forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
saved_variable.h
58 lines (45 loc) · 1.66 KB
/
saved_variable.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#pragma once
#include <torch/csrc/WindowsTorchApiMacro.h>
#include <torch/csrc/autograd/variable_version.h>
#include <ATen/ATen.h>
#include <cstdint>
#include <list>
#include <memory>
namespace torch { namespace autograd {
struct Variable;
struct Function;
TORCH_API extern const char* ERR_BACKWARD_TWICE;
/// A snapshot of a variable at a certain version. A `SavedVariable` stores
/// enough information to reconstruct a variable from a certain point in time.
class TORCH_API SavedVariable {
public:
SavedVariable() = default;
SavedVariable(const Variable& variable, bool is_output);
SavedVariable(SavedVariable&&) = default;
SavedVariable& operator=(SavedVariable&&) = default;
/// Reconstructs the saved variable. Pass `saved_for` as the gradient
/// function if constructing the `SavedVariable` with it would have caused a
/// circular reference.
Variable unpack(std::shared_ptr<Function> saved_for = nullptr) const;
void reset_data() {
return data_.reset();
}
void reset_grad_function() {
grad_fn_.reset();
}
private:
at::Tensor data_;
// The gradient function associated with this node. If has_grad_fn
// is false, then this is a leaf node. Note that the grad_fn is not saved if
// it would create a circular reference. In that case, the grad_fn must be
// passed in to the unpack function when reconstructing the Variable.
std::shared_ptr<Function> grad_fn_;
std::weak_ptr<Function> grad_accumulator_;
VariableVersion version_counter_;
uint32_t saved_version_ = 0;
uint32_t output_nr_ = 0;
bool was_default_constructed_ = true;
bool requires_grad_ = false;
bool has_grad_fn_ = false;
};
}} // namespace torch::autograd