **p**\_(n - 1) when looked at
//! from **p**_0. In particular, the orientation of 3 points in 2-dimensional space
//! is positive iff they form a left turn.
//!
//! Orientation predicates for 1, 2, and 3 dimensions are implemented.
//! They return whether the orientation is positive.
//!
//! ## In Hypersphere
//!
//! The in-circle of 4 points measures whether the last point is inside
//! the circle that goes through the first 3 points. Those 3 points
//! are not collinear because of the perturbations.
//!
//! The in-sphere of 5 points measures whether the last point is inside
//! the sphere that goes through the first 4 points. Those 4 points
//! are not coplanar because of the perturbations.
//!
//! # Usage
//!
//! ```rust
//! use simplicity::{nalgebra, orient_2d};
//! use nalgebra::Vector2;
//!
//! let points = vec![
//! Vector2::new(0.0, 0.0),
//! Vector2::new(1.0, 0.0),
//! Vector2::new(1.0, 1.0),
//! Vector2::new(0.0, 1.0),
//! Vector2::new(2.0, 0.0),
//! ];
//!
//! // Positive orientation
//! let result = orient_2d(&points, |l, i| l[i], 0, 1, 2);
//! assert!(result);
//!
//! // Negative orientation
//! let result = orient_2d(&points, |l, i| l[i], 0, 3, 2);
//! assert!(!result);
//!
//! // Degenerate orientation, tie broken by perturbance
//! let result = orient_2d(&points, |l, i| l[i], 0, 1, 4);
//! assert!(result);
//! let result = orient_2d(&points, |l, i| l[i], 4, 1, 0);
//! assert!(!result);
//! ```
//!
//! Because the predicates take an indexing function, this can be
//! used for arbitrary lists without having to implement `Index` for them:
//!
//! ```rust
//! # use simplicity::{nalgebra, orient_2d};
//! # use nalgebra::Vector2;
//! let points = vec![
//! (Vector2::new(0.0, 0.0), 0.8),
//! (Vector2::new(1.0, 0.0), 0.4),
//! (Vector2::new(2.0, 0.0), 0.6),
//! ];
//!
//! let result = orient_2d(&points, |l, i| l[i].0, 0, 1, 2);
//! ```
use robust_geo as rg;
pub use nalgebra;
use nalgebra::{Vector1, Vector2, Vector3};
type Vec1 = Vector1<f64>;
type Vec2 = Vector2<f64>;
type Vec3 = Vector3<f64>;
macro_rules! sorted_fn {
($name:ident, $n:expr) => {
/// Sorts an array of $n elements
/// and returns the sorted array,
/// along with the parity of the permutation;
/// `false` if even and `true` if odd.
fn $name<Idx: Ord + Copy>(mut arr: [Idx; $n]) -> ([Idx; $n], bool) {
let mut num_swaps = 0;
for i in 1..$n {
for j in (0..i).rev() {
if arr[j] > arr[j + 1] {
arr.swap(j, j + 1);
num_swaps += 1;
} else {
break;
}
}
}
(arr, num_swaps % 2 != 0)
}
};
}
sorted_fn!(sorted_3, 3);
sorted_fn!(sorted_4, 4);
sorted_fn!(sorted_5, 5);
/// Returns whether the orientation of 2 points in 1-dimensional space
/// is positive after perturbing them; that is, if the 1st one is
/// to the right of the 2nd one.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 2 indexes to the points to calculate the orientation of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, orient_1d};
/// # use nalgebra::Vector1;
/// let points = vec![0.0, 1.0, 2.0, 1.0];
/// let positive = orient_1d(&points, |l, i| Vector1::new(l[i]), 1, 3);
/// // points[1] gets perturbed farther to the right than points[3]
/// assert!(positive);
/// ```
pub fn orient_1d<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec1,
i: Idx,
j: Idx,
) -> bool {
let pi = index_fn(list, i);
let pj = index_fn(list, j);
pi > pj || (pi == pj && i < j)
}
macro_rules! case {
(2: $pi:ident, $pj:ident, @ m2, != $odd:expr) => {
let val = rg::magnitude_cmp_2d($pi, $pj);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(2: $pi:ident, $pj:ident, @ m3, != $odd:expr) => {
let val = rg::magnitude_cmp_3d($pi, $pj);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(2: $pi:ident, $pj:ident, $(@ $swiz:ident,)? != $odd:expr) => {
if $pi$(.$swiz)? != $pj$(.$swiz)? {
return ($pi$(.$swiz)? > $pj$(.$swiz)?) != $odd;
}
};
(3: $pi:ident, $pj:ident, $pk:ident, @ $swiz:ident m2, != $odd:expr) => {
let val = rg::sign_det_x_x2y2($pi.$swiz(), $pj.$swiz(), $pk.$swiz());
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(3: $pi:ident, $pj:ident, $pk:ident, @ $swiz:ident m3, != $odd:expr) => {
let val = rg::sign_det_x_x2y2z2($pi.$swiz(), $pj.$swiz(), $pk.$swiz());
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(3: $pi:ident, $pj:ident, $pk:ident, $(@ $swiz:ident,)? != $odd:expr) => {
let val = rg::orient_2d($pi$(.$swiz())?, $pj$(.$swiz())?, $pk$(.$swiz())?);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(4: $pi:ident, $pj:ident, $pk:ident, $pl:ident, @ xy m2, != $odd:expr) => {
let val = rg::in_circle($pi, $pj, $pk, $pl);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(4: $pi:ident, $pj:ident, $pk:ident, $pl:ident, @ $swiz:ident m3, != $odd:expr) => {
let val = rg::sign_det_x_y_x2y2z2($pi.$swiz(), $pj.$swiz(), $pk.$swiz(), $pl.$swiz());
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(4: $pi:ident, $pj:ident, $pk:ident, $pl:ident, $(@ $swiz:ident,)? != $odd:expr) => {
let val = rg::orient_3d($pi$(.$swiz())?, $pj$(.$swiz())?, $pk$(.$swiz())?, $pl$(.$swiz())?);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
(5: $pi:ident, $pj:ident, $pk:ident, $pl:ident, $pm:ident, @ xyz m3, != $odd:expr) => {
let val = rg::in_sphere($pi, $pj, $pk, $pl, $pm);
if val != 0.0 {
return (val > 0.0) != $odd;
}
};
}
/// Returns whether the orientation of 3 points in 2-dimensional space
/// is positive after perturbing them; that is, if the 3 points
/// form a left turn when visited in order.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 3 indexes to the points to calculate the orientation of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, orient_2d};
/// # use nalgebra::Vector2;
/// let points = vec![
/// Vector2::new(0.0, 0.0),
/// Vector2::new(1.0, 0.0),
/// Vector2::new(1.0, 1.0),
/// Vector2::new(2.0, 2.0),
/// ];
/// let positive = orient_2d(&points, |l, i| l[i], 0, 1, 2);
/// assert!(positive);
/// let positive = orient_2d(&points, |l, i| l[i], 0, 3, 2);
/// assert!(!positive);
/// ```
pub fn orient_2d<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec2,
i: Idx,
j: Idx,
k: Idx,
) -> bool {
let ([i, j, k], odd) = sorted_3([i, j, k]);
let pi = index_fn(list, i);
let pj = index_fn(list, j);
let pk = index_fn(list, k);
case!(3: pi, pj, pk, != odd);
case!(2: pk, pj, @ x, != odd);
case!(2: pj, pk, @ y, != odd);
case!(2: pi, pk, @ x, != odd);
!odd
}
/// Returns whether the orientation of 4 points in 3-dimensional space
/// is positive after perturbing them; that is, if the last 3 points
/// form a left turn when visited in order, looking from the first point.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 4 indexes to the points to calculate the orientation of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, orient_3d};
/// # use nalgebra::Vector3;
/// let points = vec![
/// Vector3::new(0.0, 0.0, 0.0),
/// Vector3::new(1.0, 0.0, 0.0),
/// Vector3::new(1.0, 1.0, 1.0),
/// Vector3::new(2.0, -2.0, 0.0),
/// Vector3::new(2.0, 3.0, 4.0),
/// Vector3::new(0.0, 0.0, 1.0),
/// Vector3::new(0.0, 1.0, 0.0),
/// Vector3::new(3.0, 4.0, 5.0),
/// ];
/// let positive = orient_3d(&points, |l, i| l[i], 0, 1, 6, 5);
/// assert!(!positive);
/// let positive = orient_3d(&points, |l, i| l[i], 7, 4, 0, 2);
/// assert!(positive);
/// ```
pub fn orient_3d<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec3,
i: Idx,
j: Idx,
k: Idx,
l: Idx,
) -> bool {
let ([i, j, k, l], odd) = sorted_4([i, j, k, l]);
let pi = index_fn(list, i);
let pj = index_fn(list, j);
let pk = index_fn(list, k);
let pl = index_fn(list, l);
case!(4: pi, pj, pk, pl, != odd);
case!(3: pj, pk, pl, @ xy, != odd);
case!(3: pj, pk, pl, @ zx, != odd);
case!(3: pj, pk, pl, @ yz, != odd);
case!(3: pi, pk, pl, @ yx, != odd);
case!(2: pk, pl, @ x, != odd);
case!(2: pl, pk, @ y, != odd);
case!(3: pi, pk, pl, @ xz, != odd);
case!(2: pk, pl, @ z, != odd);
// case!(3: pi, pk, pl, @ zy, != odd); Impossible
case!(3: pi, pj, pl, @ xy, != odd);
case!(2: pl, pj, @ x, != odd);
case!(2: pj, pl, @ y, != odd);
case!(2: pi, pl, @ x, != odd);
!odd
}
/// Returns whether the last point is inside the oriented circle that goes through
/// the first 3 points after perturbing them.
/// The first 3 points should be oriented positive or the result will be flipped.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 4 indexes to the points to calculate the in-circle of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, in_circle};
/// # use nalgebra::Vector2;
/// let points = vec![
/// Vector2::new(0.0, 2.0),
/// Vector2::new(1.0, 1.0),
/// Vector2::new(2.0, 1.0),
/// Vector2::new(0.0, 0.0),
/// Vector2::new(2.0, 3.0),
/// ];
/// let inside = in_circle(&points, |l, i| l[i], 0, 3, 2, 1);
/// assert!(inside);
/// let inside = in_circle(&points, |l, i| l[i], 2, 1, 3, 4);
/// assert!(!inside);
/// ```
pub fn in_circle<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec2 + Clone,
i: Idx,
j: Idx,
k: Idx,
l: Idx,
) -> bool {
simplicity_derive::generate_in_hypersphere!{list, index_fn, i, j, k, l}
// let flip = !orient_2d(list, index_fn.clone(), i, j, k);
// let ([i, j, k, l], odd) = sorted_4([i, j, k, l]);
// let odd = odd != flip;
// let pi = index_fn(list, i);
// let pj = index_fn(list, j);
// let pk = index_fn(list, k);
// let pl = index_fn(list, l);
// case!(4: pi, pj, pk, pl, @ xy m2, != odd);
// case!(3: pj, pk, pl, @ xy, != odd);
// case!(3: pj, pl, pk, @ xy m2, != odd);
// case!(3: pj, pk, pl, @ yx m2, != odd);
// case!(3: pi, pk, pl, @ yx, != odd);
// case!(2: pk, pl, @ x, != odd);
// case!(2: pl, pk, @ y, != odd);
// // case!(3: pi, pk, pl, @ xy m2, != odd); Impossible
// // case!(2: pk, pl, @ m2, != odd); Impossible
// // case!(3: pi, pk, pl, @ zy, != odd); Impossible
// case!(3: pi, pj, pl, @ xy, != odd);
// case!(2: pl, pj, @ x, != odd);
// case!(2: pj, pl, @ y, != odd);
// case!(2: pi, pl, @ x, != odd);
// !odd
}
/// Returns whether the last point is inside the circle that goes through
/// the first 3 points after perturbing them.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 4 indexes to the points to calculate the in-circle of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, in_circle_unoriented};
/// # use nalgebra::Vector2;
/// let points = vec![
/// Vector2::new(0.0, 2.0),
/// Vector2::new(1.0, 1.0),
/// Vector2::new(2.0, 1.0),
/// Vector2::new(0.0, 0.0),
/// Vector2::new(2.0, 3.0),
/// ];
/// let inside = in_circle_unoriented(&points, |l, i| l[i], 0, 2, 3, 1);
/// assert!(inside);
/// let inside = in_circle_unoriented(&points, |l, i| l[i], 2, 3, 1, 4);
/// assert!(!inside);
/// ```
pub fn in_circle_unoriented<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec2 + Clone,
i: Idx,
j: Idx,
k: Idx,
l: Idx,
) -> bool {
orient_2d(list, index_fn.clone(), i, j, k) == in_circle(list, index_fn, i, j, k, l)
}
/// Returns whether the last point is inside the sphere that goes through
/// the first 4 points after perturbing them.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 5 indexes to the points to calculate the in-sphere of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, in_sphere};
/// # use nalgebra::Vector3;
/// let points = vec![
/// Vector3::new(0.0, 0.0, 0.0),
/// Vector3::new(4.0, 0.0, 0.0),
/// Vector3::new(0.0, 4.0, 0.0),
/// Vector3::new(0.0, 0.0, 4.0),
/// Vector3::new(1.0, 1.0, 1.0),
/// ];
/// let inside = in_sphere(&points, |l, i| l[i], 0, 2, 1, 3, 4);
/// assert!(inside);
/// let inside = in_sphere(&points, |l, i| l[i], 2, 3, 1, 4, 0);
/// assert!(!inside);
/// ```
pub fn in_sphere<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec3 + Clone,
i: Idx,
j: Idx,
k: Idx,
l: Idx,
m: Idx,
) -> bool {
simplicity_derive::generate_in_hypersphere!{list, index_fn, i, j, k, l, m}
// let flip = !orient_3d(list, index_fn.clone(), i, j, k, l);
// let ([i, j, k, l, m], odd) = sorted_5([i, j, k, l, m]);
// let odd = odd != flip;
// let pi = index_fn(list, i);
// let pj = index_fn(list, j);
// let pk = index_fn(list, k);
// let pl = index_fn(list, l);
// let pm = index_fn(list, m);
// case!(5: pi, pj, pk, pl, pm, @ xyz m3, != odd);
// case!(4: pj, pk, pm, pl, != odd);
// case!(4: pj, pk, pl, pm, @ xyz m3, != odd);
// case!(4: pj, pk, pl, pm, @ zxy m3, != odd);
// case!(4: pj, pk, pl, pm, @ yzx m3, != odd);
// case!(4: pi, pk, pl, pm, != odd);
// case!(3: pk, pl, pm, @ xy, != odd);
// case!(3: pk, pl, pm, @ zx, != odd);
// case!(3: pk, pl, pm, @ yz, != odd);
// case!(4: pi, pk, pl, pm, @ yxz m3, != odd);
// case!(3: pk, pl, pm, @ xyz m3, != odd);
// case!(3: pk, pm, pl, @ yzx m3, != odd);
// case!(4: pi, pk, pl, pm, @ xzy m3, != odd);
// case!(3: pk, pl, pm, @ zxy m3, != odd);
// case!(4: pi, pk, pl, pm, @ zyx m3, != odd);
// case!(4: pi, pj, pm, pl, != odd);
// case!(3: pj, pl, pm, @ yx, != odd);
// case!(3: pj, pl, pm, @ xz, != odd);
// case!(3: pj, pl, pm, @ zy, != odd);
// case!(3: pi, pl, pm, @ xy, != odd);
// case!(2: pm, pl, @ x, != odd);
// case!(2: pl, pm, @ y, != odd);
// case!(3: pi, pl, pm, @ zx, != odd);
// case!(2: pm, pl, @ z, != odd);
// case!(3: pi, pl, pm, @ yz, != odd);
// case!(4: pi, pj, pl, pm, @ xyz m3, != odd);
// case!(3: pj, pm, pl, @ xyz m3, != odd);
// case!(3: pj, pl, pm, @ yzx m3, != odd);
// case!(3: pi, pl, pm, @ xyz m3, != odd);
// case!(2: pl, pm, @ m3, != odd);
// case!(3: pi, pm, pl, @ yzx m3, != odd);
// case!(4: pi, pj, pl, pm, @ zxy m3, != odd);
// case!(3: pj, pm, pl, @ zxy m3, != odd);
// case!(3: pi, pl, pm, @ zxy m3, != odd);
// case!(4: pi, pj, pl, pm, @ yzx m3, != odd);
// case!(4: pi, pj, pk, pm, != odd);
// case!(3: pj, pk, pm, @ xy, != odd);
// case!(3: pj, pk, pm, @ zx, != odd);
// case!(3: pj, pk, pm, @ yz, != odd);
// case!(3: pi, pk, pm, @ yx, != odd);
// case!(2: pk, pm, @ x, != odd);
// case!(2: pm, pk, @ y, != odd);
// case!(3: pi, pk, pm, @ xz, != odd);
// case!(2: pk, pm, @ z, != odd);
// // case!(3: pi, pk, pm, @ zy, != odd); Impossible
// case!(3: pi, pj, pm, @ xy, != odd);
// case!(2: pm, pj, @ x, != odd);
// case!(2: pj, pm, @ y, != odd);
// case!(2: pi, pm, @ x, != odd);
// !odd
}
/// Returns whether the last point is inside the sphere that goes through
/// the first 4 points after perturbing them.
/// The first 4 points must be oriented positive or the result will be flipped.
///
/// Takes a list of all the points in consideration, an indexing function,
/// and 5 indexes to the points to calculate the in-sphere of.
///
/// # Example
///
/// ```
/// # use simplicity::{nalgebra, in_sphere_unoriented};
/// # use nalgebra::Vector3;
/// let points = vec![
/// Vector3::new(0.0, 0.0, 0.0),
/// Vector3::new(4.0, 0.0, 0.0),
/// Vector3::new(0.0, 4.0, 0.0),
/// Vector3::new(0.0, 0.0, 4.0),
/// Vector3::new(1.0, 1.0, 1.0),
/// ];
/// let inside = in_sphere_unoriented(&points, |l, i| l[i], 0, 2, 3, 1, 4);
/// assert!(inside);
/// let inside = in_sphere_unoriented(&points, |l, i| l[i], 2, 3, 1, 4, 0);
/// assert!(!inside);
/// ```
pub fn in_sphere_unoriented<T: ?Sized, Idx: Ord + Copy>(
list: &T,
index_fn: impl Fn(&T, Idx) -> Vec3 + Clone,
i: Idx,
j: Idx,
k: Idx,
l: Idx,
m: Idx,
) -> bool {
orient_3d(list, index_fn.clone(), i, j, k, l) == in_sphere(list, index_fn, i, j, k, l, m)
}
///// Returns whether the last point is closer to the second point
///// than it is to the first point.
/////
///// Takes a list of all the points in consideration, an indexing function,
///// and 3 indexes to the points to calculate the distance-compare-3d of.
//pub fn distance_cmp_3d<T: ?Sized>(
// list: &T,
// index_fn: impl Fn(&T, usize) -> Vec3 + Clone,
// i: usize,
// j: usize,
// k: usize,
//) -> bool {
// let pi = index_fn(list, i);
// let pj = index_fn(list, j);
// let pk = index_fn(list, k);
//
// let val = rg::distance_cmp_3d(pi, pj, pk);
// if val != 0.0 {
// return val > 0.0;
// }
//
// const DUMMY: bool = false;
// if k < i && k < j {
// case!(2: pj, pi, @ z, != DUMMY);
// case!(2: pj, pi, @ y, != DUMMY);
// case!(2: pj, pi, @ x, != DUMMY);
// }
//
// return i < j
//}
#[cfg(test)]
mod tests {
use super::*;
use test_case::test_case;
// Test-specific to determine case reached
macro_rules! case {
($arr:expr => $pi:ident, $pj:ident, @ m2) => {
let val = rg::magnitude_cmp_2d($pi, $pj);
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, @ m3) => {
let val = rg::magnitude_cmp_3d($pi, $pj);
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident $(, @ $swiz:ident)?) => {
if $pi$(.$swiz)? != $pj$(.$swiz)? {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, @ $swiz:ident m2) => {
let val = rg::sign_det_x_x2y2($pi.$swiz(), $pj.$swiz(), $pk.$swiz());
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, @ $swiz:ident m3) => {
let val = rg::sign_det_x_x2y2z2($pi.$swiz(), $pj.$swiz(), $pk.$swiz());
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident $(, @ $swiz:ident)?) => {
let val = rg::orient_2d($pi$(.$swiz())?, $pj$(.$swiz())?, $pk$(.$swiz())?);
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, $pl:ident, @ xy m2) => {
let val = rg::in_circle($pi, $pj, $pk, $pl);
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, $pl:ident, @ $swiz:ident m3) => {
let val = rg::sign_det_x_y_x2y2z2($pi.$swiz(), $pj.$swiz(), $pk.$swiz(), $pl.$swiz());
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, $pl:ident $(, @ $swiz:ident)?) => {
let val = rg::orient_3d($pi$(.$swiz())?, $pj$(.$swiz())?, $pk$(.$swiz())?, $pl$(.$swiz())?);
if val != 0.0 {
return $arr;
}
};
($arr:expr => $pi:ident, $pj:ident, $pk:ident, $pl:ident, $pm:ident, @ xyz m3) => {
let val = rg::in_sphere($pi, $pj, $pk, $pl, $pm);
if val != 0.0 {
return $arr;
}
};
}
// Copied from orient_2d
pub fn orient_2d_case<T: ?Sized>(
list: &T,
index_fn: impl Fn(&T, usize) -> Vec2,
i: usize,
j: usize,
k: usize,
) -> [usize; 3] {
let ([i, j, k], _) = sorted_3([i, j, k]);
let pi = index_fn(list, i);
let pj = index_fn(list, j);
let pk = index_fn(list, k);
case!([3, 3, 3] => pi, pj, pk);
case!([2, 3, 3] => pk, pj, @ x);
case!([1, 3, 3] => pj, pk, @ y);
case!([2, 2, 3] => pi, pk, @ x);
[1, 2, 3]
}
// Copied from orient_3d
pub fn orient_3d_case<T: ?Sized>(
list: &T,
index_fn: impl Fn(&T, usize) -> Vec3,
i: usize,
j: usize,
k: usize,
l: usize,
) -> [usize; 4] {
let ([i, j, k, l], _) = sorted_4([i, j, k, l]);
let pi = index_fn(list, i);
let pj = index_fn(list, j);
let pk = index_fn(list, k);
let pl = index_fn(list, l);
case!([4, 4, 4, 4] => pi, pj, pk, pl);
case!([3, 4, 4, 4] => pj, pk, pl, @ xy);
case!([2, 4, 4, 4] => pj, pk, pl, @ zx);
case!([1, 4, 4, 4] => pj, pk, pl, @ yz);
case!([3, 3, 4, 4] => pi, pk, pl, @ yx);
case!([2, 3, 4, 4] => pk, pl, @ x);
case!([1, 3, 4, 4] => pl, pk, @ y);
case!([2, 2, 4, 4] => pi, pk, pl, @ xz);
case!([1, 2, 4, 4] => pk, pl, @ z);
//case!([1, 1, 4, 4] => pi, pk, pl, @ zy); Impossible
case!([3, 3, 3, 4] => pi, pj, pl, @ xy);
case!([2, 3, 3, 4] => pl, pj, @ x);
case!([1, 3, 3, 4] => pj, pl, @ y);
case!([2, 2, 3, 4] => pi, pl, @ x);
[1, 2, 3, 4]
}
#[test]
fn orient_1d_positive() {
let points = vec![0.0, 1.0];
assert!(orient_1d(&points, |l, i| Vector1::new(l[i]), 1, 0))
}
#[test]
fn orient_1d_negative() {
let points = vec![0.0, 1.0];
assert!(!orient_1d(&points, |l, i| Vector1::new(l[i]), 0, 1))
}
#[test]
fn orient_1d_positive_degenerate() {
let points = vec![0.0, 0.0];
assert!(orient_1d(&points, |l, i| Vector1::new(l[i]), 0, 1))
}
#[test]
fn orient_1d_negative_degenerate() {
let points = vec![0.0, 0.0];
assert!(!orient_1d(&points, |l, i| Vector1::new(l[i]), 1, 0))
}
#[test_case([[0.0, 0.0], [1.0, 0.0], [2.0, 1.0]], [3,3,3] ; "General")]
#[test_case([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]], [2,3,3] ; "Collinear")]
#[test_case([[0.0, 0.0], [0.0, 2.0], [0.0, 1.0]], [1,3,3] ; "Collinear, pj.x = pk.x")]
#[test_case([[1.0, 0.0], [0.0, 2.0], [0.0, 2.0]], [2,2,3] ; "pj = pk")]
#[test_case([[0.0, 0.0], [0.0, 2.0], [0.0, 2.0]], [1,2,3] ; "pj = pk, pi.x = pk.x")]
fn test_orient_2d(points: [[f64; 2]; 3], case: [usize; 3]) {
let points = points
.iter()
.copied()
.map(Vector2::from)
.collect::<Vec<_>>();
assert!(orient_2d(&points, |l, i| l[i], 0, 1, 2));
assert!(!orient_2d(&points, |l, i| l[i], 0, 2, 1));
assert!(!orient_2d(&points, |l, i| l[i], 1, 0, 2));
assert!(orient_2d(&points, |l, i| l[i], 1, 2, 0));
assert!(orient_2d(&points, |l, i| l[i], 2, 0, 1));
assert!(!orient_2d(&points, |l, i| l[i], 2, 1, 0));
assert_eq!(orient_2d_case(&points, |l, i| l[i], 0, 1, 2), case);
}
#[test_case([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]], [4,4,4,4] ; "General")]
#[test_case([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [3.0, 4.0, 5.0], [2.0, 3.0, 4.0]], [3,4,4,4] ; "Coplanar")]
#[test_case([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 4.0], [3.0, 3.0, 5.0]], [2,4,4,4] ; "Coplanar, pj pk pl @ xy collinear")]
#[test_case([[1.0, 0.0, 0.0], [1.0, 1.0, 1.0], [1.0, 4.0, 2.0], [1.0, 5.0, 3.0]], [1,4,4,4] ; "Coplanar, pj.x = pk.x = pl.x or pj pk pl collinear")]
#[test_case([[0.0, 0.0, 0.0], [1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]], [3,3,4,4] ; "pj pk pl collinear")]
#[test_case([[0.0, 0.0, 0.0], [1.0, 1.0, 3.0], [3.0, 3.0, 5.0], [2.0, 2.0, 4.0]], [2,3,4,4] ; "pj pk pl collinear, pi pk pl @ xy collinear")]
#[test_case([[0.0, 0.0, 0.0], [0.0, 1.0, 3.0], [0.0, 2.0, 4.0], [0.0, 3.0, 5.0]], [1,3,4,4] ; "pj pk pl collinear, pi pk pl @ xy collinear, pk.x = pl.x")]
#[test_case([[1.0, 0.0, 0.0], [0.0, 2.0, 3.0], [0.0, 2.0, 5.0], [0.0, 2.0, 4.0]], [2,2,4,4] ; "pj pk pl collinear, pi pk pl @ xy collinear, pk.xy = pl.xy")]
#[test_case([[0.0, 0.0, 0.0], [0.0, 2.0, 3.0], [0.0, 2.0, 4.0], [0.0, 2.0, 3.0]], [1,2,4,4] ; "pj pk pl collinear, pi.x = pk.x = pl.x or pi pk pl collinear, pk.xy = pl.xy")]
// , [1,1,4,4] ; "pk = pl and pi pk pl @ yz not collinear is impossible
#[test_case([[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 1.0, 0.0], [2.0, 1.0, 0.0]], [3,3,3,4] ; "pk = pl")]
#[test_case([[0.0, 0.0, 0.0], [1.0, 1.0, 0.0], [2.0, 2.0, 0.0], [2.0, 2.0, 0.0]], [2,3,3,4] ; "pk = pl, pi pj pk @ xy collinear")]
#[test_case([[0.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]], [1,3,3,4] ; "pk = pl, pi pj pk @ xy collinear, pj.x = pk.x")]
#[test_case([[1.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 2.0, 0.0], [0.0, 2.0, 0.0]], [2,2,3,4] ; "pk = pl, pi pj pk @ xy collinear, pj.xy = pk.xy")]
#[test_case([[0.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 2.0, 0.0], [0.0, 2.0, 0.0]], [1,2,3,4] ; "pk = pl, pi pj pk @ xy collinear, pj.xy = pk.xy, pi.x = pk.x")]
fn test_orient_3d(points: [[f64; 3]; 4], case: [usize; 4]) {
let points = points
.iter()
.copied()
.map(Vector3::from)
.collect::<Vec<_>>();
// Trusting the insertion sort now
assert!(orient_3d(&points, |l, i| l[i], 0, 1, 2, 3));
assert!(!orient_3d(&points, |l, i| l[i], 3, 2, 0, 1));
assert_eq!(orient_3d_case(&points, |l, i| l[i], 0, 1, 2, 3), case);
}
#[test]
fn test_in_circle_unoriented_general() {
let points = [[0.0, 0.0], [0.0, 2.0], [2.0, 2.0], [1.0, 1.0]];
let points = points
.iter()
.copied()
.map(Vector2::from)
.collect::<Vec<_>>();
// Trusting the insertion sort now
assert!(in_circle_unoriented(&points, |l, i| l[i], 0, 1, 2, 3));
assert!(in_circle_unoriented(&points, |l, i| l[i], 0, 2, 1, 3));
assert!(in_circle_unoriented(&points, |l, i| l[i], 1, 2, 0, 3));
assert!(in_circle_unoriented(&points, |l, i| l[i], 1, 0, 2, 3));
assert!(in_circle_unoriented(&points, |l, i| l[i], 2, 0, 1, 3));
assert!(in_circle_unoriented(&points, |l, i| l[i], 2, 1, 0, 3));
assert!(
(in_circle_unoriented(&points, |l, i| l[i], 0, 1, 2, 3)
== in_circle_unoriented(&points, |l, i| l[i], 0, 1, 3, 2))
== (orient_2d(&points, |l, i| l[i], 0, 1, 3)
!= orient_2d(&points, |l, i| l[i], 0, 1, 2))
);
}
// Not sure how to test this properly in a non-tedious way.
// Let's just test the first degenerate expansion for now.
#[test]
fn test_in_circle_unoriented_cocircular() {
let points = [[0.0, 0.0], [0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
let points = points
.iter()
.copied()
.map(Vector2::from)
.collect::<Vec<_>>();
// Trusting the insertion sort now
assert!(in_circle_unoriented(&points, |l, i| l[i], 1, 2, 3, 0));
assert!(in_circle_unoriented(&points, |l, i| l[i], 1, 3, 2, 0));
assert!(in_circle_unoriented(&points, |l, i| l[i], 2, 3, 1, 0));
assert!(in_circle_unoriented(&points, |l, i| l[i], 1, 2, 3, 0));
assert!(in_circle_unoriented(&points, |l, i| l[i], 3, 1, 2, 0));
assert!(in_circle_unoriented(&points, |l, i| l[i], 3, 2, 1, 0));
assert!(
(in_circle_unoriented(&points, |l, i| l[i], 0, 1, 2, 3)
== in_circle_unoriented(&points, |l, i| l[i], 0, 1, 3, 2))
== (orient_2d(&points, |l, i| l[i], 0, 1, 3)
!= orient_2d(&points, |l, i| l[i], 0, 1, 2))
);
}
#[test]
fn test_in_sphere_unoriented_general() {
// Taking integers to shorten things
let points = [[0,0,0], [4,0,0], [0,4,0], [0,0,4], [1,1,1]];
let points = points
.iter()
.copied()
.map(|[x, y, z]| Vector3::new(x as f64, y as f64, z as f64))
.collect::<Vec<_>>();
// Trusting the insertion sort now
assert!(in_sphere_unoriented(&points, |l, i| l[i], 0, 1, 2, 3, 4));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 0, 2, 1, 3, 4));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 1, 2, 0, 3, 4));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 1, 3, 0, 2, 4));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 2, 3, 0, 1, 4));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 2, 3, 1, 0, 4));
assert!(
(in_sphere_unoriented(&points, |l, i| l[i], 0, 1, 2, 3, 4)
== in_sphere_unoriented(&points, |l, i| l[i], 0, 1, 2, 4, 3))
== (orient_3d(&points, |l, i| l[i], 0, 1, 2, 3)
!= orient_3d(&points, |l, i| l[i], 0, 1, 2, 4))
);
}
// Not sure how to test this properly in a non-tedious way.
// Let's just test the first degenerate expansion for now.
#[test]
fn test_in_sphere_unoriented_cospherical() {
let points = [[0,0,0], [0,0,0], [1,0,0], [0,0,1], [0,1,0]];
let points = points
.iter()
.copied()
.map(|[x, y, z]| Vector3::new(x as f64, y as f64, z as f64))
.collect::<Vec<_>>();
// Trusting the insertion sort now
assert!(in_sphere_unoriented(&points, |l, i| l[i], 1, 2, 3, 4, 0));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 1, 3, 2, 4, 0));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 2, 3, 1, 4, 0));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 2, 4, 1, 3, 0));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 3, 4, 1, 2, 0));
assert!(in_sphere_unoriented(&points, |l, i| l[i], 3, 4, 2, 1, 0));
assert!(
(in_sphere_unoriented(&points, |l, i| l[i], 0, 1, 2, 3, 4)
== in_sphere_unoriented(&points, |l, i| l[i], 0, 1, 2, 4, 3))
== (orient_3d(&points, |l, i| l[i], 0, 1, 2, 3)
!= orient_3d(&points, |l, i| l[i], 0, 1, 2, 4))
);
}
}