-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathmodifierGui.py
106 lines (87 loc) · 2.92 KB
/
modifierGui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import re
import json
from alpacaModifier import AlpacaModifier
from setfit import SetFitModel
import pandas as pd
SAVE_FILE = 'alpaca_new.json'
def swap_rows(df, i1, i2):
a, b = df.iloc[i1, :].copy(), df.iloc[i2, :].copy()
df.iloc[i1, :], df.iloc[i2, :] = b, a
return df
class MyAlpacaModifier(AlpacaModifier):
index = 0
def clamp(self, n, minn, maxn):
return max(min(maxn, n), minn)
def get_index(self, idx):
idx = int(idx)
idx = self.clamp(idx, 0, len(self.data)-1)
self.index = idx
val = self.check_garbage_collector(self.data[idx]['instruction'], self.data[idx]['input'], self.data[idx]['output'])
df = pd.DataFrame(val)
df = swap_rows(df,0,1)
return idx, self.data[idx]['instruction'], self.data[idx]['input'], self.data[idx]['output'], df
def next_callback(self):
self.index += 1
if self.index > len(self.data)-1:
self.index = 0
return self.get_index(self.index)
def previous_callback(self):
self.index -= 1
if self.index < 0:
self.index = len(self.data)-1
return self.get_index(self.index)
def delete_callback(self):
# delete current index
del self.data[self.index]
if self.index > len(self.data):
self.index = 0
return self.get_index(self.index)
def find_next_bad(self):
for i in range(self.index+1,len(self.data)-1):
text = f"""INSTRUCTION:\n{self.data[i]["instruction"]}\nINPUT:\n{self.data[i]["input"]}\nOUTPUT:\n{self.data[i]["output"]}"""
bp = self.model.predict_proba([text],as_numpy=True)[0][1]
print(bp)
if (bp > 0.5):
self.index = i
return self.get_index(i)
return -1,"","",""
def save_callback(self, idx, instruction='', input='', output=''):
print("here)")
idx = int(idx)
print(idx)
print(instruction)
self.data[idx]["instruction"] = instruction
print(self.data[idx])
self.data[idx]["input"] = input
self.data[idx]["output"] = output
print(f"Index #{idx} Saved.")
return None
def export_callback(self):
print(f"Exporting modified data to {SAVE_FILE}...", end = '')
with open(SAVE_FILE, 'w', encoding='utf-8') as f:
json.dump(self.data, f, indent = 4)
self.modified = False
print(f" Done.")
return None
def reset_callback(self):
self.index = 0
return self.get_index(self.index)
def check_garbage_collector(self, instruction,input,output):
labels = ["GOOD", "BAD"]
text = f"""INSTRUCTION:\n{instruction}\nINPUT:\n{input}\nOUTPUT:\n{output}"""
probas = self.model.predict_proba([text], as_numpy=True)
return [{"label":labels[0],"score":probas[0][0]},{"label":labels[1],"score":probas[0][1]}]
def __init__(self):
super().__init__()
with open('alpaca_data_cleaned.json', 'r', encoding='utf-8') as f:
self.data = json.load(f)
self.model = SetFitModel.from_pretrained(
"argilla/alpaca-garbage-collector-multilingual"
)
self.prev_item = None
self.modified = False
self.size = len(self.data)
self.reset_callback()
if __name__ == '__main__':
modifier = MyAlpacaModifier()
modifier.run()