-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaccuracy_testing.py
117 lines (105 loc) · 4.92 KB
/
accuracy_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
'''
Use the VERY SAME methods (as far as possible) to test on actual known heatmaps
Compute by hand what the answer *should* be
'''
import math
import numpy as np
import json
import cv2
import copy
class AccuracyTester():
def __init__(self, joint_accur=None, joints=None, output=None, nStack=None, gtMaps=None, batchSize=None):
self.joint_accur = joint_accur
self.joints = joints
self.output = output
self.nStack = nStack
self.gtMaps = gtMaps
self.batchSize = batchSize
def _accuracy_computation(self):
""" Computes accuracy tensor
"""
self.joint_accur = []
for i in range(len(self.joints)):
self.joint_accur.append(
self._accur(self.output[:, self.nStack - 1, :, :, i], self.gtMaps[:, self.nStack - 1, :, :, i],
self.batchSize))
return self.joint_accur
def _accur(self, pred, gtMap, num_image):
""" Given a Prediction batch (pred) and a Ground Truth batch (gtMaps),
returns one minus the mean distance.
Args:
pred : Prediction Batch (shape = num_image x 64 x 64)
gtMaps : Ground Truth Batch (shape = num_image x 64 x 64)
num_image : (int) Number of images in batch
Returns:
(float)
"""
err = float(0) ### err = tf.to_float(0)
for i in range(num_image):
err = err + self._compute_err(pred[i], gtMap[i]) ### err = tf.add(err, self._compute_err(pred[i], gtMap[i]))
return float(1) - (err / num_image) ### tf.subtract(tf.to_float(1), err / num_image)
def _compute_err(self, u, v):
""" Given 2 tensors compute the euclidean distance (L2) between maxima locations
Args:
u : 2D - Tensor (Height x Width : 64x64 )
v : 2D - Tensor (Height x Width : 64x64 )
Returns:
(float) : Distance (in [0,1])
"""
u_x, u_y = self._argmax(u)
v_x, v_y = self._argmax(v)
return (math.sqrt((float(u_x - v_x)**2) + (float(u_y - v_y)**2))) / float(64) # changed to image size
### tf.divide(tf.sqrt(tf.square(tf.to_float(u_x - v_x)) + tf.square(tf.to_float(u_y - v_y))),
### tf.to_float(56)) # changed to image size
def _argmax(self, tensor):
""" ArgMax
Args:
tensor : 2D - Tensor (Height x Width : 64x64 )
Returns:
arg : Tuple of max position
"""
resh = tensor.reshape([-1]) ### resh = tf.reshape(tensor, [-1])
argmax = np.argmax(resh, 0) # (Changed function from arg_max) ### argmax = tf.argmax(resh, 0)
return argmax % tensor.shape[0], argmax // tensor.shape[0]
### argmax // tensor.get_shape().as_list()[0], argmax % tensor.get_shape().as_list()[0]
if __name__ == '__main__':
target = []
with open('gtMaps26FREQ.txt', 'r') as f:
target = json.load(f)
target = np.array(target)
#print("Target:")
#print(target)
output = []
with open('output26FREQ.txt', 'r') as f:
output = json.load(f)
output = np.array(output)
#print("Output:")
#print(output)
nStack = 1
batchSize = 4
digits = ['e', 't', 'a', 'o', 'i', 'n', 's', 'r' ,'h', 'l', 'd', 'c', 'u', 'm', 'f', 'p', 'g', 'w', 'y', 'b', 'v', 'k', 'x', 'j', 'q', 'z']
tester = AccuracyTester(joints=digits,output=output,gtMaps=target,batchSize=batchSize,nStack=nStack)
#print(output.shape)
#print(target.shape)
# for each image (there should be 4), compute the actual error
for image in range(batchSize):
print("\nImage: ", str(image))
for digit in range(len(digits)):
print("Digit: ", digits[digit])
max_target = np.amax(target[image, nStack - 1, :, :, digit])
argmax_target = np.argmax(target[image, nStack - 1, :, :, digit])
print("amax target:", str(max_target), "argmax target:", str(argmax_target),
"x,y:", str(argmax_target % 64), str(argmax_target // 64))
max_output = np.amax(output[image, nStack - 1, :, :, digit])
argmax_output = np.argmax(output[image, nStack - 1, :, :, digit])
print("amax output:", str(max_output), "argmax output:", str(argmax_output),
"x,y:", str(argmax_output % 64), str(argmax_output // 64))
temp = copy.deepcopy(target[image, nStack - 1, :, :, digit] * (255 / max_target))
cv2.imwrite('testing/FORPAPER_target'+ str(image) + '_' + str(digits[digit]) + '.jpg', temp)
temp = copy.deepcopy(output[image, nStack - 1, :, :, digit] * (255 / max_output))
cv2.imwrite('testing/26FREQ_output'+ str(image) + '_' + str(digits[digit]) + '.jpg', temp)
error = tester._compute_err(target[image, nStack - 1, :, :, digit], output[image, nStack - 1, :, :, digit])
print("Error:", str(error))
accuracy = tester._accuracy_computation()
print("\nOverall Accuracy:")
print(accuracy)