-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathacquisition.c
296 lines (249 loc) · 14.7 KB
/
acquisition.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include "acquisition.h"
#include "config.h"
// The Structure of acquisition result
struct acquisitionPoint {
uint32_t freqBin;
uint32_t codePhase;
uint32_t value;
};
struct finedFreq {
uint32_t findFreqBin;
double value;
};
// Acquisition Process
acquisitionResult* acquisitionProcess(FILE* fid, const struct settings* receiverSetting) {
uint32_t sampleNumbersPerCode = receiverSetting->samplingFreq / 1E3;
uint32_t sampleNumbersPerChip = round(receiverSetting->samplingFreq / 1E3 / receiverSetting->codeLength);
// Allocate memory for every satellite acquisition
acquisitionResult * acqResult = (acquisitionResult*)malloc(sizeof(acquisitionResult)*receiverSetting->acqStatelliteList->size);
// Flag the acquisition: 0--negetive; 1--positive
for (uint32_t i=0; i<receiverSetting->acqStatelliteList->size; i++) {
acqResult[i].flag = 0;
}
// 1. Read 2ms Data From the signal File
DATATYPE*v1 = (DATATYPE*)malloc(sizeof(DATATYPE)*sampleNumbersPerCode);
DATATYPE*v2 = (DATATYPE*)malloc(sizeof(DATATYPE)*sampleNumbersPerCode);
// 11ms data to estimate the fined frequency
DATATYPE*fineFreqDat = (DATATYPE*)malloc(sizeof(DATATYPE)*sampleNumbersPerCode*11);
fread(v1, sizeof(DATATYPE), sampleNumbersPerCode, fid);
fread(v2, sizeof(DATATYPE), sampleNumbersPerCode, fid);
fseek(fid, 0, SEEK_SET);
fread(fineFreqDat, sizeof(DATATYPE), sampleNumbersPerCode*11, fid);
// 2. Get prn code
double* codeData = (double*)malloc(sizeof(double)*sampleNumbersPerCode*2);
int8_t* caCodeSampling = (int8_t*)malloc(sizeof(int8_t)*sampleNumbersPerCode);
for (uint32_t i=0; i<(receiverSetting->acqStatelliteList)->size; i++) {
caCodeAfterSampling(receiverSetting, sampleNumbersPerCode, caCodeSampling, receiverSetting->acqStatelliteList->data[i]);
// pack int8_t to gsl_vector_complex
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
REAL(codeData,i) = *(caCodeSampling+i);
IMAG(codeData,i) = 0;
}
// calculate the fft of C/A code
gsl_fft_complex_wavetable* waveTable;
gsl_fft_complex_workspace* workSpace;
waveTable = gsl_fft_complex_wavetable_alloc(sampleNumbersPerCode);
workSpace = gsl_fft_complex_workspace_alloc(sampleNumbersPerCode);
gsl_fft_complex_forward(codeData, 1, sampleNumbersPerCode, waveTable, workSpace);
// conjugat the code fft result
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
IMAG(codeData,i) = -IMAG(codeData,i);
}
// check every possible frequency bin, step is 0.5Khz
double * sinData = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * cosData = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * i_data_base_1 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * q_data_base_1 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * complex_data_base_1 = (double*)malloc(sizeof(double)*2*sampleNumbersPerCode);
double * i_data_base_2 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * q_data_base_2 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
double * complex_data_base_2 = (double*)malloc(sizeof(double)*2*sampleNumbersPerCode);
double * multiplexed_fft_result_1 = (double*)malloc(sizeof(double)*2*sampleNumbersPerCode);
double * multiplexed_fft_result_2 = (double*)malloc(sizeof(double)*2*sampleNumbersPerCode);
double phasePerSamplePoint = 2*M_PI/receiverSetting->samplingFreq;
double **twoDimResult = (double**)malloc(sizeof(double*)*receiverSetting->acqSearchBand*2);
// store the acquisition result
for (int i=0; i<receiverSetting->acqSearchBand*2; i++) {
twoDimResult[i] = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
}
for (int i=0; i<receiverSetting->acqSearchBand*2; i++) {
// frequency for now
double freqBin = receiverSetting->intermediatFreq - receiverSetting->acqSearchBand/2*1E3 + i*0.5*1E3;
// local oscillator
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
sinData[i] = sin(i*freqBin*phasePerSamplePoint);
cosData[i] = cos(i*freqBin*phasePerSamplePoint);
}
// downconversion to baseband
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
i_data_base_1[i] = sinData[i] * v1[i];
q_data_base_1[i] = cosData[i] * v1[i];
REAL(complex_data_base_1, i) = i_data_base_1[i];
IMAG(complex_data_base_1, i) = q_data_base_1[i];
i_data_base_2[i] = sinData[i] * v2[i];
q_data_base_2[i] = cosData[i] * v2[i];
REAL(complex_data_base_2, i) = i_data_base_2[i];
IMAG(complex_data_base_2, i) = q_data_base_2[i];
}
// Calculate the fft of the baseband signal
gsl_fft_complex_forward(complex_data_base_1, 1, sampleNumbersPerCode, waveTable, workSpace);
gsl_fft_complex_forward(complex_data_base_2, 1, sampleNumbersPerCode, waveTable, workSpace);
// execute the multiplication of fft result
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
REAL(multiplexed_fft_result_1, i) = REAL(codeData, i)*REAL(complex_data_base_1, i) - IMAG(codeData, i)*IMAG(complex_data_base_1, i);
IMAG(multiplexed_fft_result_1, i) = REAL(codeData, i)*IMAG(complex_data_base_1, i) + IMAG(codeData, i)*REAL(complex_data_base_1, i);
REAL(multiplexed_fft_result_2, i) = REAL(codeData, i)*REAL(complex_data_base_2, i) - IMAG(codeData, i)*IMAG(complex_data_base_2, i);
IMAG(multiplexed_fft_result_2, i) = REAL(codeData, i)*IMAG(complex_data_base_2, i) + IMAG(codeData, i)*REAL(complex_data_base_2, i);
}
// invert the fft result to get the corelation
gsl_fft_complex_backward(multiplexed_fft_result_1, 1, sampleNumbersPerCode, waveTable, workSpace);
gsl_fft_complex_backward(multiplexed_fft_result_2, 1, sampleNumbersPerCode, waveTable, workSpace);
// gsl's invert fft is portional to ture fft result
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
REAL(multiplexed_fft_result_1, i) = REAL(multiplexed_fft_result_1, i)/sampleNumbersPerCode;
IMAG(multiplexed_fft_result_1, i) = IMAG(multiplexed_fft_result_1, i)/sampleNumbersPerCode;
REAL(multiplexed_fft_result_2, i) = REAL(multiplexed_fft_result_2, i)/sampleNumbersPerCode;
IMAG(multiplexed_fft_result_2, i) = IMAG(multiplexed_fft_result_2, i)/sampleNumbersPerCode;
}
// find the max power bwtween multiplexed_fft_reslt_1 and multiplexed_fft_result2
double *abs_correlation_value_1, *abs_correlation_value_2;
double abs_correlation_value_max_1, abs_correlation_value_max_2;
abs_correlation_value_max_1 = abs_correlation_value_max_2 = 0;
abs_correlation_value_1 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
abs_correlation_value_2 = (double*)malloc(sizeof(double)*sampleNumbersPerCode);
for (uint32_t i=0; i<sampleNumbersPerCode; i++) {
abs_correlation_value_1[i] = REAL(multiplexed_fft_result_1, i)*REAL(multiplexed_fft_result_1, i)+IMAG(multiplexed_fft_result_1, i)*IMAG(multiplexed_fft_result_1, i);
abs_correlation_value_max_1 = abs_correlation_value_max_1 >= abs_correlation_value_1[i] ? abs_correlation_value_max_1 : abs_correlation_value_1[i];
abs_correlation_value_2[i] = REAL(multiplexed_fft_result_2, i)*REAL(multiplexed_fft_result_2, i)+IMAG(multiplexed_fft_result_2, i)*IMAG(multiplexed_fft_result_2, i);
abs_correlation_value_max_2 = abs_correlation_value_max_2 >= abs_correlation_value_2[i] ? abs_correlation_value_max_2 : abs_correlation_value_2[i];
}
if (abs_correlation_value_max_1>abs_correlation_value_max_2) {
memcpy(twoDimResult[i], abs_correlation_value_1, sizeof(double)*sampleNumbersPerCode);
} else {
memcpy(twoDimResult[i], abs_correlation_value_2, sizeof(double)*sampleNumbersPerCode);
}
free(abs_correlation_value_1);
free(abs_correlation_value_2);
}
// Free space
gsl_fft_complex_wavetable_free(waveTable);
gsl_fft_complex_workspace_free(workSpace);
// find the max point in the 2D plan
double max = 0;
struct acquisitionPoint acq;
for (int i=0; i<receiverSetting->acqSearchBand*2; i++) {
for (uint32_t j=0; j<sampleNumbersPerCode; j++) {
double temp = twoDimResult[i][j];
if (max<temp) {
max = temp;
acq.freqBin = i;
acq.codePhase = j;
acq.value = max;
}
}
}
// find the second max point in the 2D plan
uint32_t freqBin;
freqBin = acq.freqBin;
double secondMax = 0;
uint32_t startPoint, endPoint;
startPoint = endPoint = 0;
if (acq.codePhase <= sampleNumbersPerChip) {
startPoint = acq.codePhase + sampleNumbersPerChip;
endPoint = sampleNumbersPerCode - (sampleNumbersPerChip - acq.codePhase);
for (uint32_t i=startPoint; i<endPoint; i++) {
if (secondMax<twoDimResult[freqBin][i]) {
secondMax = twoDimResult[freqBin][i];
}
}
} else if (acq.codePhase+sampleNumbersPerChip >= sampleNumbersPerCode) {
startPoint = acq.codePhase+sampleNumbersPerChip - sampleNumbersPerCode;
endPoint = acq.codePhase-sampleNumbersPerChip;
for (uint32_t i=startPoint; i<endPoint; i++) {
if (secondMax<twoDimResult[freqBin][i]) {
secondMax = twoDimResult[freqBin][i];
}
}
} else {
for (uint32_t i=0; i<acq.codePhase-sampleNumbersPerChip; i++) {
if (secondMax<twoDimResult[freqBin][i]) {
secondMax = twoDimResult[freqBin][i];
}
}
for (uint32_t i=acq.codePhase+sampleNumbersPerChip; i<sampleNumbersPerCode; i++) {
if (secondMax<twoDimResult[freqBin][i]) {
secondMax = twoDimResult[freqBin][i];
}
}
}
if (max/secondMax >= receiverSetting->acqThreshold) {
printf("satellite %d is Acqitioned\n", i);
// fine the frequency
double meanValue, sum;
sum = meanValue = 0;
for (uint32_t i=0; i<sampleNumbersPerCode*11; i++) {
sum += fineFreqDat[i];
}
meanValue = sum/sampleNumbersPerCode/11;
uint32_t totalNumberForFFT = next2pow(sampleNumbersPerCode*10)*8;
double * paddingDataFFT = (double*)malloc(sizeof(double)*totalNumberForFFT*2);
double * absFFTValue = (double*)malloc(sizeof(double)*totalNumberForFFT);
int8_t * caCodeSamplingFor10MS = (int8_t*)malloc(sizeof(int8_t)*sampleNumbersPerCode*10);
// generate long CACode
caCodeAfterSampling(receiverSetting, sampleNumbersPerCode*10, caCodeSamplingFor10MS, receiverSetting->acqStatelliteList->data[i]);
memset(paddingDataFFT, 0, sizeof(double)*totalNumberForFFT*2);
for(uint32_t i=0; i<sampleNumbersPerCode*10; i++) {
REAL(paddingDataFFT, i) = (fineFreqDat[i+acq.codePhase]-meanValue)*caCodeSamplingFor10MS[i];
}
//FILE *fid_temp = fopen("paddingDataFFT.dat", "w");
//fwrite(paddingDataFFT, sizeof(double), totalNumberForFFT*2, fid_temp);
//fclose(fid_temp);
gsl_fft_complex_wavetable* fineWaveTable = gsl_fft_complex_wavetable_alloc(totalNumberForFFT);
gsl_fft_complex_workspace* fineWorkSpace = gsl_fft_complex_workspace_alloc(totalNumberForFFT);
gsl_fft_complex_forward(paddingDataFFT, 1, totalNumberForFFT, fineWaveTable, fineWorkSpace);
for (uint32_t i=0; i<totalNumberForFFT; i++) {
absFFTValue[i] = sqrt(REAL(paddingDataFFT, i)*REAL(paddingDataFFT, i) + IMAG(paddingDataFFT, i)*IMAG(paddingDataFFT, i));
}
free(paddingDataFFT);
gsl_fft_complex_wavetable_free(fineWaveTable);
gsl_fft_complex_workspace_free(fineWorkSpace);
uint32_t uniqueFreq = ceil((totalNumberForFFT+1.0)/2);
struct finedFreq finedFreqStructure;
finedFreqStructure.findFreqBin = 0;
finedFreqStructure.value = 0;
for (uint32_t i=5; i<uniqueFreq-5; i++) {
if (finedFreqStructure.value<absFFTValue[i]) {
finedFreqStructure.value = absFFTValue[i];
finedFreqStructure.findFreqBin = i;
}
}
acqResult[i].flag = 1;
acqResult[i].codePhase = acq.codePhase;
acqResult[i].freq = receiverSetting->samplingFreq/totalNumberForFFT*(finedFreqStructure.findFreqBin+1);
free(absFFTValue);
free(caCodeSamplingFor10MS);
for (int i=0; i<receiverSetting->acqSearchBand*2; i++) {
free(twoDimResult[i]);
}
free(twoDimResult);
} else {
printf("satellite %d isnot Acqitioned\n", i);
}
free(complex_data_base_1);
free(complex_data_base_2);
free(i_data_base_1);
free(q_data_base_1);
free(i_data_base_2);
free(q_data_base_2);
free(sinData);
free(cosData);
free(multiplexed_fft_result_1);
free(multiplexed_fft_result_2);
}
free(v1);
free(v2);
free(codeData);
free(caCodeSampling);
free(fineFreqDat);
return acqResult;
}