forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpatialUpSamplingNearest.cu
102 lines (93 loc) · 3.17 KB
/
SpatialUpSamplingNearest.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#include <THCUNN/THCUNN.h>
#include <THCUNN/common.h>
#include <THC/THCTensor.hpp>
#include <THCUNN/upsampling.h>
#include <THC/THCDeviceTensor.cuh>
#include <THC/THCDeviceTensorUtils.cuh>
#include <THC/THCDeviceUtils.cuh>
#include <TH/THHalf.h>
#include <THCUNN/THCHalfAutoNumerics.cuh>
#include <THC/THCAtomics.cuh>
template<typename Dtype, typename Acctype>
__global__ void nearest_neighbor_4d_kernel(
const int n,
const THCDeviceTensor<Dtype, 4> data1,
THCDeviceTensor<Dtype, 4> data2) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
const int batchsize = data1.getSize(0);
const int channels = data1.getSize(1);
const int height1 = data1.getSize(2);
const int width1 = data1.getSize(3);
const int height2 = data2.getSize(2);
const int width2 = data2.getSize(3);
const float height_scale = (float) height1 / (float) height2;
const float width_scale = (float) width1 / (float) width2;
if (index < n) {
const int w2 = index % width2; // 0:width2-1
const int h2 = index / width2; // 0:height2-1
// special case: just copy
if (height1 == height2 && width1 == width2) {
const int h1 = h2;
const int w1 = w2;
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
const Dtype val = data1[n][c][h1][w1];
data2[n][c][h2][w2] = val;
}
}
return;
}
//
const int h1 = nearest_neighbor_compute_source_index(height_scale, h2, height1);
const int w1 = nearest_neighbor_compute_source_index(width_scale, w2, width1);
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
const Dtype val = data1[n][c][h1][w1];
data2[n][c][h2][w2] = val;
}
}
}
}
// Backward operation
template <typename Dtype, typename Acctype>
__global__ void nearest_neighbor_4d_kernel_backward(
const int n,
THCDeviceTensor<Dtype, 4> data1,
const THCDeviceTensor<Dtype, 4> data2) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
const int batchsize = data1.getSize(0);
const int channels = data1.getSize(1);
const int height1 = data1.getSize(2);
const int width1 = data1.getSize(3);
const int height2 = data2.getSize(2);
const int width2 = data2.getSize(3);
const float height_scale = (float) height1 / (float) height2;
const float width_scale = (float) width1 / (float) width2;
if (index < n) {
const int w2 = index % width2; // 0:width2-1
const int h2 = index / width2; // 0:height2-1
// special case: just copy
if (height1 == height2 && width1 == width2) {
const int h1 = h2;
const int w1 = w2;
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
const Dtype val = data2[n][c][h2][w2];
data1[n][c][h1][w1] = val;
}
}
return;
}
//
const int h1 = nearest_neighbor_compute_source_index(height_scale, h2, height1);
const int w1 = nearest_neighbor_compute_source_index(width_scale, w2, width1);
for (int n = 0; n < batchsize; n++) {
for (int c = 0; c < channels; ++c) {
const Dtype d2val = data2[n][c][h2][w2];
atomicAdd(data1[n][c][h1][w1].data(), d2val);
}
}
}
}
#include <THCUNN/generic/SpatialUpSamplingNearest.cu>
#include <THC/THCGenerateFloatTypes.h>