forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_benchmark.py
347 lines (296 loc) · 10.5 KB
/
lstm_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
## @package lstm_benchmark
# Module caffe2.python.lstm_benchmark
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.proto import caffe2_pb2
from caffe2.python import workspace, core, utils, rnn_cell, model_helper
from caffe2.python import recurrent
import argparse
import numpy as np
import time
import logging
logging.basicConfig()
log = logging.getLogger("lstm_bench")
log.setLevel(logging.DEBUG)
def generate_data(T, shape, num_labels, fixed_shape):
'''
Fill a queue with input data
'''
log.info("Generating T={} sequence batches".format(T))
generate_input_init_net = core.Net('generate_input_init')
queue = generate_input_init_net.CreateBlobsQueue(
[], "inputqueue", num_blobs=1, capacity=T,
)
label_queue = generate_input_init_net.CreateBlobsQueue(
[], "labelqueue", num_blobs=1, capacity=T,
)
workspace.RunNetOnce(generate_input_init_net)
generate_input_net = core.Net('generate_input')
generate_input_net.EnqueueBlobs([queue, "scratch"], ["scratch"])
generate_input_net.EnqueueBlobs([label_queue, "label_scr"], ["label_scr"])
np.random.seed(2603)
entry_counts = []
for t in range(T):
if (t % (max(10, T // 10)) == 0):
print("Generating data {}/{}".format(t, T))
# Randomize the seqlength
random_shape = (
[np.random.randint(1, shape[0])] + shape[1:]
if t > 0 and not fixed_shape else shape
)
X = np.random.rand(*random_shape).astype(np.float32)
batch_size = random_shape[1]
L = num_labels * batch_size
labels = (np.random.rand(random_shape[0]) * L).astype(np.int32)
workspace.FeedBlob("scratch", X)
workspace.FeedBlob("label_scr", labels)
workspace.RunNetOnce(generate_input_net.Proto())
entry_counts.append(random_shape[0] * random_shape[1])
log.info("Finished data generation")
return queue, label_queue, entry_counts
def create_model(args, queue, label_queue, input_shape):
model = model_helper.ModelHelper(name="LSTM_bench")
seq_lengths, target = \
model.net.AddExternalInputs(
'seq_lengths',
'target',
)
input_blob = model.net.DequeueBlobs(queue, "input_data")
labels = model.net.DequeueBlobs(label_queue, "label")
init_blobs = []
if args.implementation in ["own", "static", "static_dag"]:
T = None
if "static" in args.implementation:
assert args.fixed_shape, \
"Random input length is not static RNN compatible"
T = args.seq_length
print("Using static RNN of size {}".format(T))
for i in range(args.num_layers):
hidden_init, cell_init = model.net.AddExternalInputs(
"hidden_init_{}".format(i),
"cell_init_{}".format(i)
)
init_blobs.extend([hidden_init, cell_init])
output, last_hidden, _, last_state = rnn_cell.LSTM(
model=model,
input_blob=input_blob,
seq_lengths=seq_lengths,
initial_states=init_blobs,
dim_in=args.input_dim,
dim_out=[args.hidden_dim] * args.num_layers,
scope="lstm1",
memory_optimization=args.memory_optimization,
forward_only=args.forward_only,
drop_states=True,
return_last_layer_only=True,
static_rnn_unroll_size=T,
)
if "dag" in args.implementation:
print("Using DAG net type")
model.net.Proto().type = 'dag'
model.net.Proto().num_workers = 4
elif args.implementation == "cudnn":
# We need to feed a placeholder input so that RecurrentInitOp
# can infer the dimensions.
init_blobs = model.net.AddExternalInputs("hidden_init", "cell_init")
model.param_init_net.ConstantFill([], input_blob, shape=input_shape)
output, last_hidden, _ = rnn_cell.cudnn_LSTM(
model=model,
input_blob=input_blob,
initial_states=init_blobs,
dim_in=args.input_dim,
dim_out=args.hidden_dim,
scope="cudnnlstm",
num_layers=args.num_layers,
)
else:
assert False, "Unknown implementation"
weights = model.net.UniformFill(labels, "weights")
softmax, loss = model.net.SoftmaxWithLoss(
[model.Flatten(output), labels, weights],
['softmax', 'loss'],
)
if not args.forward_only:
model.AddGradientOperators([loss])
# carry states over
for init_blob in init_blobs:
model.net.Copy(last_hidden, init_blob)
sz = args.hidden_dim
if args.implementation == "cudnn":
sz *= args.num_layers
workspace.FeedBlob(init_blob, np.zeros(
[1, args.batch_size, sz], dtype=np.float32
))
if args.rnn_executor:
for op in model.net.Proto().op:
if op.type.startswith('RecurrentNetwork'):
recurrent.set_rnn_executor_config(
op,
num_threads=args.rnn_executor_num_threads,
max_cuda_streams=args.rnn_executor_max_cuda_streams,
)
return model, output
def Caffe2LSTM(args):
T = args.data_size // args.batch_size
input_blob_shape = [args.seq_length, args.batch_size, args.input_dim]
queue, label_queue, entry_counts = generate_data(T // args.seq_length,
input_blob_shape,
args.hidden_dim,
args.fixed_shape)
workspace.FeedBlob(
"seq_lengths",
np.array([args.seq_length] * args.batch_size, dtype=np.int32)
)
model, output = create_model(args, queue, label_queue, input_blob_shape)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net)
start_time = time.time()
num_iters = T // args.seq_length
total_iters = 0
# Run the Benchmark
log.info("------ Warming up ------")
workspace.RunNet(model.net.Proto().name)
if (args.gpu):
log.info("Memory stats:")
stats = utils.GetGPUMemoryUsageStats()
log.info("GPU memory:\t{} MB".format(stats['max_total'] / 1024 / 1024))
log.info("------ Starting benchmark ------")
start_time = time.time()
last_time = time.time()
for iteration in range(1, num_iters, args.iters_to_report):
iters_once = min(args.iters_to_report, num_iters - iteration)
total_iters += iters_once
workspace.RunNet(model.net.Proto().name, iters_once)
new_time = time.time()
log.info(
"Iter: {} / {}. Entries Per Second: {}k.".format(
iteration,
num_iters,
np.sum(entry_counts[iteration:iteration + iters_once]) /
(new_time - last_time) // 100 / 10,
)
)
last_time = new_time
log.info("Done. Total EPS excluding 1st iteration: {}k {}".format(
np.sum(entry_counts[1:]) / (time.time() - start_time) // 100 / 10,
" (with RNN executor)" if args.rnn_executor else "",
))
if (args.gpu):
log.info("Memory stats:")
stats = utils.GetGPUMemoryUsageStats()
log.info("GPU memory:\t{} MB".format(stats['max_total'] / 1024 / 1024))
if (stats['max_total'] != stats['total']):
log.warning(
"Max usage differs from current total usage: {} > {}".
format(stats['max_total'], stats['total'])
)
log.warning("This means that costly deallocations occured.")
return time.time() - start_time
@utils.debug
def Benchmark(args):
return Caffe2LSTM(args)
def GetArgumentParser():
parser = argparse.ArgumentParser(description="LSTM benchmark.")
parser.add_argument(
"--hidden_dim",
type=int,
default=800,
help="Hidden dimension",
)
parser.add_argument(
"--input_dim",
type=int,
default=40,
help="Input dimension",
)
parser.add_argument(
"--batch_size",
type=int,
default=128,
help="The batch size."
)
parser.add_argument(
"--seq_length",
type=int,
default=20,
help="Max sequence length"
)
parser.add_argument(
"--data_size",
type=int,
default=1000000,
help="Number of data points to generate"
)
parser.add_argument(
"--iters_to_report",
type=int,
default=20,
help="Number of iteration to report progress"
)
parser.add_argument(
"--gpu",
action="store_true",
help="Run all on GPU",
)
parser.add_argument(
"--implementation",
type=str,
default="own",
help="'cudnn', 'own', 'static' or 'static_dag'",
)
parser.add_argument(
"--fixed_shape",
action="store_true",
help=("Whether to randomize shape of input batches. "
"Static RNN requires fixed shape"),
)
parser.add_argument(
"--memory_optimization",
action="store_true",
help="Whether to use memory optimized LSTM or not",
)
parser.add_argument(
"--forward_only",
action="store_true",
help="Whether to run only forward pass"
)
parser.add_argument(
"--num_layers",
type=int,
default=1,
help="Number of LSTM layers. All output dimensions are going to be"
"of hidden_dim size",
)
parser.add_argument(
"--rnn_executor",
action="store_true",
help="Whether to use RNN executor"
)
parser.add_argument(
"--rnn_executor_num_threads",
type=int,
default=None,
help="Number of threads used by CPU RNN Executor"
)
parser.add_argument(
"--rnn_executor_max_cuda_streams",
type=int,
default=None,
help="Maximum number of CUDA streams used by RNN executor on GPU"
)
return parser
if __name__ == '__main__':
args, extra_args = GetArgumentParser().parse_known_args()
rnn_executor_opt = 1 if args.rnn_executor else 0
workspace.GlobalInit([
'caffe2',
'--caffe2_log_level=0',
'--caffe2_print_blob_sizes_at_exit=0',
'--caffe2_rnn_executor={}'.format(rnn_executor_opt),
'--caffe2_gpu_memory_tracking=1'] + extra_args)
device = core.DeviceOption(
workspace.GpuDeviceType if args.gpu else caffe2_pb2.CPU, 4)
with core.DeviceScope(device):
Benchmark(args)