-
Notifications
You must be signed in to change notification settings - Fork 99
/
landmarkPredict_video.py
145 lines (107 loc) · 4.72 KB
/
landmarkPredict_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/python
# -*- coding: utf-8 -*-
# pylint: disable=C0103
# pylint: disable=E1101
import os
import sys
import time
import cv2 # OpenCV
import dlib # http://dlib.net
import librect # helper function for rectangles.
import facePose # class based rewrite of landmarkPredict.
"""
In this module
bbox = [left, right, top, bottom]
"""
pose_name = ['Pitch', 'Yaw', 'Roll'] # respect to ['head down','out of plane left','in plane right']
outDir = os.path.expanduser("~/output")
cropDir = os.path.expanduser("~/crop")
def show_image(img, landmarks, bboxs, headposes, enableSampling=False):
u"""
img:
landmarks: landmark points
bboxs: list of bounding box generated by dlib face detection
headposes:
headposes[0, :]: i'th face 's pitch, yaw, row
When the value of pitch becomes large, it becomes an image with chin pulled down or an image looked down from above.
When the value of yaw increases, the face direction becomes to face the left side of the image.
When the value of roll becomes large, the face is inclined clockwise.
enableSampling: If True, save croppped face image.
"""
orgImg = img+0
system_height = 650
system_width = 1280
for faceNum in range(0, landmarks.shape[0]):
cv2.rectangle(img, (int(bboxs[faceNum, 0]), int(bboxs[faceNum, 2])), (int(bboxs[faceNum, 1]), int(bboxs[faceNum, 3])), (0, 0, 255), 2)
for p in range(0, 3):
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, '{:s} {:.2f}'.format(pose_name[p], headposes[faceNum, p]), (10, 400+25*p), font, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(orgImg, '{:s} {:.2f}'.format(pose_name[p], headposes[faceNum, p]), (10, 400+25*p), font, 1, (255, 255, 255), 2, cv2.LINE_AA)
for i in range(0, landmarks.shape[1]/2):
cv2.circle(img, (int(round(landmarks[faceNum, i*2])), int(round(landmarks[faceNum, i*2+1]))), 1, (0, 255, 0), 2)
pitch = headposes[faceNum, 0]
yaw = headposes[faceNum, 1]
roll = headposes[faceNum, 2]
pyrStr = facePose.getPyrStr(pitch, yaw, roll)
pyStr = facePose.getPyStr(pitch, yaw)
cropPyDir = os.path.join(cropDir, pyStr)
outPyDir = os.path.join(outDir, pyStr)
for p in (cropPyDir, outPyDir):
if not os.path.isdir(p):
os.makedirs(p)
left, right, top, bottom = bboxs[faceNum, :]
rect = [left, top, right-left, bottom - top]
nx, ny, nw, nh = librect.expandRegion(rect, rate=2.0)
nleft, ntop, nright, nbottom = nx, ny, nx+nw, ny+nh
assert ntop < nbottom
assert nleft < nright
if enableSampling:
datetimeStr = time.strftime("%Y%m%d_%H%M%S", time.localtime())
subImg3 = librect.sizedCrop(orgImg, (nleft, ntop, nright, nbottom))
cropName3 = os.path.join(cropPyDir, "%s_%s_b.png" % (pyrStr, datetimeStr))
cv2.imwrite(cropName3, subImg3)
pngname = os.path.join(outPyDir, "%s_%s.jpg" % (pyrStr, datetimeStr))
cv2.imwrite(pngname, orgImg)
if landmarks.shape[0] < 1:
pyrDir = "couldNotDetect"
pyrDir = os.path.join(outDir, pyrDir)
if not os.path.isdir(pyrDir):
os.makedirs(pyrDir)
datetimeStr = time.strftime("%Y%m%d_%H%M%S", time.localtime())
pngname = os.path.join(pyrDir, "%s.jpg" % datetimeStr)
cv2.imwrite(pngname, orgImg)
print pngname
height, width = img.shape[:2]
if height > system_height or width > system_width:
height_radius = system_height*1.0/height
width_radius = system_width*1.0/width
radius = min(height_radius, width_radius)
img = cv2.resize(img, (0, 0), fx=radius, fy=radius)
cv2.imshow("headPose and landmark q:quit", img)
def predictVideo(uvcID):
"""
uvcID: video camera ID
"""
detector = dlib.get_frontal_face_detector()
posePredictor = facePose.FacePosePredictor()
cap = cv2.VideoCapture(uvcID)
cv2.namedWindow("headPose and landmark q:quit", cv2.WINDOW_NORMAL)
while True:
ok, colorImage = cap.read()
if not ok:
continue
numUpSampling = 0
dets, _, _ = detector.run(colorImage, numUpSampling)
bboxs = facePose.dets2xxyys(dets)
predictpoints, landmarks, predictpose = posePredictor.predict(colorImage, bboxs)
show_image(colorImage, landmarks, bboxs, predictpose)
k = cv2.waitKey(10) & 0xff
if k == ord('q') or k == 27:
break
if __name__ == '__main__':
if len(sys.argv) < 2:
print """usage: %s uvcID
""" % sys.argv[0]
exit()
uvcID = int(sys.argv[1])
predictVideo(uvcID)