From cc07ac220f215fc66d297ef41007e1931ea8a5ce Mon Sep 17 00:00:00 2001 From: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Date: Fri, 22 Sep 2023 17:30:22 -0400 Subject: [PATCH] Add delimited term frequency token filter documentation (#5043) * Add token filter documentation Signed-off-by: Fanit Kolchina * Add delimited term frequency token filter documentation Signed-off-by: Fanit Kolchina * Add phonetic token filter Signed-off-by: Fanit Kolchina * Table format fix Signed-off-by: Fanit Kolchina * Add script example Signed-off-by: Fanit Kolchina * Remove similarity Signed-off-by: Fanit Kolchina * Apply suggestions from code review Co-authored-by: Melissa Vagi Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> * Apply suggestions from code review Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Nathan Bower Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> --------- Signed-off-by: Fanit Kolchina Signed-off-by: kolchfa-aws <105444904+kolchfa-aws@users.noreply.github.com> Co-authored-by: Melissa Vagi Co-authored-by: Nathan Bower --- .../token-filters/delimited-term-frequency.md | 275 ++++++++++++++++++ _analyzers/token-filters/index.md | 64 ++++ 2 files changed, 339 insertions(+) create mode 100644 _analyzers/token-filters/delimited-term-frequency.md create mode 100644 _analyzers/token-filters/index.md diff --git a/_analyzers/token-filters/delimited-term-frequency.md b/_analyzers/token-filters/delimited-term-frequency.md new file mode 100644 index 0000000000..e2db7644a2 --- /dev/null +++ b/_analyzers/token-filters/delimited-term-frequency.md @@ -0,0 +1,275 @@ +--- +layout: default +title: Delimited term frequency +parent: Token filters +nav_order: 100 +--- + +# Delimited term frequency token filter + +The `delimited_term_freq` token filter separates a token stream into tokens with corresponding term frequencies, based on a provided delimiter. A token consists of all characters before the delimiter, and a term frequency is the integer after the delimiter. For example, if the delimiter is `|`, then for the string `foo|5`, `foo` is the token and `5` is its term frequency. If there is no delimiter, the token filter does not modify the term frequency. + +You can either use a preconfigured `delimited_term_freq` token filter or create a custom one. + +## Preconfigured `delimited_term_freq` token filter + +The preconfigured `delimited_term_freq` token filter uses the `|` default delimiter. To analyze text with the preconfigured token filter, send the following request to the `_analyze` endpoint: + +```json +POST /_analyze +{ + "text": "foo|100", + "tokenizer": "keyword", + "filter": ["delimited_term_freq"], + "attributes": ["termFrequency"], + "explain": true +} +``` +{% include copy-curl.html %} + +The `attributes` array specifies that you want to filter the output of the `explain` parameter to return only `termFrequency`. The response contains both the original token and the parsed output of the token filter that includes the term frequency: + +```json +{ + "detail": { + "custom_analyzer": true, + "charfilters": [], + "tokenizer": { + "name": "keyword", + "tokens": [ + { + "token": "foo|100", + "start_offset": 0, + "end_offset": 7, + "type": "word", + "position": 0, + "termFrequency": 1 + } + ] + }, + "tokenfilters": [ + { + "name": "delimited_term_freq", + "tokens": [ + { + "token": "foo", + "start_offset": 0, + "end_offset": 7, + "type": "word", + "position": 0, + "termFrequency": 100 + } + ] + } + ] + } +} +``` + +## Custom `delimited_term_freq` token filter + +To configure a custom `delimited_term_freq` token filter, first specify the delimiter in the mapping request, in this example, `^`: + +```json +PUT /testindex +{ + "settings": { + "analysis": { + "filter": { + "my_delimited_term_freq": { + "type": "delimited_term_freq", + "delimiter": "^" + } + } + } + } +} +``` +{% include copy-curl.html %} + +Then analyze text with the custom token filter you created: + +```json +POST /testindex/_analyze +{ + "text": "foo^3", + "tokenizer": "keyword", + "filter": ["my_delimited_term_freq"], + "attributes": ["termFrequency"], + "explain": true +} +``` +{% include copy-curl.html %} + +The response contains both the original token and the parsed version with the term frequency: + +```json +{ + "detail": { + "custom_analyzer": true, + "charfilters": [], + "tokenizer": { + "name": "keyword", + "tokens": [ + { + "token": "foo|100", + "start_offset": 0, + "end_offset": 7, + "type": "word", + "position": 0, + "termFrequency": 1 + } + ] + }, + "tokenfilters": [ + { + "name": "delimited_term_freq", + "tokens": [ + { + "token": "foo", + "start_offset": 0, + "end_offset": 7, + "type": "word", + "position": 0, + "termFrequency": 100 + } + ] + } + ] + } +} +``` + +## Combining `delimited_token_filter` with scripts + +You can write Painless scripts to calculate custom scores for the documents in the results. + +First, create an index and provide the following mappings and settings: + +```json +PUT /test +{ + "settings": { + "number_of_shards": 1, + "analysis": { + "tokenizer": { + "keyword_tokenizer": { + "type": "keyword" + } + }, + "filter": { + "my_delimited_term_freq": { + "type": "delimited_term_freq", + "delimiter": "^" + } + }, + "analyzer": { + "custom_delimited_analyzer": { + "tokenizer": "keyword_tokenizer", + "filter": ["my_delimited_term_freq"] + } + } + } + }, + "mappings": { + "properties": { + "f1": { + "type": "keyword" + }, + "f2": { + "type": "text", + "analyzer": "custom_delimited_analyzer", + "index_options": "freqs" + } + } + } +} +``` +{% include copy-curl.html %} + +The `test` index uses a keyword tokenizer, a delimited term frequency token filter (where the delimiter is `^`), and a custom analyzer that includes a keyword tokenizer and a delimited term frequency token filter. The mappings specify that the field `f1` is a keyword field and the field `f2` is a text field. The field `f2` uses the custom analyzer defined in the settings for text analysis. Additionally, specifying `index_options` signals to OpenSearch to add the term frequencies to the inverted index. You'll use the term frequencies to give documents with repeated terms a higher score. + +Next, index two documents using bulk upload: + +```json +POST /_bulk?refresh=true +{"index": {"_index": "test", "_id": "doc1"}} +{"f1": "v0|100", "f2": "v1^30"} +{"index": {"_index": "test", "_id": "doc2"}} +{"f2": "v2|100"} +``` +{% include copy-curl.html %} + +The following query searches for all documents in the index and calculates document scores as the term frequency of the term `v1` in the field `f2`: + +```json +GET /test/_search +{ + "query": { + "function_score": { + "query": { + "match_all": {} + }, + "script_score": { + "script": { + "source": "termFreq(params.field, params.term)", + "params": { + "field": "f2", + "term": "v1" + } + } + } + } + } +} +``` +{% include copy-curl.html %} + +In the response, document 1 has a score of 30 because the term frequency of the term `v1` in the field `f2` is 30. Document 2 has a score of 0 because the term `v1` does not appear in `f2`: + +```json +{ + "took": 4, + "timed_out": false, + "_shards": { + "total": 1, + "successful": 1, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 2, + "relation": "eq" + }, + "max_score": 30, + "hits": [ + { + "_index": "test", + "_id": "doc1", + "_score": 30, + "_source": { + "f1": "v0|100", + "f2": "v1^30" + } + }, + { + "_index": "test", + "_id": "doc2", + "_score": 0, + "_source": { + "f2": "v2|100" + } + } + ] + } +} +``` + +## Parameters + +The following table lists all parameters that the `delimited_term_freq` supports. + +Parameter | Required/Optional | Description +:--- | :--- | :--- +`delimiter` | Optional | The delimiter used to separate tokens from term frequencies. Must be a single non-null character. Default is `|`. \ No newline at end of file diff --git a/_analyzers/token-filters/index.md b/_analyzers/token-filters/index.md new file mode 100644 index 0000000000..29245fe279 --- /dev/null +++ b/_analyzers/token-filters/index.md @@ -0,0 +1,64 @@ +--- +layout: default +title: Token filters +nav_order: 70 +has_children: true +has_toc: false +--- + +# Token filters + +Token filters receive the stream of tokens from the tokenizer and add, remove, or modify the tokens. For example, a token filter may lowercase the tokens so that `Actions` becomes `action`, remove stopwords like `than`, or add synonyms like `talk` for the word `speak`. + +The following table lists all token filters that OpenSearch supports. + +Token filter | Underlying Lucene token filter| Description +`apostrophe` | [ApostropheFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/tr/ApostropheFilter.html) | In each token that contains an apostrophe, the `apostrophe` token filter removes the apostrophe itself and all characters following the apostrophe. +`asciifolding` | [ASCIIFoldingFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ASCIIFoldingFilter.html) | Converts alphabetic, numeric, and symbolic characters. +`cjk_bigram` | [CJKBigramFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/cjk/CJKBigramFilter.html) | Forms bigrams of Chinese, Japanese, and Korean (CJK) tokens. +`cjk_width` | [CJKWidthFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/cjk/CJKWidthFilter.html) | Normalizes Chinese, Japanese, and Korean (CJK) tokens according to the following rules:
- Folds full-width ASCII character variants into the equivalent basic Latin characters.
- Folds half-width Katakana character variants into the equivalent Kana characters. +`classic` | [ClassicFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/standard/ClassicFilter.html) | Performs optional post-processing on the tokens generated by the classic tokenizer. Removes possessives (`'s`) and removes `.` from acronyms. +`common_grams` | [CommonGramsFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/commongrams/CommonGramsFilter.html) | Generates bigrams for a list of frequently occurring terms. The output contains both single terms and bigrams. +`conditional` | [ConditionalTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ConditionalTokenFilter.html) | Applies an ordered list of token filters to tokens that match the conditions provided in a script. +`decimal_digit` | [DecimalDigitFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/DecimalDigitFilter.html) | Converts all digits in the Unicode decimal number general category to basic Latin digits (0--9). +`delimited_payload` | [DelimitedPayloadTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/payloads/DelimitedPayloadTokenFilter.html) | Separates a token stream into tokens with corresponding payloads, based on a provided delimiter. A token consists of all characters before the delimiter, and a payload consists of all characters after the delimiter. For example, if the delimiter is `|`, then for the string `foo|bar`, `foo` is the token and `bar` is the payload. +[`delimited_term_freq`]({{site.url}}{{site.baseurl}}/analyzers/token-filters/delimited-term-frequency/) | [DelimitedTermFrequencyTokenFilter](https://lucene.apache.org/core/9_7_0/analysis/common/org/apache/lucene/analysis/miscellaneous/DelimitedTermFrequencyTokenFilter.html) | Separates a token stream into tokens with corresponding term frequencies, based on a provided delimiter. A token consists of all characters before the delimiter, and a term frequency is the integer after the delimiter. For example, if the delimiter is `|`, then for the string `foo|5`, `foo` is the token and `5` is the term frequency. +`dictionary_decompounder` | [DictionaryCompoundWordTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/compound/DictionaryCompoundWordTokenFilter.html) | Decomposes compound words found in many Germanic languages. +`edge_ngram` | [EdgeNGramTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/ngram/EdgeNGramTokenFilter.html) | Tokenizes the given token into edge n-grams (n-grams that start at the beginning of the token) of lengths between `min_gram` and `max_gram`. Optionally, keeps the original token. +`elision` | [ElisionFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/util/ElisionFilter.html) | Removes the specified [elisions](https://en.wikipedia.org/wiki/Elision) from the beginning of tokens. For example, changes `l'avion` (the plane) to `avion` (plane). +`fingerprint` | [FingerprintFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/FingerprintFilter.html) | Sorts and deduplicates the token list and concatenates tokens into a single token. +`flatten_graph` | [FlattenGraphFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/FlattenGraphFilter.html) | Flattens a token graph produced by a graph token filter, such as `synonym_graph` or `word_delimiter_graph`, making the graph suitable for indexing. +`hunspell` | [HunspellStemFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/hunspell/HunspellStemFilter.html) | Uses [Hunspell](https://en.wikipedia.org/wiki/Hunspell) rules to stem tokens. Because Hunspell supports a word having multiple stems, this filter can emit multiple tokens for each consumed token. Requires you to configure one or more language-specific Hunspell dictionaries. +`hyphenation_decompounder` | [HyphenationCompoundWordTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/compound/HyphenationCompoundWordTokenFilter.html) | Uses XML-based hyphenation patterns to find potential subwords in compound words and checks the subwords against the specified word list. The token output contains only the subwords found in the word list. +`keep_types` | [TypeTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/TypeTokenFilter.html) | Keeps or removes tokens of a specific type. +`keep_word` | [KeepWordFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/KeepWordFilter.html) | Checks the tokens against the specified word list and keeps only those that are in the list. +`keyword_marker` | [KeywordMarkerFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/KeywordMarkerFilter.html) | Marks specified tokens as keywords, preventing them from being stemmed. +`keyword_repeat` | [KeywordRepeatFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/KeywordRepeatFilter.html) | Emits each incoming token twice: once as a keyword and once as a non-keyword. +`kstem` | [KStemFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/en/KStemFilter.html) | Provides kstem-based stemming for the English language. Combines algorithmic stemming with a built-in dictionary. +`length` | [LengthFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/LengthFilter.html) | Removes tokens whose lengths are shorter or longer than the length range specified by `min` and `max`. +`limit` | [LimitTokenCountFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/LimitTokenCountFilter.html) | Limits the number of output tokens. A common use case is to limit the size of document field values based on token count. +`lowercase` | [LowerCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html) | Converts tokens to lowercase. The default [LowerCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html) is for the English language. You can set the `language` parameter to `greek` (uses [GreekLowerCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/el/GreekLowerCaseFilter.html)), `irish` (uses [IrishLowerCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/ga/IrishLowerCaseFilter.html)), or `turkish` (uses [TurkishLowerCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/tr/TurkishLowerCaseFilter.html)). +`min_hash` | [MinHashFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/minhash/MinHashFilter.html) | Uses the [MinHash technique](https://en.wikipedia.org/wiki/MinHash) to estimate document similarity. Performs the following operations on a token stream sequentially:
1. Hashes each token in the stream.
2. Assigns the hashes to buckets, keeping only the smallest hashes of each bucket.
3. Outputs the smallest hash from each bucket as a token stream. +`multiplexer` | N/A | Emits multiple tokens at the same position. Runs each token through each of the specified filter lists separately and outputs the results as separate tokens. +`ngram` | [NGramTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/ngram/NGramTokenFilter.html) | Tokenizes the given token into n-grams of lengths between `min_gram` and `max_gram`. +Normalization | `arabic_normalization`: [ArabicNormalizer](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/ar/ArabicNormalizer.html)
`german_normalization`: [GermanNormalizationFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/de/GermanNormalizationFilter.html)
`hindi_normalization`: [HindiNormalizer](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/hi/HindiNormalizer.html)
`indic_normalization`: [IndicNormalizer](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/in/IndicNormalizer.html)
`sorani_normalization`: [SoraniNormalizer](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/ckb/SoraniNormalizer.html)
`persian_normalization`: [PersianNormalizer](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/fa/PersianNormalizer.html)
`scandinavian_normalization` : [ScandinavianNormalizationFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ScandinavianNormalizationFilter.html)
`scandinavian_folding`: [ScandinavianFoldingFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ScandinavianFoldingFilter.html)
`serbian_normalization`: [SerbianNormalizationFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/sr/SerbianNormalizationFilter.html) | Normalizes the characters of one of the listed languages. +`pattern_capture` | N/A | Generates a token for every capture group in the provided regular expression. Uses [Java regular expression syntax](https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html). +`pattern_replace` | N/A | Matches a pattern in the provided regular expression and replaces matching substrings. Uses [Java regular expression syntax](https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html). +`phonetic` | N/A | Uses a phonetic encoder to emit a metaphone token for each token in the token stream. Requires installing the `analysis-phonetic` plugin. +`porter_stem` | [PorterStemFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/en/PorterStemFilter.html) | Uses the [Porter stemming algorithm](https://tartarus.org/martin/PorterStemmer/) to perform algorithmic stemming for the English language. +`predicate_token_filter` | N/A | Removes tokens that don’t match the specified predicate script. Supports inline Painless scripts only. +`remove_duplicates` | [RemoveDuplicatesTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/RemoveDuplicatesTokenFilter.html) | Removes duplicate tokens that are in the same position. +`reverse` | [ReverseStringFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/reverse/ReverseStringFilter.html) | Reverses the string corresponding to each token in the token stream. For example, the token `dog` becomes `god`. +`shingle` | [ShingleFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/shingle/ShingleFilter.html) | Generates shingles of lengths between `min_shingle_size` and `max_shingle_size` for tokens in the token stream. Shingles are similar to n-grams but apply to words instead of letters. For example, two-word shingles added to the list of unigrams [`contribute`, `to`, `opensearch`] are [`contribute to`, `to opensearch`]. +`snowball` | N/A | Stems words using a [Snowball-generated stemmer](https://snowballstem.org/). You can use the `snowball` token filter with the following languages in the `language` field: `Arabic`, `Armenian`, `Basque`, `Catalan`, `Danish`, `Dutch`, `English`, `Estonian`, `Finnish`, `French`, `German`, `German2`, `Hungarian`, `Irish`, `Italian`, `Kp`, `Lithuanian`, `Lovins`, `Norwegian`, `Porter`, `Portuguese`, `Romanian`, `Russian`, `Spanish`, `Swedish`, `Turkish`. +`stemmer` | N/A | Provides algorithmic stemming for the following languages in the `language` field: `arabic`, `armenian`, `basque`, `bengali`, `brazilian`, `bulgarian`, `catalan`, `czech`, `danish`, `dutch`, `dutch_kp`, `english`, `light_english`, `lovins`, `minimal_english`, `porter2`, `possessive_english`, `estonian`, `finnish`, `light_finnish`, `french`, `light_french`, `minimal_french`, `galician`, `minimal_galician`, `german`, `german2`, `light_german`, `minimal_german`, `greek`, `hindi`, `hungarian`, `light_hungarian`, `indonesian`, `irish`, `italian`, `light_italian`, `latvian`, `Lithuanian`, `norwegian`, `light_norwegian`, `minimal_norwegian`, `light_nynorsk`, `minimal_nynorsk`, `portuguese`, `light_portuguese`, `minimal_portuguese`, `portuguese_rslp`, `romanian`, `russian`, `light_russian`, `sorani`, `spanish`, `light_spanish`, `swedish`, `light_swedish`, `turkish`. +`stemmer_override` | N/A | Overrides stemming algorithms by applying a custom mapping so that the provided terms are not stemmed. +`stop` | [StopFilter](https://lucene.apache.org/core/8_7_0/core/org/apache/lucene/analysis/StopFilter.html) | Removes stop words from a token stream. +`synonym` | N/A | Supplies a synonym list for the analysis process. The synonym list is provided using a configuration file. +`synonym_graph` | N/A | Supplies a synonym list, including multiword synonyms, for the analysis process. +`trim` | [TrimFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/TrimFilter.html) | Trims leading and trailing whitespace from each token in a stream. +`truncate` | [TruncateTokenFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/TruncateTokenFilter.html) | Truncates tokens whose length exceeds the specified character limit. +`unique` | N/A | Ensures each token is unique by removing duplicate tokens from a stream. +`uppercase` | [UpperCaseFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html) | Converts tokens to uppercase. +`word_delimiter` | [WordDelimiterFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/WordDelimiterFilter.html) | Splits tokens at non-alphanumeric characters and performs normalization based on the specified rules. +`word_delimiter_graph` | [WordDelimiterGraphFilter](https://lucene.apache.org/core/8_7_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/WordDelimiterGraphFilter.html) | Splits tokens at non-alphanumeric characters and performs normalization based on the specified rules. Assigns multi-position tokens a `positionLength` attribute. \ No newline at end of file