-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
server.py
1217 lines (1008 loc) · 45.1 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import io
import logging
import os
import sys
import ast
import json
import time
import traceback
import uuid
from traceback import print_exception
from typing import List, Dict, Optional, Literal, Union, Any
import filelock
import jsonschema
from pydantic import BaseModel, Field
from fastapi import FastAPI, Header, HTTPException, Form, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi import Request, Depends
from fastapi.responses import JSONResponse, Response, StreamingResponse
from fastapi import File, UploadFile
from sse_starlette import EventSourceResponse
from starlette.responses import PlainTextResponse
from openai_server.backend_utils import get_user_dir, run_upload_api, meta_ext
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from slowapi.middleware import SlowAPIMiddleware
sys.path.append('openai_server')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s: %(message)s')
# https://github.com/h2oai/h2ogpt/issues/1132
# https://github.com/jquesnelle/transformers-openai-api
# https://community.openai.com/t/trying-to-turn-this-into-an-automatic-web-search-engine/306383
class Generation(BaseModel):
# put here things not supported by OpenAI but are by torch or vLLM
# https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py
top_k: int | None = 1
min_p: float | None = 0.0
class ResponseFormat(BaseModel):
# type must be "json_object" or "text"
type: str = Literal["text", "json_object", "json_code", "json_schema"]
json_schema: Optional[Dict[str, Any]] = None
strict: Optional[bool] = True
# https://github.com/vllm-project/vllm/blob/a3c226e7eb19b976a937e745f3867eb05f809278/vllm/entrypoints/openai/protocol.py#L62
class H2oGPTParams(BaseModel):
# keep in sync with evaluate()
# handled by extra_body passed to OpenAI API
enable_caching: bool | None = None
prompt_type: str | None = None
prompt_dict: Dict | str | None = None
chat_template: str | None = None
penalty_alpha: float | None = 0.0
num_beams: int | None = 1
min_new_tokens: int | None = 1
early_stopping: bool | None = False
max_time: float | None = 360
repetition_penalty: float | None = 1
num_return_sequences: int | None = 1
do_sample: bool | None = None
chat: bool | None = True
langchain_mode: str | None = 'LLM'
add_chat_history_to_context: bool | None = True
langchain_action: str | None = 'Query'
langchain_agents: List | None = []
top_k_docs: int | None = 10
chunk: bool | None = True
chunk_size: int | None = 512
document_subset: str | None = 'Relevant'
document_choice: str | None = 'All'
document_source_substrings: List | None = []
document_source_substrings_op: str | None = 'and'
document_content_substrings: List | None = []
document_content_substrings_op: str | None = 'and'
pre_prompt_query: str | None = None
prompt_query: str | None = None
pre_prompt_summary: str | None = None
prompt_summary: str | None = None
hyde_llm_prompt: str | None = None
all_docs_start_prompt: str | None = None,
all_docs_finish_prompt: str | None = None,
user_prompt_for_fake_system_prompt: str | None = None
json_object_prompt: str | None = None
json_object_prompt_simpler: str | None = None
json_code_prompt: str | None = None
json_code_prompt_if_no_schema: str | None = None
json_schema_instruction: str | None = None
json_preserve_system_prompt: bool | None = False
json_object_post_prompt_reminder: str | None = None
json_code_post_prompt_reminder: str | None = None
json_code2_post_prompt_reminder: str | None = None
system_prompt: str | None = 'auto'
image_audio_loaders: List | None = None
pdf_loaders: List | None = None
url_loaders: List | None = None
jq_schema: str | None = None
extract_frames: int | None = 10
llava_prompt: str | None = 'auto'
# visible_models
# h2ogpt_key,
add_search_to_context: bool | None = False
chat_conversation: List | None = []
text_context_list: List | None = []
docs_ordering_type: str | None = None
min_max_new_tokens: int | None = 512
max_input_tokens: int | None = -1
max_total_input_tokens: int | None = -1
docs_token_handling: str | None = None
docs_joiner: str | None = None
hyde_level: int | None = 0
hyde_template: str | None = 'auto'
hyde_show_only_final: bool | None = False
doc_json_mode: bool | None = False
metadata_in_context: Union[str, list] | None = 'auto'
chatbot_role: str | None = 'None'
speaker: str | None = 'None'
tts_language: str | None = 'autodetect'
tts_speed: float | None = 1.0
image_file: Union[str, list] | None = None
image_control: str | None = None
images_num_max: int | None = None
image_resolution: tuple | None = None
image_format: str | None = None
rotate_align_resize_image: bool | None = None
video_frame_period: int | None = None
image_batch_image_prompt: str | None = None
image_batch_final_prompt: str | None = None
image_batch_stream: bool | None = None
visible_vision_models: Union[str, int, list] | None = 'auto'
video_file: Union[str, list] | None = None
model_lock: dict | None = None
client_metadata: str | None = ''
response_format: Optional[ResponseFormat] = Field(
default=None,
description=(
"Similar to chat completion, this parameter specifies the format of "
"output. Only {'type': 'text' } or {'type': 'json_object'} or {'type': 'json_code'} or {'type': 'json_schema'} are "
"supported."
),
)
guided_json: Optional[Union[str, dict, BaseModel]] = Field(
default=None,
description="If specified, the output will follow the JSON schema.",
)
guided_regex: Optional[str] = Field(
default=None,
description=("If specified, the output will follow the regex pattern."),
)
guided_choice: Optional[List[str]] = Field(
default=None,
description="If specified, the output will be exactly one of the choices.",
)
guided_grammar: Optional[str] = Field(
default=None,
description="If specified, the output will follow the context free grammar.",
)
guided_whitespace_pattern: Optional[str] = Field(
default=None,
description="If specified, JSON white space will be restricted.",
)
class AgentParams(BaseModel):
use_agent: bool | None = False
autogen_stop_docker_executor: bool | None = False
autogen_run_code_in_docker: bool | None = False
autogen_max_consecutive_auto_reply: int | None = 10
autogen_max_turns: int | None = None
autogen_timeout: int = 120
agent_verbose: bool = False
autogen_cache_seed: int | None = None
agent_venv_dir: str | None = None
agent_code_writer_system_message: str | None = None
agent_system_site_packages: bool = True
autogen_code_restrictions_level: int = 2
autogen_silent_exchange: bool = True
agent_type: str | None = 'auto'
agent_accuracy: str | None = 'standard'
agent_work_dir: str | None = None
agent_chat_history: list | None = []
agent_files: list | None = []
class Params(H2oGPTParams, AgentParams):
# https://platform.openai.com/docs/api-reference/completions/create
user: str | None = Field(default=None, description="Track user")
model: str | None = Field(default=None, description="Choose model")
best_of: int | None = Field(default=1, description="Unused")
frequency_penalty: float | None = 0.0
max_tokens: int | None = 256
n: int | None = Field(default=1, description="Unused")
presence_penalty: float | None = 0.0
stop: str | List[str] | None = None
stop_token_ids: List[int] | None = None
stream: bool | None = False
temperature: float | None = 0.3
top_p: float | None = 1.0
seed: int | None = 0 # 0 means random seed if sampling
class CompletionParams(Params):
prompt: str | List[str]
logit_bias: dict | None = None
logprobs: int | None = None
class TextRequest(Generation, CompletionParams):
pass
class TextResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "text_completion"
usage: dict
class ChatParams(Params):
messages: List[dict]
tools: list | None = Field(default=None, description="WIP")
tool_choice: str | None = Field(default=None, description="WIP")
class ChatRequest(Generation, ChatParams):
# https://platform.openai.com/docs/api-reference/chat/create
pass
class ChatResponse(BaseModel):
id: str
choices: List[dict]
created: int = int(time.time())
model: str
object: str = "chat.completion"
usage: dict
class Model(BaseModel):
id: str
object: str = 'model'
created: str = 'na'
owned_by: str = 'H2O.ai'
class ModelInfoResponse(BaseModel):
model_info: str
class ModelListResponse(BaseModel):
model_names: List[Model]
def verify_api_key(authorization: str = Header(None)) -> None:
server_api_key = os.getenv('H2OGPT_OPENAI_API_KEY', 'EMPTY')
if server_api_key:
h2ogpt_api_keys = [server_api_key]
else:
h2ogpt_api_keys = []
if server_api_key == 'EMPTY':
# dummy case since '' cannot be handled
# disables all auth
return
# assume if set file, shared keys for h2oGPT and OpenAI uses
server_api_key_file = os.getenv('H2OGPT_H2OGPT_API_KEYS')
# string of list case
if isinstance(server_api_key_file, str) and not os.path.isfile(server_api_key_file):
h2ogpt_api_keys.extend(ast.literal_eval(server_api_key_file))
# file case
if isinstance(server_api_key_file, str) and os.path.isfile(server_api_key_file):
with filelock.FileLock(server_api_key_file + '.lock'):
with open(server_api_key_file, 'rt') as f:
h2ogpt_api_keys.extend(json.load(f))
# no keys case
if len(h2ogpt_api_keys) == 0:
return
if any([authorization is not None and authorization == f"Bearer {x}" for x in h2ogpt_api_keys]):
return
raise HTTPException(status_code=401, detail="Unauthorized")
# Dependency that extracts the model and stores it in request state
async def extract_model_from_request(request: Request, request_data: ChatRequest):
request.state.model = request_data.model
return request_data
limiter = Limiter(key_func=get_remote_address)
global_limiter = Limiter(key_func=lambda: "global") # Global limiter with constant key
def model_rate_limit_key(request: Request):
# Extract the model from request data, assuming it's in the JSON body
# Since we are in FastAPI, we'll retrieve the model from the request object
# FastAPI request's `state` can store request data parsed by dependency injection
model = request.state.model # Set by a dependency or manually within the route
if not model:
raise ValueError("Model not provided in request data")
# Use the model name as the key for rate limiting
return model
def api_key_rate_limit_key(request: Request):
# Example: Extract user ID or API key for rate limiting
return request.headers.get("X-User-ID", 'unknown')
app = FastAPI()
check_key = [Depends(verify_api_key)]
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
# Add SlowAPI middleware for rate limiting (without limiter argument)
app.add_middleware(SlowAPIMiddleware)
# Set limiter in the app state
app.state.limiter = limiter
app.state.global_limiter = global_limiter
# Exception handler for rate limit exceeded
app.add_exception_handler(RateLimitExceeded,
lambda request, exc: JSONResponse({"error": "rate limit exceeded"}, status_code=429))
# https://platform.openai.com/docs/models/how-we-use-your-data
class InvalidRequestError(Exception):
pass
status_limiter_global = os.getenv('H2OGPT_STATUS_LIMITER_GLOBAL', '100/second')
status_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '3/second')
completion_limiter_global = os.getenv('H2OGPT_COMPLETION_LIMITER_GLOBAL', '30/second')
completion_limiter_user = os.getenv('H2OGPT_STATUS_LIMITER_USER', '5/second')
completion_limiter_model = os.getenv('H2OGPT_STATUS_LIMITER_MODEL', '1/second')
audio_limiter_global = os.getenv('H2OGPT_AUDIO_LIMITER_GLOBAL', '20/second')
audio_limiter_user = os.getenv('H2OGPT_AUDIO_LIMITER_USER', '5/second')
image_limiter_global = os.getenv('H2OGPT_IMAGE_LIMITER_GLOBAL', '5/second')
image_limiter_user = os.getenv('H2OGPT_IMAGE_LIMITER_USER', '1/second')
embedding_limiter_global = os.getenv('H2OGPT_EMBEDDING_LIMITER_GLOBAL', '30/second')
embedding_limiter_user = os.getenv('H2OGPT_EMBEDDING_LIMITER_USER', '1/second')
file_limiter_global = os.getenv('H2OGPT_FILE_LIMITER_GLOBAL', '50/second')
file_limiter_user = os.getenv('H2OGPT_FILE_LIMITER_USER', '20/second')
@app.get("/health")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def health(request: Request) -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/version")
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def show_version(request: Request):
try:
from ..src.version import __version__
githash = __version__
except:
githash = 'unknown'
ver = {"version": githash}
return JSONResponse(content=ver)
@app.exception_handler(Exception)
async def validation_exception_handler(request, exc):
print_exception(exc)
exc2 = InvalidRequestError(str(exc))
return PlainTextResponse(str(exc2), status_code=400)
@app.options("/", dependencies=check_key)
async def options_route():
return JSONResponse(content="OK")
@app.post('/v1/completions', response_model=TextResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_completions(request: Request, request_data: TextRequest, authorization: str = Header(None)):
try:
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
if request_data.stream:
async def generator():
try:
from openai_server.backend import astream_completions
async for resp in astream_completions(request_data_dict, stream_output=True):
disconnected = await request.is_disconnected()
if disconnected:
return
yield {"data": json.dumps(resp)}
except Exception as e1:
print(traceback.format_exc())
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_completions
response = {}
async for resp in astream_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
def random_uuid() -> str:
return str(uuid.uuid4().hex)
class FunctionCall(BaseModel):
name: str
arguments: str
class ToolCall(BaseModel):
id: str = Field(default_factory=lambda: f"chatcmpl-tool-{random_uuid()}")
type: Literal["function"] = "function"
function: FunctionCall
async def get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
try:
return _get_tool(request, request_data, authorization)
except Exception as e1:
# For non-streaming responses, we'll return a JSON error response
raise HTTPException(status_code=500, detail={
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": 500
}
})
async def _get_tool(request: Request, request_data: ChatRequest, authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict = copy.deepcopy(request_data_dict)
tools = request_data_dict.get('tools')
model = request_data_dict.get('model')
prompt = ""
tool_names = []
tool_dict = {}
tool_dict['noop'] = None
for tool in tools:
assert tool['type'] == 'function'
tool_name = tool['function']['name']
tool_dict[tool_name] = tool
tool_description = tool['function']['description']
if 'claude' in model:
prompt += f'<tool>\n<name>\n{tool_name}\n</name>\n<description>\n{tool_description}\n</description>\n</tool>\n'
else:
prompt += f'# Tool Name\n\n{tool_name}\n# Tool Description:\n\n{tool_description}\n\n'
tool_names.append(tool_name)
if not request_data_dict['messages']:
raise ValueError("No messages in request, required for tool_choice='auto'")
original_prompt = request_data_dict['messages'][0]['content']
if 'claude' in model:
prompt += f"<prompt>\n{original_prompt}\n</prompt>\n"
else:
prompt += f"# Prompt\n\n{original_prompt}\n\n"
prompt += """
Choose the single tool that best solves the task inferred from the prompt. Never choose more than one tool, i.e. act like parallel_tool_calls=False. If no tool is a good fit, then only choose the noop tool.
"""
request_data_dict['guided_json'] = {
"type": "object",
"properties": {
"tool": {
"type": "string",
"description": "The name of the single best tool to use to solve the task inferred from the user prompt. If no tool is a good fit, then only choose the noop tool.",
"enum": tool_names + ['noop'],
},
},
"required": ["tool"]
}
request_data_dict['response_format'] = dict(type='json_object')
request_data_dict['text_context_list'] = []
request_data_dict['use_agent'] = False
request_data_dict['add_chat_history_to_context'] = False
request_data_dict['chat_conversation'] = []
request_data_dict['stream_output'] = False
request_data_dict['stream'] = False
request_data_dict['langchain_action'] = 'Query'
request_data_dict['langchain_agents'] = []
request_data_dict['system_prompt'] = "You are a JSON maker."
request_data_dict['max_tokens'] = max(request_data_dict.get('max_tokens', 256), 256)
request_data_dict['hyde_level'] = 0
messages = [{'content': prompt, 'role': 'user'}]
request_data_dict['messages'] = messages
# avoid recursion
request_data_dict['tools'] = None
# recurse
request_data = ChatRequest(**request_data_dict)
trials = 3
tool_name = None
msgs = []
for trial in range(trials):
response_json = await openai_chat_completions(request, request_data, authorization)
response_all = json.loads(response_json.body)
json_answer = json.loads(response_all['choices'][0]['message']['content'])
msgs.append(json_answer)
print(json_answer)
try:
jsonschema.validate(instance=json_answer, schema=request_data_dict['guided_json'])
except:
continue
if 'tool' not in json_answer:
continue
tool_name = json_answer['tool']
break
print(msgs)
if tool_name is None:
raise RuntimeError("Failed to get tool choice: %s" % msgs)
return tool_name, tool_dict[tool_name]
def tool_to_guided_json(tool):
guided_json = {
"type": "object",
"properties": tool,
}
return guided_json
@app.post('/v1/chat/completions', response_model=ChatResponse, dependencies=check_key)
@global_limiter.limit(completion_limiter_global)
@limiter.limit(completion_limiter_user, key_func=api_key_rate_limit_key)
@limiter.limit(completion_limiter_model, key_func=model_rate_limit_key)
async def openai_chat_completions(request: Request,
request_data: ChatRequest = Depends(extract_model_from_request),
authorization: str = Header(None)):
request_data_dict = dict(request_data)
request_data_dict['authorization'] = authorization
str_uuid = str(uuid.uuid4())
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items client_metadata: {request_data_dict['client_metadata']}")
else:
logging.info(f"Chat Completions request {str_uuid}: {len(request_data_dict)} items")
# don't allow tool use with guided_json for now
if request_data_dict['guided_json'] and request_data_dict.get('tools'):
raise NotImplementedError("Cannot use tools with guided_json, because guided_json used for tool use.")
# extract tool or do auto
if request_data_dict.get('tool_choice') == 'auto' and request_data_dict.get('tools'):
tool_name_chosen, tool_chosen = await get_tool(request, request_data, authorization)
request_data_dict['tools'] = []
if tool_name_chosen != 'noop':
request_data_dict['guided_json'] = tool_to_guided_json(tool_chosen)
request_data_dict['tool_choice'] = tool_name_chosen
else:
request_data_dict['tool_choice'] = 'auto'
# handle json_schema -> guided_json
# https://platform.openai.com/docs/guides/structured-outputs/how-to-use?context=without_parse&lang=python
if request_data_dict['response_format'] and request_data_dict['response_format'].type == 'json_schema':
json_schema = request_data_dict['response_format'].json_schema
if json_schema:
# try to json.loads schema to ensure correct
if not isinstance(json_schema, dict):
json_schema_dict = json.loads(json_schema)
else:
json_schema_dict = json_schema
assert 'schema' in json_schema_dict, "Schema should start by containing 'name' and 'schema' keys."
schema = json_schema_dict['schema']
assert schema, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
if not isinstance(schema, dict):
schema_dict = json.loads(schema)
else:
schema_dict = schema
assert schema_dict, "Inner schema key should contain at least 'type: 'object' and 'properties' keys and can include 'required' or 'additionalProperties'"
request_data_dict['guided_json'] = schema_dict
else:
raise ValueError("Specified response_format type json_schema but no json_schema provided.")
request_data_dict['response_format'] = ResponseFormat(type='json_object')
if request_data.stream:
from openai_server.backend import astream_chat_completions
async def generator():
try:
async for resp1 in astream_chat_completions(request_data_dict, stream_output=True):
if await request.is_disconnected():
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions disconnected {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return
yield {"data": json.dumps(resp1)}
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
except Exception as e1:
print(traceback.format_exc())
# Instead of raising an HTTPException, we'll yield a special error message
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
print(error_response)
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions error {str_uuid}: client_metadata: {request_data_dict['client_metadata']}: {error_response}")
yield {"data": json.dumps(error_response)}
# After yielding the error, we'll close the connection
return
# avoid sending more data back as exception, just be done
# raise e1
return EventSourceResponse(generator())
else:
from openai_server.backend import astream_chat_completions
try:
response = {}
async for resp in astream_chat_completions(request_data_dict, stream_output=False):
if await request.is_disconnected():
return
response = resp
if 'client_metadata' in request_data_dict:
logging.info(f"Chat Completions non-streaming finished {str_uuid}: client_metadata: {request_data_dict['client_metadata']}")
return JSONResponse(response)
except Exception as e:
traceback.print_exc()
# For non-streaming responses, we'll return a JSON error response
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
print(error_response)
raise HTTPException(status_code=500, detail=error_response)
# https://platform.openai.com/docs/api-reference/models/list
@app.get("/v1/models", dependencies=check_key)
@app.get("/v1/models/{model}", dependencies=check_key)
@app.get("/v1/models/{repo}/{model}", dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_models(request: Request):
path = request.url.path
model_name = path[len('/v1/models/'):]
from openai_server.backend import get_client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
for model_i, model in enumerate(model_dict):
model_dict[model_i].update(dict(id=model.get('base_model'), object='model', created='NA', owned_by='H2O.ai'))
if not model_name:
response = {
"object": "list",
"data": model_dict,
}
return JSONResponse(response)
else:
model_info = [x for x in model_dict if x.get('base_model') == model_name]
if model_info:
model_info = model_info[0]
response = model_info.copy() if model_info else {}
if model_info is None:
raise ValueError("No such model %s" % model_name)
return JSONResponse(response)
@app.get("/v1/internal/model/info", response_model=ModelInfoResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_model_info(request: Request):
from openai_server.backend import get_model_info
return JSONResponse(content=get_model_info())
@app.get("/v1/internal/model/list", response_model=ModelListResponse, dependencies=check_key)
@limiter.limit(status_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(status_limiter_global)
async def handle_list_models(request: Request):
from openai_server.backend import get_model_list
return JSONResponse(content=[dict(id=x) for x in get_model_list()])
# Define your request data model
class AudiotoTextRequest(BaseModel):
model: str = ''
file: str
response_format: str = 'text' # FIXME unused (https://platform.openai.com/docs/api-reference/audio/createTranscription#images/create-response_format)
stream: bool = True # NOTE: No effect on OpenAI API client, would have to use direct API
timestamp_granularities: list = ["word"] # FIXME unused
chunk: Union[str, int] = 'silence' # or 'interval' No effect on OpenAI API client, would have to use direct API
@app.post('/v1/audio/transcriptions', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_transcription(request: Request):
try:
form = await request.form()
audio_file = await form["file"].read()
model = form["model"]
stream = form.get("stream", False)
response_format = form.get("response_format", 'text')
chunk = form.get("chunk", 'interval')
request_data = dict(model=model, stream=stream, audio_file=audio_file, response_format=response_format,
chunk=chunk)
if stream:
from openai_server.backend import audio_to_text
async def generator():
try:
async for resp in audio_to_text(**request_data):
disconnected = await request.is_disconnected()
if disconnected:
break
yield {"data": json.dumps(resp)}
except Exception as e1:
error_response = {
"error": {
"message": str(e1),
"type": "server_error",
"param": None,
"code": "500"
}
}
yield {"data": json.dumps(error_response)}
# raise e1 # This will close the connection after sending the error
return
return EventSourceResponse(generator())
else:
from openai_server.backend import _audio_to_text
response = ''
async for response1 in _audio_to_text(**request_data):
response = response1
return JSONResponse(response)
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
raise HTTPException(status_code=500, detail=error_response)
# Define your request data model
class AudioTextRequest(BaseModel):
model: str = ''
voice: str = '' # overrides both chatbot_role and speaker if set
input: str
response_format: str = 'wav' # "mp3", "opus", "aac", "flac", "wav", "pcm"
stream: bool = True
stream_strip: bool = True
chatbot_role: str = "Female AI Assistant" # Coqui TTS
speaker: str = "SLT (female)" # Microsoft TTS
def modify_wav_header(wav_bytes):
# Ensure the bytes start with the 'RIFF' identifier
if wav_bytes[:4] != b'RIFF':
raise ValueError("This is not a valid WAV file.")
# Get current size (which we will fake)
original_size = int.from_bytes(wav_bytes[4:8], byteorder='little')
# print("Original size:", original_size)
# Calculate fake size (Maximum value for 32-bit unsigned int minus 8)
fake_size = (2 ** 30 - 1) - 8
modified_size_bytes = fake_size.to_bytes(4, byteorder='little')
# Replace the original size with the fake size in the RIFF header
modified_wav_bytes = wav_bytes[:4] + modified_size_bytes + wav_bytes[8:]
# Find the 'data' chunk and modify its size too
data_chunk_pos = modified_wav_bytes.find(b'data')
if data_chunk_pos == -1:
raise ValueError("Data chunk not found in WAV file.")
# Set a large fake size for the data chunk as well
modified_wav_bytes = (
modified_wav_bytes[:data_chunk_pos + 4] + # 'data' text
modified_size_bytes + # fake size for data chunk
modified_wav_bytes[data_chunk_pos + 8:] # rest of data
)
return modified_wav_bytes
@app.post('/v1/audio/speech', dependencies=check_key)
@limiter.limit(audio_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(audio_limiter_global)
async def handle_audio_to_speech(request: Request):
try:
request_data = await request.json()
audio_request = AudioTextRequest(**request_data)
if audio_request.stream:
from openai_server.backend import text_to_audio
async def generator():
try:
chunki = 0
async for chunk in text_to_audio(**dict(audio_request)):
disconnected = await request.is_disconnected()
if disconnected:
break
if chunki == 0 and audio_request.response_format == 'wav':
# pretend longer than is, like OpenAI does
chunk = modify_wav_header(chunk)
# h2oGPT sends each chunk as full object, we need rest to be raw data without header for real streaming
if chunki > 0 and audio_request.stream_strip:
from pydub import AudioSegment
chunk = AudioSegment.from_file(io.BytesIO(chunk),
format=audio_request.response_format).raw_data
yield chunk
chunki += 1
except Exception as e:
# For streaming audio, we can't send a JSON error response in the middle of the stream
# Instead, we'll log the error and stop the stream
print(f"Error in audio streaming: {str(e)}")
return # This will effectively close the stream
return StreamingResponse(generator(), media_type=f"audio/{audio_request.response_format}")
else:
from openai_server.backend import text_to_audio
response = b''
async for response1 in text_to_audio(**dict(audio_request)):
response = response1
return Response(content=response, media_type=f"audio/{audio_request.response_format}")
except Exception as e:
# This will handle any exceptions that occur outside of the streaming context
# or in the non-streaming case
error_response = {
"error": {
"message": str(e),
"type": "server_error",
"param": None,
"code": 500
}
}
return JSONResponse(status_code=500, content=error_response)
class ImageGenerationRequest(BaseModel):
model: str = ''
prompt: str
size: str = '1024x1024'
quality: str = 'standard'
n: int = 1
response_format: str = 'url' # FIXME: https://platform.openai.com/docs/api-reference/images/create#images/create-response_format
style: str = 'vivid'
user: str = None
@app.post('/v1/images/generations', dependencies=check_key)
@limiter.limit(image_limiter_user, key_func=api_key_rate_limit_key)
@global_limiter.limit(image_limiter_global)
async def handle_image_generation(request: Request):
try:
body = await request.json()
model = body.get('model', '') # will choose first if nothing passed
prompt = body['prompt']
size = body.get('size', '1024x1024')
quality = body.get('quality', 'standard')
guidance_scale = body.get('guidance_scale')
num_inference_steps = body.get('num_inference_steps')
n = body.get('n', 1) # ignore the batch limits of max 10
response_format = body.get('response_format', 'b64_json') # or url
# TODO: Why not using image_request? size, quality and stuff?
image_request = dict(model=model, prompt=prompt, size=size, quality=quality, n=n,
response_format=response_format, guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps)
except KeyError as e:
raise HTTPException(status_code=400, detail=f"Missing key in request body: {str(e)}")
# no streaming
from openai_server.backend import astream_completions
body_image = dict(prompt=prompt, langchain_action='ImageGen', visible_image_models=model,
image_size=size,
image_quality=quality,
image_guidance_scale=guidance_scale,
image_num_inference_steps=num_inference_steps)
response = {}
async for resp in astream_completions(body_image, stream_output=False):
response = resp
if 'choices' in response:
image = response['choices'][0]['text'][0]
else:
image = b''
resp = {
'created': int(time.time()),
'data': []
}
import base64
if os.path.isfile(image):
with open(image, 'rb') as f:
image = f.read()
encoded_image = base64.b64encode(image).decode('utf-8')
if response_format == 'b64_json':
resp['data'].extend([{'b64_json': encoded_image}])
return JSONResponse(resp)
else:
# FIXME: jpg vs. others
resp['data'].extend([{'url': f'data:image/jpg;base64,{encoded_image}'}])
return JSONResponse(resp)
class EmbeddingsResponse(BaseModel):