Skip to content

Latest commit

 

History

History
243 lines (191 loc) · 8.08 KB

spark-mllib-pipelines-example-classification.adoc

File metadata and controls

243 lines (191 loc) · 8.08 KB

Example — Text Classification

Problem: Given a text document, classify it as a scientific or non-scientific one.

When loading the input data it is a .

Note
The example uses a case class LabeledText to have the schema described nicely.
import spark.implicits._

sealed trait Category
case object Scientific extends Category
case object NonScientific extends Category

// FIXME: Define schema for Category

case class LabeledText(id: Long, category: Category, text: String)

val data = Seq(LabeledText(0, Scientific, "hello world"), LabeledText(1, NonScientific, "witaj swiecie")).toDF

scala> data.show
+-----+-------------+
|label|         text|
+-----+-------------+
|    0|  hello world|
|    1|witaj swiecie|
+-----+-------------+

It is then tokenized and transformed into another DataFrame with an additional column called features that is a Vector of numerical values.

Note
Paste the code below into Spark Shell using :paste mode.
import spark.implicits._

case class Article(id: Long, topic: String, text: String)
val articles = Seq(
  Article(0, "sci.math", "Hello, Math!"),
  Article(1, "alt.religion", "Hello, Religion!"),
  Article(2, "sci.physics", "Hello, Physics!"),
  Article(3, "sci.math", "Hello, Math Revised!"),
  Article(4, "sci.math", "Better Math"),
  Article(5, "alt.religion", "TGIF")).toDS

Now, the tokenization part comes that maps the input text of each text document into tokens (a Seq[String]) and then into a Vector of numerical values that can only then be understood by a machine learning algorithm (that operates on Vector instances).

scala> articles.show
+---+------------+--------------------+
| id|       topic|                text|
+---+------------+--------------------+
|  0|    sci.math|        Hello, Math!|
|  1|alt.religion|    Hello, Religion!|
|  2| sci.physics|     Hello, Physics!|
|  3|    sci.math|Hello, Math Revised!|
|  4|    sci.math|         Better Math|
|  5|alt.religion|                TGIF|
+---+------------+--------------------+

val topic2Label: Boolean => Double = isSci => if (isSci) 1 else 0
val toLabel = udf(topic2Label)

val labelled = articles.withColumn("label", toLabel($"topic".like("sci%"))).cache

val Array(trainDF, testDF) = labelled.randomSplit(Array(0.75, 0.25))

scala> trainDF.show
+---+------------+--------------------+-----+
| id|       topic|                text|label|
+---+------------+--------------------+-----+
|  1|alt.religion|    Hello, Religion!|  0.0|
|  3|    sci.math|Hello, Math Revised!|  1.0|
+---+------------+--------------------+-----+


scala> testDF.show
+---+------------+---------------+-----+
| id|       topic|           text|label|
+---+------------+---------------+-----+
|  0|    sci.math|   Hello, Math!|  1.0|
|  2| sci.physics|Hello, Physics!|  1.0|
|  4|    sci.math|    Better Math|  1.0|
|  5|alt.religion|           TGIF|  0.0|
+---+------------+---------------+-----+

The train a model phase uses the logistic regression machine learning algorithm to build a model and predict label for future input text documents (and hence classify them as scientific or non-scientific).

import org.apache.spark.ml.feature.RegexTokenizer
val tokenizer = new RegexTokenizer()
  .setInputCol("text")
  .setOutputCol("words")

import org.apache.spark.ml.feature.HashingTF
val hashingTF = new HashingTF()
  .setInputCol(tokenizer.getOutputCol)  // it does not wire transformers -- it's just a column name
  .setOutputCol("features")
  .setNumFeatures(5000)

import org.apache.spark.ml.classification.LogisticRegression
val lr = new LogisticRegression().setMaxIter(20).setRegParam(0.01)

import org.apache.spark.ml.Pipeline
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, lr))

It uses two columns, namely label and features vector to build a logistic regression model to make predictions.

val model = pipeline.fit(trainDF)

val trainPredictions = model.transform(trainDF)
val testPredictions = model.transform(testDF)

scala> trainPredictions.select('id, 'topic, 'text, 'label, 'prediction).show
+---+------------+--------------------+-----+----------+
| id|       topic|                text|label|prediction|
+---+------------+--------------------+-----+----------+
|  1|alt.religion|    Hello, Religion!|  0.0|       0.0|
|  3|    sci.math|Hello, Math Revised!|  1.0|       1.0|
+---+------------+--------------------+-----+----------+

// Notice that the computations add new columns
scala> trainPredictions.printSchema
root
 |-- id: long (nullable = false)
 |-- topic: string (nullable = true)
 |-- text: string (nullable = true)
 |-- label: double (nullable = true)
 |-- words: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- features: vector (nullable = true)
 |-- rawPrediction: vector (nullable = true)
 |-- probability: vector (nullable = true)
 |-- prediction: double (nullable = true)

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator
val evaluator = new BinaryClassificationEvaluator().setMetricName("areaUnderROC")

import org.apache.spark.ml.param.ParamMap
val evaluatorParams = ParamMap(evaluator.metricName -> "areaUnderROC")

scala> val areaTrain = evaluator.evaluate(trainPredictions, evaluatorParams)
areaTrain: Double = 1.0

scala> val areaTest = evaluator.evaluate(testPredictions, evaluatorParams)
areaTest: Double = 0.6666666666666666

Let’s tune the model’s hyperparameters (using "tools" from org.apache.spark.ml.tuning package).

Caution
FIXME Review the available classes in the org.apache.spark.ml.tuning package.
import org.apache.spark.ml.tuning.ParamGridBuilder
val paramGrid = new ParamGridBuilder()
  .addGrid(hashingTF.numFeatures, Array(100, 1000))
  .addGrid(lr.regParam, Array(0.05, 0.2))
  .addGrid(lr.maxIter, Array(5, 10, 15))
  .build

// That gives all the combinations of the parameters

paramGrid: Array[org.apache.spark.ml.param.ParamMap] =
Array({
	logreg_cdb8970c1f11-maxIter: 5,
	hashingTF_8d7033d05904-numFeatures: 100,
	logreg_cdb8970c1f11-regParam: 0.05
}, {
	logreg_cdb8970c1f11-maxIter: 5,
	hashingTF_8d7033d05904-numFeatures: 1000,
	logreg_cdb8970c1f11-regParam: 0.05
}, {
	logreg_cdb8970c1f11-maxIter: 10,
	hashingTF_8d7033d05904-numFeatures: 100,
	logreg_cdb8970c1f11-regParam: 0.05
}, {
	logreg_cdb8970c1f11-maxIter: 10,
	hashingTF_8d7033d05904-numFeatures: 1000,
	logreg_cdb8970c1f11-regParam: 0.05
}, {
	logreg_cdb8970c1f11-maxIter: 15,
	hashingTF_8d7033d05904-numFeatures: 100,
	logreg_cdb8970c1f11-regParam: 0.05
}, {
	logreg_cdb8970c1f11-maxIter: 15,
	hashingTF_8d7033d05904-numFeatures: 1000,
	logreg_cdb8970c1f11-...

import org.apache.spark.ml.tuning.CrossValidator
import org.apache.spark.ml.param._
val cv = new CrossValidator()
  .setEstimator(pipeline)
  .setEstimatorParamMaps(paramGrid)
  .setEvaluator(evaluator)
  .setNumFolds(10)

val cvModel = cv.fit(trainDF)

Let’s use the cross-validated model to calculate predictions and evaluate their precision.

val cvPredictions = cvModel.transform(testDF)

scala> cvPredictions.select('topic, 'text, 'prediction).show
+------------+---------------+----------+
|       topic|           text|prediction|
+------------+---------------+----------+
|    sci.math|   Hello, Math!|       0.0|
| sci.physics|Hello, Physics!|       0.0|
|    sci.math|    Better Math|       1.0|
|alt.religion|           TGIF|       0.0|
+------------+---------------+----------+

scala> evaluator.evaluate(cvPredictions, evaluatorParams)
res26: Double = 0.6666666666666666

scala> val bestModel = cvModel.bestModel
bestModel: org.apache.spark.ml.Model[_] = pipeline_8873b744aac7

You can eventually save the model for later use.

cvModel.write.overwrite.save("model")

Congratulations! You’re done.