forked from NikAksamit/TRA_TSE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Advect_and_Calculate_3DSteady.m
201 lines (150 loc) · 7.14 KB
/
Advect_and_Calculate_3DSteady.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
% Input arguments:
% tspan : Advection timesteps (e.g. tspan=linspace(t_initial,t_final,100)
% xx,yy,zz : Initial positions for advection
% U_Interp,V_Interp,W_Interp : Velocity field interpolants with inputs (tspan,xx,yy,zz)
% NCores : Number of Cores for parpool
% Output arguments:
% xt,yt,zt : xx-component, yy-component of trajectory final position
% time_note : tspan time if a trajectory left interpolant domain
% TSE_Bar,TSE,TRA_Bar,TRA : Single trajectory metrics from
% section II and III in [1]
%--------------------------------------------------------------------------
% Author: Nikolas Aksamit [email protected]
%--------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% References:
% [1] Haller, G., Aksamit, N. O., & Bartos, A. P. E. (2021). Quasi-Objective Coherent Structure Diagnostics from Single Trajectories.
% Chaos, 31, 043131-1–17. https://doi.org/10.1063/5.0044151
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Calculate TRA and TSE diagnostics for steady 3D flows.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xt,yt,zt,time_note,TSE_Bar,TSE,TRA_Bar,TRA] = Advect_and_Calculate_3DSteady(tspan,xx,yy,zz,U_Interp,V_Interp,W_Interp,NCores)
%%%%% Start parallel pool with NCores. Make sure the size of pool
%%%%% >= number requested by spmd
if isempty(gcp)
parpool(NCores);
end
Np=numel(xx);
cpu_num = min(NCores,Np);
id = ceil( linspace(0,Np,cpu_num+1) );
% Shared variables
xt = zeros(2,length(xx));
yt = zeros(2,length(yy));
zt = zeros(2,length(zz));
xt(1,:) = xx;
yt(1,:) = yy;
zt(1,:) = zz;
spmd(cpu_num)
tic
%%%% Split up initial conditions for separate cores
Range = id(labindex)+1:id(labindex+1);
x_spmd=xt(1,Range);
y_spmd=yt(1,Range);
z_spmd=zt(1,Range);
time_note=zeros(size(x_spmd));
TSE_spmd=zeros(size(x_spmd));
TRA_spmd=zeros(size(x_spmd));
TSE_spmd_NM=zeros(size(x_spmd));
for s=1:numel(tspan)-1
%%%% This only records the last point, not entire path of particles
ds = tspan(s+1) - tspan(s);
[UK1,VK1,WK1] = r_prime(x_spmd(1,:),y_spmd(1,:),z_spmd(1,:),U_Interp,V_Interp,W_Interp);
xx = x_spmd(1,:) + 0.5 * ds * UK1;
yy = y_spmd(1,:) + 0.5 * ds * VK1;
zz = z_spmd(1,:) + 0.5 * ds * WK1;
[UK2,VK2,WK2] = r_prime(xx,yy,zz,U_Interp,V_Interp,W_Interp);
xx = x_spmd(1,:) + 0.5 * ds * UK2;
yy = y_spmd(1,:) + 0.5 * ds * VK2;
zz = z_spmd(1,:) + 0.5 * ds * WK2;
[UK3,VK3,WK3] = r_prime(xx,yy,zz,U_Interp,V_Interp,W_Interp);
xx = x_spmd(1,:) + ds * UK3;
yy = y_spmd(1,:) + ds * VK3;
zz = z_spmd(1,:) + ds * WK3;
[UK4,VK4,WK4] = r_prime(xx,yy,zz,U_Interp,V_Interp,W_Interp);
%increment in trajectories (RK4 displacement)
deltax(2,:) = ds / 6 * (UK1 + 2 * UK2 + 2 * UK3 + UK4);
deltay(2,:) = ds / 6 * (VK1 + 2 * VK2 + 2 * VK3 + VK4);
deltaz(2,:) = ds / 6 * (WK1 + 2 * WK2 + 2 * WK3 + WK4);
%update particle positions
x_spmd(2,:) = x_spmd(1,:) + deltax(2,:);
y_spmd(2,:) = y_spmd(1,:) + deltay(2,:);
z_spmd(2,:) = z_spmd(1,:) + deltaz(2,:);
%%%% If particle leaves domain, keep record of last position.
%%%% Record this time of leaving domain in time_note.
x_spmd(1,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=x_spmd(2,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
y_spmd(1,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=y_spmd(2,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
z_spmd(1,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=z_spmd(2,~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
time_note(1,(isnan(x_spmd(2,:)) & time_note(1,:)==0) | (isnan(y_spmd(2,:)) & time_note(1,:)==0) | (isnan(z_spmd(2,:)) & time_note(1,:)==0))=s;
if s==1
smooth_vx=deltax(2,:)'/ds;
smooth_vy=deltay(2,:)'/ds;
smooth_vz=deltaz(2,:)'/ds;
V1=[smooth_vx,smooth_vy,smooth_vz];
Speed_sqrd(1,:)=sum(V1.^2,2);
deltax(1,:) = deltax(2,:);
deltay(1,:) = deltay(2,:);
deltaz(1,:) = deltaz(2,:);
%%% Save this first veloicty measurement for TRA measurement at end
V1_spmd=V1;
end
%%% After two timesteps, now begin calculating TSE and TRA
if s>1
smooth_vx=deltax(2,:)'/ds;
smooth_vy=deltay(2,:)'/ds;
smooth_vz=deltaz(2,:)'/ds;
V2=[smooth_vx,smooth_vy,smooth_vz];
Speed_sqrd(2,:)=sum(V2.^2,2);
%%%% Calculate instantaneous TSE and TRA values. Add to sum if particle did not leave domain.
TSE_Inst=abs(log(sqrt(Speed_sqrd(2,:))./sqrt(Speed_sqrd(1,:))));
TSE_spmd(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=TSE_spmd(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))+TSE_Inst(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
TSE_Inst_NM=log(sqrt(Speed_sqrd(2,:))./sqrt(Speed_sqrd(1,:)));
TSE_spmd_NM(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=TSE_spmd_NM(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))+TSE_Inst_NM(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
TRA_Inst=acos(sum(V2.*V1,2)./(sqrt(sum(V2.^2,2)).*sqrt(sum(V1.^2,2))))';
TRA_spmd(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))=TRA_spmd(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)))+TRA_Inst(~isnan(x_spmd(2,:)) & ~isnan(y_spmd(2,:)));
deltax(1,:) = deltax(2,:);
deltay(1,:) = deltay(2,:);
deltaz(1,:) = deltaz(2,:);
Speed_sqrd(1,:)=Speed_sqrd(2,:);
V1=V2;
V2_spmd=V2;
end
end
TSE_spmd=TSE_spmd(1,:);
TRA_spmd=TRA_spmd(1,:);
TSE_spmd_NM=TSE_spmd_NM(1,:);
toc
end
%
V1 = cat(1,V1_spmd{:});
V2 = cat(1,V2_spmd{:});
V1=V1./(sqrt(sum(V1.*V1,2)));
V2=V2./(sqrt(sum(V2.*V2,2)));
xt = cat(2,x_spmd{:});
yt = cat(2,y_spmd{:});
zt = cat(2,z_spmd{:});
time_note = cat(2,time_note{:});
TSE=cat(2,TSE_spmd_NM{:})/(tspan(end)-tspan(1));
TSE_Bar=cat(2,TSE_spmd{:})/(tspan(end)-tspan(1));
TRA_Bar=cat(2,TRA_spmd{:})/(tspan(end)-tspan(1));
TRA=real(acos(V1(:,1).*V2(:,1)+V1(:,2).*V2(:,2)))/(tspan(end)-tspan(1));
clear x_spmd y_spmd
disp('Advection and Single Trajectory Metric Calculations Complete')
end
function [uk,vk,wk] = r_prime(xx,yy,zz,U_Interp,V_Interp,W_Interp)
Bly = 1+0*xx;
bounds.x=U_Interp.GridVectors{1};
bounds.y=U_Interp.GridVectors{2};
bounds.z=U_Interp.GridVectors{3};
Bly(yy>max(bounds.y)) = 0; %Freeze when outside domain of interpolant
Bly(yy<min(bounds.y)) = 0;
Bly(xx>max(bounds.x)) = 0;
Bly(xx<min(bounds.x)) = 0;
Bly(zz>max(bounds.z)) = 0;
Bly(zz<min(bounds.z)) = 0;
uk=U_Interp(double(xx),double(yy),double(zz));
uk=uk.*Bly;
vk=V_Interp(double(xx),double(yy),double(zz));
vk=vk.*Bly;
wk=W_Interp(double(xx),double(yy),double(zz));
wk=wk.*Bly;
end