Skip to content

Latest commit

 

History

History
298 lines (231 loc) · 9.49 KB

spark-sql-dataframereader.adoc

File metadata and controls

298 lines (231 loc) · 9.49 KB

DataFrameReader

DataFrameReader is an interface to return DataFrame from many storage formats in external storage systems (e.g. databases or files) and streams.

Use SparkSession.read to create an instance of DataFrameReader.

import org.apache.spark.sql.DataFrameReader
val reader: DataFrameReader = spark.read

It has a direct support for many file formats and interface for new ones. It assumes parquet as the default data source format that you can change using spark.sql.sources.default setting.

Specifying Data Format (format method)

format(source: String): DataFrameReader

You use format to configure DataFrameReader to use appropriate source format.

Supported data formats:

  • json

  • csv (since 2.0.0)

  • parquet (see Parquet)

  • orc

  • text

  • jdbc

  • libsvm (using spark.read.format("libsvm"))

Note
You can improve your understanding of format("jdbc") with the exercise Creating DataFrames from Tables using JDBC and PostgreSQL.

Schema Support (schema method)

schema(schema: StructType): DataFrameReader

You can apply schema to the data source.

Tip
Refer to Schema.

Option Support (option and options methods)

option(key: String, value: String): DataFrameReader
option(key: String, value: Boolean): DataFrameReader  // (1)
option(key: String, value: Long): DataFrameReader     // (1)
option(key: String, value: Double): DataFrameReader   // (1)
  1. Available since Spark 2.0.0

You can also use options method to describe different options in a single Map.

options(options: scala.collection.Map[String, String]): DataFrameReader

load methods

load(): DataFrame
load(path: String): DataFrame

load loads input data as a DataFrame.

val csv = spark.read
  .format("csv")
  .option("header", "true")
  .load("*.csv")

stream methods

stream(): DataFrame
stream(path: String): DataFrame
Caution
FIXME Review 915a75398ecbccdbf9a1e07333104c857ae1ce5e

stream loads input data stream in as a DataFrame.

Seq("hello", "world").zipWithIndex.toDF("text", "id").write.format("csv").save("text-id.csv")

val csvStream = spark.read.format("csv").stream("text-id.csv")

Creating DataFrames from Files

DataFrameReader comes with a direct support for multiple file formats:

json method

json(path: String): DataFrame
json(paths: String*): DataFrame
json(jsonRDD: RDD[String]): DataFrame

New in 2.0.0: prefersDecimal

csv method

csv(paths: String*): DataFrame

parquet method

parquet(paths: String*): DataFrame

The supported options:

New in 2.0.0: snappy is the default Parquet codec. See [SPARK-14482][SQL] Change default Parquet codec from gzip to snappy.

The compressions supported:

  • none or uncompressed

  • snappy - the default codec in Spark 2.0.0.

  • gzip - the default codec in Spark before 2.0.0

  • lzo

val tokens = Seq("hello", "henry", "and", "harry")
  .zipWithIndex
  .map(_.swap)
  .toDF("id", "token")

val parquetWriter = tokens.write
parquetWriter.option("compression", "none").save("hello-none")

// The exception is mostly for my learning purposes
// so I know where and how to find the trace to the compressions
// Sorry...
scala> parquetWriter.option("compression", "unsupported").save("hello-unsupported")
java.lang.IllegalArgumentException: Codec [unsupported] is not available. Available codecs are uncompressed, gzip, lzo, snappy, none.
  at org.apache.spark.sql.execution.datasources.parquet.ParquetOptions.<init>(ParquetOptions.scala:43)
  at org.apache.spark.sql.execution.datasources.parquet.DefaultSource.prepareWrite(ParquetRelation.scala:77)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$4.apply(InsertIntoHadoopFsRelation.scala:122)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$4.apply(InsertIntoHadoopFsRelation.scala:122)
  at org.apache.spark.sql.execution.datasources.BaseWriterContainer.driverSideSetup(WriterContainer.scala:103)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:141)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:116)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:116)
  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:53)
  at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:116)
  at org.apache.spark.sql.execution.command.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:61)
  at org.apache.spark.sql.execution.command.ExecutedCommand.sideEffectResult(commands.scala:59)
  at org.apache.spark.sql.execution.command.ExecutedCommand.doExecute(commands.scala:73)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:118)
  at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:137)
  at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
  at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:134)
  at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:117)
  at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:65)
  at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:65)
  at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:390)
  at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:247)
  at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:230)
  ... 48 elided

orc method

orc(path: String): DataFrame

Optimized Row Columnar (ORC) file format is a highly efficient columnar format to store Hive data with more than 1,000 columns and improve performance. ORC format was introduced in Hive version 0.11 to use and retain the type information from the table definition.

Tip
Read ORC Files document to learn about the ORC file format.

text method

text method loads a text file.

text(paths: String*): Dataset[String]
Example
val lines: Dataset[String] = spark.read.text("README.md").as[String]

scala> lines.show
+--------------------+
|               value|
+--------------------+
|      # Apache Spark|
|                    |
|Spark is a fast a...|
|high-level APIs i...|
|supports general ...|
|rich set of highe...|
|MLlib for machine...|
|and Spark Streami...|
|                    |
|<http://spark.apa...|
|                    |
|                    |
|## Online Documen...|
|                    |
|You can find the ...|
|guide, on the [pr...|
|and [project wiki...|
|This README file ...|
|                    |
|   ## Building Spark|
+--------------------+
only showing top 20 rows

Creating DataFrames from Tables

table method

table(tableName: String): DataFrame

table method returns the tableName table as a DataFrame.

scala> spark.sql("SHOW TABLES").show(false)
+---------+-----------+
|tableName|isTemporary|
+---------+-----------+
|dafa     |false      |
+---------+-----------+

scala> spark.read.table("dafa").show(false)
+---+-------+
|id |text   |
+---+-------+
|1  |swiecie|
|0  |hello  |
+---+-------+
Caution
FIXME The method uses spark.sessionState.sqlParser.parseTableIdentifier(tableName) and spark.sessionState.catalog.lookupRelation. Would be nice to learn a bit more on their internals, huh?

jdbc method

Note
jdbc method uses java.util.Properties (and appears so Java-centric). Use format("jdbc") instead.
jdbc(url: String, table: String, properties: Properties): DataFrame
jdbc(url: String, table: String,
  parts: Array[Partition],
  connectionProperties: Properties): DataFrame
jdbc(url: String, table: String,
  predicates: Array[String],
  connectionProperties: Properties): DataFrame
jdbc(url: String, table: String,
  columnName: String,
  lowerBound: Long,
  upperBound: Long,
  numPartitions: Int,
  connectionProperties: Properties): DataFrame

jdbc allows you to create DataFrame that represents table in the database available as url.