-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathlayers.py
75 lines (52 loc) · 3.25 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import tensorflow as tf
import numpy as np
def lrelu(x, leak=0.2, name="lrelu", alt_relu_impl=False):
with tf.variable_scope(name) as scope:
if alt_relu_impl:
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
else:
return tf.maximum(x, leak*x)
def instance_norm(x):
with tf.variable_scope("instance_norm") as scope:
epsilon = 1e-5
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
scale = tf.get_variable('scale',[x.get_shape()[-1]],
initializer=tf.truncated_normal_initializer(mean=1.0, stddev=0.02))
offset = tf.get_variable('offset',[x.get_shape()[-1]],initializer=tf.constant_initializer(0.0))
out = scale*tf.div(x-mean, tf.sqrt(var+epsilon)) + offset
return out
def linear1d(inputlin, inputdim, outputdim, name="linear1d", std=0.02, mn=0.0):
with tf.variable_scope(name) as scope:
weight = tf.get_variable("weight",[inputdim, outputdim])
bias = tf.get_variable("bias",[outputdim], dtype=np.float32, initializer=tf.constant_initializer(0.0))
return tf.matmul(inputlin, weight) + bias
def general_conv2d(inputconv, output_dim=64, filter_height=4, filter_width=4, stride_height=2, stride_width=2, stddev=0.02, padding="SAME", name="conv2d", do_norm=True, norm_type='batch_norm', do_relu=True, relufactor=0):
with tf.variable_scope(name) as scope:
conv = tf.contrib.layers.conv2d(inputconv, output_dim, [filter_width, filter_height], [stride_width, stride_height], padding, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=stddev),biases_initializer=tf.constant_initializer(0.0))
if do_norm:
if norm_type == 'instance_norm':
conv = instance_norm(conv)
elif norm_type == 'batch_norm':
conv = tf.contrib.layers.batch_norm(conv, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope="batch_norm")
if do_relu:
if(relufactor == 0):
conv = tf.nn.relu(conv,"relu")
else:
conv = lrelu(conv, relufactor, "lrelu")
return conv
def general_deconv2d(inputconv, output_dim=64, filter_height=4, filter_width=4, stride_height=2, stride_width=2, stddev=0.02, padding="SAME", name="deconv2d", do_norm=True, norm_type='batch_norm', do_relu=False, relufactor=0):
with tf.variable_scope(name) as scope:
conv = tf.contrib.layers.conv2d_transpose(inputconv, output_dim, [filter_height, filter_width], [stride_height, stride_width], padding, activation_fn=None, weights_initializer=tf.truncated_normal_initializer(stddev=stddev),biases_initializer=tf.constant_initializer(0.0))
if do_norm:
if norm_type == 'instance':
conv = instance_norm(conv)
elif norm_type == 'batch_norm':
conv = tf.contrib.layers.batch_norm(conv, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True, scope="batch_norm")
if do_relu:
if(relufactor == 0):
conv = tf.nn.relu(conv,"relu")
else:
conv = lrelu(conv, relufactor, "lrelu")
return conv