-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnn_evaluation.py
122 lines (119 loc) · 5.58 KB
/
nn_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import glob, os
from create_train_data import generate_symmfunc_input_Si_Behler
from symmetry_transform import symmetryTransformBehler
class neural_network():
"""
Loads and stores the neural network of choice in memory.
Can evaluate the network and return the derivative w.r.t. inputs.
"""
def __init__(self, loadPath, act_func, ddx_act_f):
node_w_list, node_biases, what_epoch = read_NN_from_file(loadPath)
G_funcs, nmbr_G = generate_symmfunc_input_Si_Behler()
self.what_epoch = what_epoch
self.all_layers = len(node_w_list) + 1
self.hdn_layers = self.all_layers - 2
self.node_biases = node_biases
self.G_funcs = G_funcs
self.nmbr_G = nmbr_G
self.act_func = act_func
self.ddx_act_f = ddx_act_f
self.node_w_list = node_w_list
# Force last weight vector to be Nx1 matrix
self.node_w_list[-1] = node_w_list[-1].reshape(node_w_list[-1].shape[0],1)
def __call__(self, sym_vec):
"""
Evaluates the neural network and returns the energy
"""
self.node_sum = []
vec_prev_layer = sym_vec # First input
self.node_sum.append(vec_prev_layer)
# Evaluate the neural network:
for i,w_mat in enumerate(self.node_w_list):
out_layer = np.dot(vec_prev_layer, w_mat)
out_layer += self.node_biases[i]
if i != len(self.node_w_list)-1: # We dont use act_func on output layer
self.node_sum.append(out_layer) # Dont care about last sum because its the same as the final output (energy)!
vec_prev_layer = self.act_func(out_layer)
return float(out_layer)
def derivative(self):
"""
Essentially what is done during backpropagation, except we also need
to differentiate symmetry functions with respect to cartesian coordinates.
"""
tot_layers = self.all_layers
hdn_layers = self.hdn_layers
ddx_act_f = self.ddx_act_f
f_vec_G2 = np.zeros(3) # Will contain the forces (Fx, Fy, Fz)
f_vec_G4 = np.zeros(3)
output = np.array(1.0) # Derivative of output neruon is 1 since its f(x) = x
deriv_list = [0] * tot_layers
deriv_list[-1] = output
# Loop backwards through layers of NN (from output to the input)
for i in reversed(range(1,hdn_layers+1)):
weights_trans = np.transpose(self.node_w_list[i])
deriv_list[i] = np.dot(deriv_list[i+1], weights_trans) \
* ddx_act_f(self.node_sum[i])
# Assume linear activation function used on input nodes:
weights_trans = np.transpose(self.node_w_list[0])
deriv_list[0] = np.dot(deriv_list[1], weights_trans)
dNNdG = np.array(deriv_list[0].transpose())
return dNNdG
def create_symvec_from_xyz(self, xyz):
"""
XYZ is neighbor-coordinates only!
"""
symm_vec = symmetryTransformBehler(self.G_funcs, xyz)
return symm_vec
def what_epoch(self):
return self.what_epoch
def nmbr_G(self):
return self.nmbr_G
def G_funcs(self):
return self.G_funcs
def read_NN_from_file(loadPath):
which_graph_file = loadPath + "graph.dat"
# Remove filename at the end (variable length)
for i,letter in enumerate(reversed(loadPath)):
if letter == "/": # Find index i of last letter "/" in path
break
loadPath = loadPath[:-i] # Now points to the folder, not the file
folder_list = glob.glob(loadPath + "graph*")
folder_list = sorted(folder_list, key=os.path.getmtime)# Sort by time created
if len(folder_list) == 1:
which_graph_file = folder_list[0]
else:
print "\nFound multiple graph_EPOCHS.dat-files. Choose one:"
for i,graph_file in enumerate(folder_list):
print " %d)"%i, graph_file[61:]
i = int(raw_input("Input an integer: "))
which_graph_file = folder_list[i] # Dont use loadPath, since glob-list has entire (relative) path
what_epoch = int(which_graph_file[66:-4])
with open(which_graph_file, "r") as nn_file:
hdn_layers, nodes, act_func, nn_inp, nn_out = nn_file.readline().strip().split()
hdn_layers = int(hdn_layers); nodes = int(nodes); nn_inp = int(nn_inp); nn_out = int(nn_out)
tot_w_lines = (hdn_layers-1)*nodes + nn_inp + 1 # Last one from output layer
node_weights = np.zeros((tot_w_lines,nodes))
node_biases = []
line_index = 0 # We dont care about first line, already taken care of above
for line in nn_file:
line = line.strip().split() # Remove newline and spaces. Then split into list of numbers
if not line:
continue # Skip line between W and B
line = np.array(line, dtype=float) # Convert list of strings to array of floats
if line_index < tot_w_lines: # Reading node weights
# print "W",line_index,line[0] # Error checking
node_weights[line_index,:] = line
else:
# print "B",line_index,line[0] # Error checking
node_biases.append(line)
line_index += 1
# Convert to proper matrices
node_w_list = []
node_w_list.append(node_weights[0:nn_inp,:])
# print node_weights[nn_inp:nn_inp+nodes,:]
# raw_input("ASDF")
for i in range(nn_inp, tot_w_lines-1, nodes): # Loop over hidden layer 2 -->
node_w_list.append(node_weights[i:i+nodes,:])
node_w_list.append(node_weights[-1,:]) # This is output node
return node_w_list, node_biases, what_epoch