-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweb_server.py
117 lines (100 loc) · 3.78 KB
/
web_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from flask import Flask, render_template, Response , json
import cv2
from captionbot import CaptionBot
import os
import time
import six.moves.urllib as urllib
from tqdm import tqdm
import tensorflow as tf
from ssd_mobilenet_utils import *
import urllib.request as urllib2
import pyttsx3
import numpy as np
app = Flask(__name__)
c = CaptionBot()
frame = None
interpreter = tf.lite.Interpreter(model_path="model_data/ssdlite_mobilenet_v2.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
class_names = read_classes('model_data/coco_classes.txt')
colors = generate_colors(class_names)
# real_time_object_detection(interpreter, colors)
url = 'http://10.42.0.244/media/?action=stream'
username = 'admin'
password = ''
p = urllib2.HTTPPasswordMgrWithDefaultRealm()
p.add_password(None, url, username, password)
handler = urllib2.HTTPBasicAuthHandler(p)
opener = urllib2.build_opener(handler)
urllib2.install_opener(opener)
engine = pyttsx3.init()
@app.route('/')
@app.route('/index')
def index():
return render_template('index.html')
@app.route('/home')
def home():
return render_template('home.html')
def run_detection(image, interpreter):
interpreter.set_tensor(input_details[0]['index'], image)
interpreter.invoke()
boxes = interpreter.get_tensor(output_details[0]['index'])
classes = interpreter.get_tensor(output_details[1]['index'])
scores = interpreter.get_tensor(output_details[2]['index'])
num = interpreter.get_tensor(output_details[3]['index'])
boxes, scores, classes = np.squeeze(boxes), np.squeeze(scores), np.squeeze(classes + 1).astype(np.int32)
out_scores, out_boxes, out_classes = non_max_suppression(scores, boxes, classes)
# Print predictions info
#print('Found {} boxes for {}'.format(len(out_boxes), 'images/dog.jpg'))
return out_scores, out_boxes, out_classes
def gen():
stream = urllib2.urlopen(url)
byte = bytes()
global frame
global interpreter
global colors
while True:
start = time.time()
byte += stream.read(32768)
a = byte.find(b'\xff\xd8')
b = byte.find(b'\xff\xd9')
if a != -1 and b != -1:
jpg = byte[a:b+2]
byte = byte[b+2:]
frame = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8), cv2.IMREAD_COLOR)
frame = cv2.resize(frame,(640,480))
cv2.imwrite('image.jpg' , frame)
image_data = preprocess_image_for_tflite(frame, model_image_size=300)
out_scores, out_boxes, out_classes = run_detection(image_data, interpreter)
result = draw_boxes(frame, out_scores, out_boxes, out_classes, class_names, colors)
end = time.time()
t = end - start
fps = "Fps: {:.2f}".format(1 / t)
cv2.putText(result, fps, (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
flag, encodedImage = cv2.imencode(".jpg" , frame)
if not flag:
continue
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n')
else:
continue
cap.release()
@app.route('/video_feed')
def video_feed():
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/generate_caption')
def generate_caption():
print("Generating Caption...")
engine.setProperty('rate', 150)
caption = c.file_caption('/home/aditya/XDSA/' + 'image.jpg')
#caption = c.file_caption("C:/Users/Bharat/Desktop/Hack-A-Bit 2019/image.jpg")
print(caption)
engine.say(caption)
engine.runAndWait()
res = {'caption':caption}
return json.dumps(res)
if __name__ == '__main__':
app.run(host='0.0.0.0', debug=True)