-
Notifications
You must be signed in to change notification settings - Fork 0
/
minipic9.vhd
284 lines (274 loc) · 11.1 KB
/
minipic9.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
--
-- implementação de um PIC
--
-- Arquitetura Harvard de 8 bits
--
-- Somente instruções com registradores e a instrução de salto.
--
-- Formato das instruções
-- 00CCCC-RRRRRRR CCCC: OPCODE, RRRRRRR: Registrador
-- 111AAAAAAAAAAA AAAAAAAAAAAA: Endereco
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity minipic is
port (
clk: in std_logic;
rst: in std_logic;
iaddr: out std_logic_vector(10 downto 0);
inst: in std_logic_vector(13 downto 0);
intr: in std_logic
);
end entity minipic;
architecture a of minipic is
type tipoestado is (BUSCAR,EXECUTAR);
signal estado: tipoestado;
type banco is array(0 to 127) of unsigned(7 downto 0);
signal f: banco;
signal w: unsigned(7 downto 0);
signal ir: std_logic_vector(13 downto 0);
signal pc: unsigned(10 downto 0);
--
type tipopilha is array(0 to 7) of unsigned(10 downto 0);
signal pilha: tipopilha;
signal sp: integer range 0 to 7;
-- tipos de instruções
constant OP_REG_TYPE: std_logic_vector(1 downto 0) := "00";
constant OP_BIT_TYPE: std_logic_vector(1 downto 0) := "01";
constant OP_LIT_TYPE: std_logic_vector(1 downto 0) := "10";
constant OP_JMP_TYPE: std_logic_vector(1 downto 0) := "11";
-- codigos das instruções
constant OP_ADDWF: std_logic_vector(3 downto 0) := "0111";
constant OP_SUBWF: std_logic_vector(3 downto 0) := "0010";
constant OP_ANDWF: std_logic_vector(3 downto 0) := "0101";
constant OP_MOVF: std_logic_vector(3 downto 0) := "1000";
constant OP_MOVWF: std_logic_vector(3 downto 0) := "0000";
constant OP_JUMP: std_logic := '1';
constant OP_BCF: std_logic_vector(1 downto 0) := "00";
constant OP_BSF: std_logic_vector(1 downto 0) := "01";
constant OP_BTFSC: std_logic_vector(1 downto 0) := "10";
constant OP_BTFSS: std_logic_vector(1 downto 0) := "11";
constant OP_ADDLW: std_logic_vector(3 downto 0) := "1111";
constant OP_SUBLW: std_logic_vector(3 downto 0) := "1100";
constant OP_MOVLW: std_logic_vector(3 downto 0) := "0000";
constant OP_ANDLW: std_logic_vector(3 downto 0) := "1001";
constant OP_IORLW: std_logic_vector(3 downto 0) := "1000";
constant OP_XORLW: std_logic_vector(3 downto 0) := "1010";
constant OP_RETURN: std_logic_vector(3 downto 0) := "1000";
constant OP_RETLW: std_logic_vector(3 downto 0) := "0100";
-- campos de ir
alias IR_OPTYPE: std_logic_vector(1 downto 0) is ir(13 downto 12);
alias IR_REG: std_logic_vector(6 downto 0) is ir(6 downto 0);
alias IR_OPREG: std_logic_vector(3 downto 0) is ir(11 downto 8);
alias IR_OPLIT: std_logic_vector(3 downto 0) is ir(11 downto 8);
alias IR_OPJUMP: std_logic is ir(11);
alias IR_OPBIT: std_logic_vector(1 downto 0) is ir(11 downto 10);
alias IR_BITN: std_logic_vector(2 downto 0) is ir(9 downto 7);
alias IR_DIR: std_logic is ir(7);
alias IR_VAL: std_logic_vector(7 downto 0) is ir(7 downto 0);
alias IR_SUBOP: std_logic_vector(3 downto 0) is ir(3 downto 0);
alias IR_ADDR: std_logic_vector(10 downto 0) is ir(10 downto 0);
-- campos do sr
alias sr: unsigned(7 downto 0) is f(3);
alias flag_c: std_logic is sr(0);
alias flag_z: std_logic is sr(2);
alias intcon: unsigned(7 downto 0) is f(11);
alias gie: std_logic is intcon(7);
begin
iaddr <= std_logic_vector(pc);
process(clk,rst)
variable opnd: unsigned(8 downto 0);
variable rega: integer range 0 to 127;
variable result: unsigned(8 downto 0);
variable atualizaw,atualizaf: boolean;
variable bitn: integer range 0 to 7;
variable skip: boolean;
variable incpc: boolean;
begin
if rst = '1' then
estado <= BUSCAR;
pc <= (others=>'0');
sp <= 0;
gie <= '0';
elsif rising_edge(clk) then
case estado is
when BUSCAR =>
if gie = '1' and intr = '1' then
gie <= '0';
pilha(sp) <= pc;
sp <= sp + 1;
pc <= to_unsigned(4,pc'length);
else
ir <= inst;
pc <= pc + 1;
estado <= EXECUTAR;
end if;
when EXECUTAR =>
case IR_OPTYPE is
when OP_REG_TYPE => -- Instruções com registradores
rega := to_integer(unsigned(ir_reg));
opnd := '0'&f(rega);
result := '0'&f(rega);
incpc := True;
if ir_dir = '0' then
atualizaw := True;
atualizaf := False;
else
atualizaw := False;
atualizaf := True;
end if;
case IR_OPREG is
when OP_ADDWF => -- ADDWF REG,W : W <- F(REG) + W
result := w + opnd;
flag_c <= result(8);
when OP_SUBWF => -- SUBWF REG,W : W <- F(REG) - W
result := opnd - w;
flag_c <= result(8);
when OP_ANDWF => -- ANDWF REG,W : W <- F(REG) AND W
result := w and opnd;
when OP_MOVF => -- MOVF REG : W <- F(REG)
result := opnd;
atualizaw := True;
atualizaf := False;
when OP_MOVWF => -- MOVWF REG : F(REG) <= W
if ir_dir = '1' then
result := opnd;
atualizaw := False;
atualizaf := True;
else
atualizaw := False;
atualizaf := False;
case ir_subop is
when OP_RETURN =>
pc <= pilha(sp-1);
sp <= sp - 1;
incpc := False;
when others =>
null;
end case;
end if;
when others =>
null;
end case;
if atualizaw then
w <= result(7 downto 0);
end if;
if atualizaf then
f(rega) <= result(7 downto 0);
end if;
if atualizaw or atualizaf then
if result(7 downto 0) = "00000000" then
flag_z <= '1';
end if;
end if;
if incpc then
if gie = '1' and intr = '1' then
gie <= '0';
pilha(sp) <= pc;
sp <= sp + 1;
pc <= to_unsigned(4,pc'length);
estado <= BUSCAR;
else
ir <= inst;
pc <= pc + 1;
end if;
else
estado <= BUSCAR;
end if;
when OP_LIT_TYPE => -- Instruções com valores
opnd := unsigned('0'&ir_val);
incpc := True;
case IR_OPLIT is
when OP_ADDLW =>
result := unsigned('0'&w) + opnd;
flag_c <= result(8);
when OP_SUBLW =>
result := unsigned('0'&w) - opnd;
flag_c <= result(8);
when OP_MOVLW =>
result := opnd;
when OP_ANDLW =>
result := unsigned('0'&w) and opnd;
when OP_IORLW =>
result := unsigned('0'&w) or opnd;
when OP_XORLW =>
result := unsigned('0'&w) xor opnd;
when OP_RETLW =>
pc <= pilha(sp-1);
sp <= sp - 1;
incpc := True;
when others =>
null;
end case;
w <= result(7 downto 0);
if result(7 downto 0) = "00000000" then
flag_z <= '1';
else
flag_z <= '0';
end if;
if incpc then
if gie = '1' and intr = '1' then
gie <= '0';
pilha(sp) <= pc;
sp <= sp + 1;
pc <= to_unsigned(4,pc'length);
estado <= BUSCAR;
else
ir <= inst;
pc <= pc + 1;
end if;
else
estado <= BUSCAR;
end if;
when OP_BIT_TYPE => -- Instruções para manipulação de bits
rega := to_integer(unsigned(ir_reg));
bitn := to_integer(unsigned(ir_bitn));
skip := False;
case IR_OPBIT is
when OP_BCF =>
f(rega)(bitn) <= '0';
when OP_BSF =>
f(rega)(bitn) <= '1';
when OP_BTFSC =>
if f(rega)(bitn) = '0' then
skip := True;
end if;
when OP_BTFSS =>
if f(rega)(bitn) = '1' then
skip := True;
end if;
when others =>
null;
end case;
if skip then
pc <= pc + 2;
estado <= BUSCAR;
else
if gie = '1' and intr = '1' then
gie <= '0';
pilha(sp) <= pc;
sp <= sp + 1;
pc <= to_unsigned(4,pc'length);
estado <= BUSCAR;
else
ir <= inst;
pc <= pc + 1;
end if;
end if;
when OP_JMP_TYPE => -- Instrução de salto
if IR_OPJUMP = OP_JUMP then
pc <= unsigned(ir_addr);
else
pilha(sp) <= pc;
sp <= sp + 1;
pc <= unsigned(ir_addr);
end if;
estado <= BUSCAR;
when others =>
null;
end case;
end case;
end if;
end process;
end architecture a;