forked from pConst/basic_verilog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_tb.sv
144 lines (121 loc) · 3.06 KB
/
main_tb.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//------------------------------------------------------------------------------
// main_tb.sv
// Konstantin Pavlov, [email protected]
//------------------------------------------------------------------------------
// INFO ------------------------------------------------------------------------
// Testbench template with basic clocking, reset and random stimulus signals
// use this define to make some things differently in simulation
`define SIMULATION yes
`timescale 1ns / 1ps
module main_tb();
logic clk200;
initial begin
#0 clk200 = 1'b0;
forever
#2.5 clk200 = ~clk200;
end
// external device "asynchronous" clock
logic clk33;
initial begin
#0 clk33 = 1'b0;
forever
#15.151 clk33 = ~clk33;
end
logic rst;
initial begin
#0 rst = 1'b0;
#10.2 rst = 1'b1;
#5 rst = 1'b0;
//#10000;
forever begin
#9985 rst = ~rst;
#5 rst = ~rst;
end
end
logic nrst;
assign nrst = ~rst;
logic rst_once;
initial begin
#0 rst_once = 1'b0;
#10.2 rst_once = 1'b1;
#5 rst_once = 1'b0;
end
end
logic nrst_once;
assign nrst_once = ~rst_once;
logic [31:0] DerivedClocks;
clk_divider #(
.WIDTH( 32 )
) cd1 (
.clk( clk200 ),
.nrst( nrst_once ),
.ena( 1'b1 ),
.out( DerivedClocks[31:0] )
);
logic [31:0] E_DerivedClocks;
edge_detect ed1[31:0] (
.clk( {32{clk200}} ),
.nrst( {32{nrst_once}} ),
.in( DerivedClocks[31:0] ),
.rising( E_DerivedClocks[31:0] ),
.falling( ),
.both( )
);
logic [31:0] RandomNumber1;
c_rand rng1 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 1) ),
.out( RandomNumber1[15:0] )
);
c_rand rng2 (
.clk( clk200 ),
.rst( 1'b0 ),
.reseed( rst_once ),
.seed_val( DerivedClocks[31:0] ^ (DerivedClocks[31:0] << 2) ),
.out( RandomNumber1[31:16] )
);
logic start;
initial begin
#0 start = 1'b0;
#100 start = 1'b1;
#20 start = 1'b0;
end
// Module under test ==========================================================
wire out1,out2;
Main M ( // module under test
clk200,~clk200,
rst_once,
out1,out2 // for compiler not to remove logic
);
// emulating external divice ==================================================
// that works asynchronously on clk33 clock
reg [15:0] test_data = 16'b1010_1100_1100_1111;
reg [7:0] adc1_seq_cntr = 0;
always_ff @(posedge clk33) begin
if( adc1_seq_cntr[7:0]==0 && ~ADC1_nCONV ) begin
ADC1_BUSY <= 1'b1;
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= 1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
// emulating adc1 data
ADC1_SDOUT <= test_data[15];
test_data[15:0] <= {test_data[14:0],1'b0};
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]>0 && adc1_seq_cntr[7:0]<33 && ~ADC1_SCLKOUT) begin
ADC1_SCLKOUT <= ~ADC1_SCLKOUT;
adc1_seq_cntr[7:0] <= adc1_seq_cntr[7:0] + 1'b1;
end
if( adc1_seq_cntr[7:0]==33 ) begin
ADC1_BUSY <= 0;
ADC1_SCLKOUT <= 0;
ADC1_SDOUT <= 0;
adc1_seq_cntr[7:0] <= 0;
end
end
endmodule