forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHTensorApply.h
528 lines (508 loc) · 27.8 KB
/
THTensorApply.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
#ifndef TH_TENSOR_APPLY_INC
#define TH_TENSOR_APPLY_INC
/*
* The basic strategy for apply is as follows:
*
* 1. Starting with the outermost index, loop until we reach a dimension where the
* data is no longer contiguous, i.e. the stride at that dimension is not equal to
* the size of the tensor defined by the outer dimensions. Let's call this outer
* (contiguous) tensor A. Note that if the Tensor is contiguous, then A is equal
* to the entire Tensor. Let's call the inner tensor B.
*
* 2. We loop through the indices in B, starting at its outermost dimension. For
* example, if B is a 2x2 matrix, then we do:
*
* B[0][0]
* B[0][1]
* B[1][0]
* B[1][1]
*
* We set the offset into the underlying storage as (storageOffset + stride_B * index_B),
* i.e. basically we compute the offset into the storage as we would normally for a
* Tensor. But because we are guaranteed the subsequent data is contiguous in memory, we
* can simply loop for sizeof(A) iterations and perform the operation, without having to
* follow the order described by the strides of A.
*
* 3. As an optimization, we merge dimensions of A that are contiguous in memory. For
* example, if A is a 3x3x3x3 tensor narrowed from a 3x3x4x3 tensor, then the first two
* dimensions can be merged for the purposes of APPLY, reducing the number of nested
* loops.
*/
#define __TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, DIM, ALLOW_CONTIGUOUS) \
TYPE *TENSOR##_data = NULL; \
int64_t *TENSOR##_counter = NULL, *TENSOR##_sizes = NULL, *TENSOR##_strides = NULL, *TENSOR##_dimOffset = NULL; \
int64_t TENSOR##_stride = 0, TENSOR##_size = 0, TENSOR##_dim = 0, TENSOR##_i, TENSOR##_n; \
int TENSOR##_contiguous = ALLOW_CONTIGUOUS && DIM < 0; \
TENSOR##_n = 1; \
for(TENSOR##_i = 0; TENSOR##_i < TENSOR->dim(); TENSOR##_i++) \
TENSOR##_n *= TENSOR->size(TENSOR##_i); \
\
if(TENSOR->is_empty()) \
TH_TENSOR_APPLY_hasFinished = 1; \
else \
{ \
TENSOR##_data = THTensor_getStoragePtr(TENSOR)->data<TYPE>()+TENSOR->storage_offset(); \
TENSOR##_size = 1; \
TENSOR##_stride = 1; \
for(TENSOR##_i = THTensor_nDimensionLegacyAll(TENSOR)-1; TENSOR##_i >= 0; TENSOR##_i--) { \
if(THTensor_sizeLegacyNoScalars(TENSOR, TENSOR##_i) != 1) { \
if(THTensor_strideLegacyNoScalars(TENSOR, TENSOR##_i) == TENSOR##_size && TENSOR##_i != DIM) \
TENSOR##_size *= THTensor_sizeLegacyNoScalars(TENSOR, TENSOR##_i); \
else{ \
TENSOR##_contiguous = 0; \
break; \
} \
} \
} \
if (!TENSOR##_contiguous) { \
/* Find the dimension of contiguous sections */ \
TENSOR##_dim = 1; \
for(TENSOR##_i = THTensor_nDimensionLegacyAll(TENSOR)-2; TENSOR##_i >= 0; TENSOR##_i--) \
{ \
if(TENSOR->stride(TENSOR##_i) != TENSOR->stride(TENSOR##_i+1) * TENSOR->size(TENSOR##_i+1) || TENSOR##_i == DIM || TENSOR##_i+1 == DIM) \
TENSOR##_dim++; \
} \
/* Allocate an array of 3*dim elements, where dim is the number of contiguous sections */ \
TENSOR##_counter = (int64_t*)THAlloc(sizeof(int64_t)*(3*TENSOR##_dim)); \
TENSOR##_sizes = TENSOR##_counter + TENSOR##_dim; \
TENSOR##_strides = TENSOR##_counter + 2*TENSOR##_dim; \
TH_TENSOR_dim_index = TENSOR##_dim-1; \
TENSOR##_dimOffset = (DIM == THTensor_nDimensionLegacyAll(TENSOR)-1) ? &TENSOR##_i : &TENSOR##_counter[DIM]; \
TENSOR##_sizes[TH_TENSOR_dim_index] = THTensor_sizeLegacyNoScalars(TENSOR, THTensor_nDimensionLegacyAll(TENSOR)-1); \
TENSOR##_strides[TH_TENSOR_dim_index] = THTensor_strideLegacyNoScalars(TENSOR, THTensor_nDimensionLegacyAll(TENSOR)-1); \
/* TENSOR##_counter tracks where we are in the storage. The offset into the */ \
/* storage is given by storage_offset + (i * j), where i is the stride */ \
/* vector and j is tensor_counter vector. This sets the starting position for the loop. */ \
for(TENSOR##_i = TENSOR##_dim-1; TENSOR##_i >= 0; --TENSOR##_i) { \
TENSOR##_counter[TENSOR##_i] = 0; \
} \
for(TENSOR##_i = THTensor_nDimensionLegacyAll(TENSOR)-2; TENSOR##_i >= 0; --TENSOR##_i) { \
if (TENSOR->stride(TENSOR##_i) == TENSOR->stride(TENSOR##_i+1) * TENSOR->size(TENSOR##_i+1) && TENSOR##_i != DIM && TENSOR##_i+1 != DIM) { \
TENSOR##_sizes[TH_TENSOR_dim_index] = TENSOR->size(TENSOR##_i) * TENSOR##_sizes[TH_TENSOR_dim_index]; \
if (DIM != THTensor_nDimensionLegacyAll(TENSOR)-1 && TENSOR##_i < DIM) \
TENSOR##_dimOffset--; \
} else { \
--TH_TENSOR_dim_index; \
TENSOR##_sizes[TH_TENSOR_dim_index] = TENSOR->size(TENSOR##_i); \
TENSOR##_strides[TH_TENSOR_dim_index] = TENSOR->stride(TENSOR##_i); \
} \
} \
/* Size of the inner most section */ \
TENSOR##_size = TENSOR##_sizes[TENSOR##_dim-1]; \
/* Stride of the inner most section */ \
TENSOR##_stride = TENSOR##_strides[TENSOR##_dim-1]; \
} \
else{\
TENSOR##_dim = 1;\
TENSOR##_counter = (int64_t*)THAlloc(sizeof(int64_t)*3);\
TENSOR##_sizes = TENSOR##_counter + 1;\
TENSOR##_strides = TENSOR##_counter + 2;\
TENSOR##_sizes[0] = TENSOR##_n;\
TENSOR##_strides[0] = 1;\
TENSOR##_size = TENSOR##_sizes[0];\
TENSOR##_stride = TENSOR##_strides[0];\
}\
} \
TENSOR##_i = 0;
#define __TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR, ALWAYS_UPDATE) \
if(TENSOR##_i == TENSOR##_size || ALWAYS_UPDATE) \
{ \
if(TENSOR##_contiguous) \
break; \
\
if(TENSOR##_dim == 1) \
break; \
\
/* Reset pointer to beginning of loop */ \
TENSOR##_data -= TENSOR##_size*TENSOR##_stride; \
for(TENSOR##_i = TENSOR##_dim-2; TENSOR##_i >= 0; TENSOR##_i--) \
{ \
TENSOR##_counter[TENSOR##_i]++; \
/* Jump ahread by the stride of this dimension */ \
TENSOR##_data += TENSOR##_strides[TENSOR##_i]; \
\
if(TENSOR##_counter[TENSOR##_i] == TENSOR##_sizes[TENSOR##_i]) \
{ \
if(TENSOR##_i == 0) \
{ \
TH_TENSOR_APPLY_hasFinished = 1; \
break; \
} \
else \
{ \
/* Reset the pointer to the beginning of the chunk defined by this dimension */ \
TENSOR##_data -= TENSOR##_counter[TENSOR##_i]*TENSOR##_strides[TENSOR##_i]; \
TENSOR##_counter[TENSOR##_i] = 0; \
} \
} \
else \
break; \
} \
TENSOR##_i = 0; \
} \
#define TH_TENSOR_APPLY3_D(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE3, TENSOR3, DIM, 1) \
\
int elements_equal = 1; \
if(TENSOR1##_n != TENSOR2##_n) { \
elements_equal = 0; \
} \
else if(TENSOR1##_n != TENSOR3##_n) { \
elements_equal = 0; \
} \
if (elements_equal == 0) { \
AT_ERROR("inconsistent tensor size, expected ", \
#TENSOR1, " ", TENSOR1->sizes(), ", ", \
#TENSOR2, " ", TENSOR2->sizes(), " and ", \
#TENSOR3, " ", TENSOR3->sizes(), " to have the same " \
"number of elements, but got ", TENSOR1##_n, ", ", \
TENSOR2##_n, " and ", TENSOR3##_n, " elements respectively"); \
} \
\
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR1##_i < TENSOR1##_size && TENSOR2##_i < TENSOR2##_size && TENSOR3##_i < TENSOR3##_size; TENSOR1##_i++, TENSOR2##_i++, TENSOR3##_i++, TENSOR1##_data += TENSOR1##_stride, TENSOR2##_data += TENSOR2##_stride, TENSOR3##_data += TENSOR3##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR1, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR2, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR3, 0) \
} \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter); \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
if(TENSOR3##_counter != NULL) \
THFree(TENSOR3##_counter); \
}
#define TH_TENSOR_APPLY3(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, CODE) \
TH_TENSOR_APPLY3_D(TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, -1, CODE)
#define TH_TENSOR_APPLY2_D(TYPE1, TENSOR1, TYPE2, TENSOR2, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, DIM, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, DIM, 1) \
\
if(TENSOR1##_n != TENSOR2##_n) { \
AT_ERROR("inconsistent tensor size, expected ", \
#TENSOR1, " ", TENSOR1->sizes(), " and ", \
#TENSOR2, " ", TENSOR2->sizes(), \
" to have the same number of elements, but got ", \
TENSOR1##_n, " and ", TENSOR2##_n, " elements respectively"); \
} \
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR1##_i < TENSOR1##_size && TENSOR2##_i < TENSOR2##_size; TENSOR1##_i++, TENSOR2##_i++, TENSOR1##_data += TENSOR1##_stride, TENSOR2##_data += TENSOR2##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR1, 0) \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR2, 0) \
} \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter); \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
}
#define TH_TENSOR_APPLY2(TYPE1, TENSOR1, TYPE2, TENSOR2, CODE) \
TH_TENSOR_APPLY2_D(TYPE1, TENSOR1, TYPE2, TENSOR2, -1, CODE)
#define TH_TENSOR_APPLY_D(TYPE, TENSOR, DIM, CODE) \
{ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, DIM, 0) \
\
while(!TH_TENSOR_APPLY_hasFinished) \
{ \
/* Loop through the inner most region of the Tensor */ \
for(; TENSOR##_i < TENSOR##_size; TENSOR##_i++, TENSOR##_data += TENSOR##_stride) /* 0 et pas TENSOR##_dim! */ \
{ \
CODE \
} \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS(TENSOR, 1) \
} \
THFree(TENSOR##_counter); \
}
#define TH_TENSOR_APPLY(TYPE, TENSOR, CODE) \
TH_TENSOR_APPLY_D(TYPE, TENSOR, -1, CODE)
#ifdef _OPENMP
#ifdef _WIN32
// MSVC doesn't support loop pragmas, but does support others. Create a new macro to account for those differences.
#define PRAGMA_LOOP(P) // Noop
#define PRAGMA(P) __pragma(P)
#else
#define PRAGMA_LOOP(P) _Pragma(#P)
#define PRAGMA(P) _Pragma(#P)
#endif
#include <omp.h>
/*
* Calcuate the memory offset of an element in a tensor. The strategy is below:
*
* 1. convert the line index(the index of the element) to the indexs(coordinates) in the tensor.
* It can hinted by a classical problem: Getting each individual digit from a whole integer(Decimal base).
* A N-digit decimal base number could be view as a N-dimension tensor and the sizes of the tensor are 10.
* So the value the whole integer is the line index. And the digits could be viewed as the indexes in
* different dimentions.
*
* 2. convert the indexs(coordinates) in the tensor to the memory offset.
*
* You can get the detailes in the for-statement iterations.
*
* The macro is only used in the first element in each thread. For the rest, the memory offset could update
* according to info of the tensor in order to get better performance. So we should also record the each
* indexs in coresponding dimension of first element.
* The recorded info is stored in the TENSOR##_counter_tmp.
*
*/
#define __TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR) \
int64_t *TENSOR##_counter_tmp = (int64_t*)THAlloc(sizeof(int64_t) * TENSOR##_dim); \
ptrdiff_t TENSOR##_memory_offset = 0; \
ptrdiff_t TENSOR##_quot = line_index_start; \
for (TENSOR##_i = TENSOR##_dim-1; TENSOR##_i>=0; --TENSOR##_i) { \
TENSOR##_counter_tmp[TENSOR##_i] = TENSOR##_quot%TENSOR##_sizes[TENSOR##_i]; \
TENSOR##_quot /= TENSOR##_sizes[TENSOR##_i]; \
TENSOR##_memory_offset += TENSOR##_counter_tmp[TENSOR##_i] * TENSOR##_strides[TENSOR##_i]; \
}
/*
* The macro update the indexes in each dimension of the elements except for the first one allocated in
* each thread.
* For a tensor, if the index of some dimension reaches the size of the corresponding dimension. It will carry and clear.
* If the index of next high dimension does do, the index of next high dimension should carry and clear, too.
*
* The momery offset calculatation is a little confusing. If current index carries, the current index is set to 0. So
* the offset should decrease by size*stride of the last dimension. Then the index next high dimension increases by 1. So
* the offset should increase by stride of next high dimension.
*/
#define __TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR) \
if(TENSOR##_i == TENSOR##_size && TENSOR##_dim > 1){ /*reaches the edge*/ \
int TENSOR##_carry_coord = 1; /*set carry flag to true*/ \
TENSOR##_start = 0; /*the current index be cleared to 0*/\
TENSOR##_data -= TENSOR##_size * TENSOR##_stride; /*the momery offset reset to the first one in current dimension */\
for(TENSOR##_i = TENSOR##_dim - 2; (TENSOR##_i >= 0) && (TENSOR##_carry_coord); TENSOR##_i--){ \
TENSOR##_counter_tmp[TENSOR##_i]++; /*the index of next high dimension update*/ \
TENSOR##_data += TENSOR##_strides[TENSOR##_i]; /*memory offset increase by stride of next high dimension*/\
if(TENSOR##_counter_tmp[TENSOR##_i] == TENSOR##_sizes[TENSOR##_i]){ /*The next high dimension also carry, continue
to clear and carry*/\
TENSOR##_data -= TENSOR##_sizes[TENSOR##_i] * TENSOR##_strides[TENSOR##_i]; \
TENSOR##_counter_tmp[TENSOR##_i] = 0; \
} else { \
TENSOR##_carry_coord = 0; \
} \
} \
} else { \
TENSOR##_start = TENSOR##_i; \
}
#define TH_TENSOR_APPLY_REDUCTION_OMP(TYPE, TENSOR, OPERATION, CODE, OMP_THRESHOLD) \
{\
int TENSOR##Contg = THTensor_(isContiguous)(TENSOR); \
ptrdiff_t TENSOR##Size = THTensor_(nElement)(TENSOR); \
if(TENSOR##Contg){ \
ptrdiff_t iter = 0; \
TYPE *rp = THTensor_getStoragePtr(TENSOR)->data<TYPE>()+TENSOR->storage_offset(); \
PRAGMA( omp parallel for if (TENSOR##Size > OMP_THRESHOLD * 10) firstprivate(rp) reduction(OPERATION) ) \
for (iter = 0; iter < TENSOR##Size; iter++) { \
TYPE *TENSOR##_data = rp+iter; \
CODE \
} \
} else { \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE, TENSOR, -1, 1);\
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (TENSOR##Size > OMP_THRESHOLD) firstprivate(TENSOR##_data, TENSOR##_sizes, TENSOR##_strides, TENSOR##_dim, TENSOR##_stride, TENSOR##_size, TENSOR##_i) reduction(OPERATION))\
{\
size_t num_threads = omp_get_num_threads();\
size_t tid = omp_get_thread_num();\
size_t line_seg_length_avg = TENSOR##Size/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (TENSOR##Size - line_index_start):line_seg_length_avg; \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR);\
TENSOR##_data += TENSOR##_memory_offset;\
ptrdiff_t count = 0;\
ptrdiff_t TENSOR##_start = TENSOR##_counter_tmp[TENSOR##_dim - 1];\
while(count < line_seg_length){\
for(TENSOR##_i=TENSOR##_start; (count < line_seg_length)&&(TENSOR##_i < TENSOR##_size); ++TENSOR##_i, ++count){\
CODE\
TENSOR##_data += TENSOR##_stride;\
}\
if(count < line_seg_length){\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR);\
}\
}\
if(TENSOR##_counter_tmp != NULL) \
THFree(TENSOR##_counter_tmp); \
}\
}\
if(TENSOR##_counter != NULL)\
THFree(TENSOR##_counter);\
}\
}
#define TH_TENSOR_APPLY2_OMP(SIZE, CONTIG1, CONTIG2, TYPE1, TENSOR1, TYPE2, TENSOR2, CODE, OMP_THRESHOLD) \
{ \
/* for advanced searching index*/ \
if( CONTIG1 && CONTIG2 ){ \
TYPE1 *rp = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+TENSOR1->storage_offset(); \
TYPE2 *tp = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+TENSOR2->storage_offset(); \
ptrdiff_t iter = 0; \
if(tp != (TYPE2*)rp) { \
PRAGMA_LOOP(ivdep) \
PRAGMA( omp parallel for if (SIZE > OMP_THRESHOLD * 10) firstprivate(rp, tp)) \
for (iter = 0; iter < SIZE; iter++) { \
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE1 *TENSOR1##_data = rp+iter; \
CODE \
}\
} else {\
PRAGMA_LOOP(simd) \
PRAGMA( omp parallel for if (SIZE > OMP_THRESHOLD * 10) firstprivate(rp, tp) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE2* TENSOR2##_data = tp+iter;\
TYPE1* TENSOR1##_data = rp+iter;\
CODE \
}\
}\
} else { \
/* The following strategy is not easy to understand.
* 1. Collapse the dimension of the tensors in order to decrease the number of nested loops.
* 2. Calculate the numbers of elements allocated in each thread and the line index of the first one.
* 3. Calculate the memory offset of the first element and the indexes in each dimension of the
* first one.
* 4. iterate all elements in each thread. update the indexes in each dimension of the rest.
*/ \
int TH_TENSOR_APPLY_hasFinished = 0; \
int64_t TH_TENSOR_dim_index = 0; \
/*step 1*/ \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, -1, 1) \
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (SIZE > OMP_THRESHOLD) firstprivate(TENSOR2##_data, TENSOR2##_sizes, TENSOR2##_strides, TENSOR2##_dim, TENSOR2##_stride, TENSOR2##_size, TENSOR2##_i, TENSOR1##_data, TENSOR1##_sizes, TENSOR1##_strides, TENSOR1##_dim, TENSOR1##_stride, TENSOR1##_size, TENSOR1##_i)) \
{ \
/*step 2*/ \
size_t num_threads = omp_get_num_threads(); \
size_t tid = omp_get_thread_num(); \
size_t line_seg_length_avg = SIZE/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (SIZE - line_index_start):line_seg_length_avg; \
/* step 3*/ \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR2); \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR1); \
TENSOR2##_data += TENSOR2##_memory_offset; \
TENSOR1##_data += TENSOR1##_memory_offset; \
ptrdiff_t count = 0; \
ptrdiff_t TENSOR2##_start = TENSOR2##_counter_tmp[TENSOR2##_dim-1]; \
ptrdiff_t TENSOR1##_start = TENSOR1##_counter_tmp[TENSOR1##_dim-1]; \
/* step 4*/ \
while (count < line_seg_length) { \
for(TENSOR2##_i=TENSOR2##_start, TENSOR1##_i = TENSOR1##_start; ((count < line_seg_length) && (TENSOR2##_i < TENSOR2##_size) && (TENSOR1##_i < TENSOR1##_size)); ++TENSOR2##_i, ++TENSOR1##_i, ++count){ \
CODE \
TENSOR2##_data += TENSOR2##_stride; \
TENSOR1##_data += TENSOR1##_stride; \
} \
if (count < line_seg_length){ \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR2); \
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR1); \
} \
} \
if(TENSOR1##_counter_tmp != NULL) \
THFree(TENSOR1##_counter_tmp); \
if(TENSOR2##_counter_tmp != NULL) \
THFree(TENSOR2##_counter_tmp); \
} \
} \
if(TENSOR2##_counter != NULL) \
THFree(TENSOR2##_counter); \
if(TENSOR1##_counter != NULL) \
THFree(TENSOR1##_counter);\
}\
}
#define TH_TENSOR_APPLY3_OMP(SIZE, CONTIG1, CONTIG2, CONTIG3, TYPE1, TENSOR1, TYPE2, TENSOR2, TYPE3, TENSOR3, CODE, OMP_THRESHOLD) \
{ \
/* for adveanced searching index*/ \
if(CONTIG1 && CONTIG2 && CONTIG3){ \
TYPE1 *rp = THTensor_getStoragePtr(TENSOR1)->data<TYPE1>()+TENSOR1->storage_offset(); \
TYPE2 *tp = THTensor_getStoragePtr(TENSOR2)->data<TYPE2>()+TENSOR2->storage_offset(); \
TYPE3 *srcp = THTensor_getStoragePtr(TENSOR3)->data<TYPE3>()+TENSOR3->storage_offset(); \
ptrdiff_t iter = 0;\
if(tp != (TYPE2*)rp) { \
PRAGMA_LOOP(ivdep) \
PRAGMA( omp parallel for if (SIZE > OMP_THRESHOLD * 10) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE1 *TENSOR1##_data = rp+iter;\
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE3 *TENSOR3##_data = srcp+iter;\
CODE \
} \
} else {\
PRAGMA_LOOP(simd) \
PRAGMA( omp parallel for if (SIZE > OMP_THRESHOLD * 10) ) \
for (iter = 0; iter < SIZE; iter++) {\
TYPE1 *TENSOR1##_data = rp+iter;\
TYPE2 *TENSOR2##_data = tp+iter; \
TYPE3 *TENSOR3##_data = srcp+iter;\
CODE \
} \
}\
} else{ \
int TH_TENSOR_APPLY_hasFinished = 0;\
int64_t TH_TENSOR_dim_index = 0;\
__TH_TENSOR_APPLYX_PREAMBLE(TYPE1, TENSOR1, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE2, TENSOR2, -1, 1) \
__TH_TENSOR_APPLYX_PREAMBLE(TYPE3, TENSOR3, -1, 1) \
if (0 == TH_TENSOR_APPLY_hasFinished) { \
PRAGMA(omp parallel if (SIZE > OMP_THRESHOLD) firstprivate(TENSOR1##_data, TENSOR1##_sizes, TENSOR1##_strides, TENSOR1##_dim, TENSOR1##_stride, TENSOR1##_size, TENSOR1##_i, TENSOR2##_data, TENSOR2##_sizes, TENSOR2##_strides, TENSOR2##_dim, TENSOR2##_stride, TENSOR2##_size, TENSOR2##_i, TENSOR3##_data, TENSOR3##_sizes, TENSOR3##_strides, TENSOR3##_dim, TENSOR3##_stride, TENSOR3##_size, TENSOR3##_i))\
{\
size_t num_threads = omp_get_num_threads();\
size_t tid = omp_get_thread_num();\
size_t line_seg_length_avg = SIZE/num_threads; \
ptrdiff_t line_index_start = tid * line_seg_length_avg; \
ptrdiff_t line_seg_length = (tid == num_threads - 1)? (SIZE - line_index_start):line_seg_length_avg; \
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR1);\
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR2);\
__TH_TENSOR_APPLYX_CAL_MEMORY_OFFSET(TENSOR3);\
TENSOR1##_data += TENSOR1##_memory_offset;\
TENSOR2##_data += TENSOR2##_memory_offset;\
TENSOR3##_data += TENSOR3##_memory_offset;\
ptrdiff_t count = 0;\
ptrdiff_t TENSOR1##_start = TENSOR1##_counter_tmp[TENSOR1##_dim - 1];\
ptrdiff_t TENSOR2##_start = TENSOR2##_counter_tmp[TENSOR2##_dim - 1];\
ptrdiff_t TENSOR3##_start = TENSOR3##_counter_tmp[TENSOR3##_dim - 1];\
while(count < line_seg_length){\
for(TENSOR1##_i=TENSOR1##_start, TENSOR2##_i=TENSOR2##_start,TENSOR3##_i=TENSOR3##_start; (count<line_seg_length)&&(TENSOR1##_i<TENSOR1##_size)&&(TENSOR2##_i<TENSOR2##_size)&&(TENSOR3##_i<TENSOR3##_size); ++TENSOR1##_i,++TENSOR2##_i,++TENSOR3##_i,++count){\
CODE\
TENSOR1##_data += TENSOR1##_stride;\
TENSOR2##_data += TENSOR2##_stride;\
TENSOR3##_data += TENSOR3##_stride;\
}\
if(count < line_seg_length){\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR1);\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR2);\
__TH_TENSOR_APPLYX_UPDATE_COUNTERS_OMP(TENSOR3);\
}\
}\
if(TENSOR1##_counter_tmp != NULL) \
THFree(TENSOR1##_counter_tmp); \
if(TENSOR2##_counter_tmp != NULL) \
THFree(TENSOR2##_counter_tmp); \
if(TENSOR3##_counter_tmp != NULL) \
THFree(TENSOR3##_counter_tmp);\
}\
}\
if(TENSOR1##_counter != NULL)\
THFree(TENSOR1##_counter);\
if(TENSOR2##_counter != NULL)\
THFree(TENSOR2##_counter);\
if(TENSOR3##_counter != NULL)\
THFree(TENSOR3##_counter);\
}\
}
#endif
#endif