forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THRandom.cpp
322 lines (265 loc) · 9.9 KB
/
THRandom.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#include <TH/THGeneral.h>
#include <TH/THRandom.h>
#include <TH/THGenerator.hpp>
#ifndef _WIN32
#include <fcntl.h>
#include <unistd.h>
#endif
/* Code for the Mersenne Twister random generator.... */
#define n _MERSENNE_STATE_N
#define m _MERSENNE_STATE_M
/* Creates (unseeded) new generator*/
static THGenerator* THGenerator_newUnseeded()
{
THGenerator *self = (THGenerator *)THAlloc(sizeof(THGenerator));
memset(self, 0, sizeof(THGenerator));
self->gen_state.left = 1;
self->gen_state.seeded = 0;
self->gen_state.normal_is_valid = 0;
new (&self->mutex) std::mutex();
return self;
}
/* Creates new generator and makes sure it is seeded*/
THGenerator* THGenerator_new()
{
THGenerator *self = THGenerator_newUnseeded();
THRandom_seed(self);
return self;
}
THGenerator* THGenerator_copy(THGenerator *self, THGenerator *from)
{
THGeneratorState_copy(&self->gen_state, &from->gen_state);
return self;
}
void THGenerator_free(THGenerator *self)
{
self->mutex.~mutex();
THFree(self);
}
int THGeneratorState_isValid(THGeneratorState *_gen_state)
{
if ((_gen_state->seeded == 1) &&
(_gen_state->left > 0 && _gen_state->left <= n) && (_gen_state->next <= n))
return 1;
return 0;
}
THGeneratorState* THGeneratorState_copy(THGeneratorState *self, THGeneratorState *from)
{
memcpy(self, from, sizeof(THGeneratorState));
return self;
}
#ifndef _WIN32
static uint64_t readURandomLong()
{
int randDev = open("/dev/urandom", O_RDONLY);
uint64_t randValue;
if (randDev < 0) {
THError("Unable to open /dev/urandom");
}
ssize_t readBytes = read(randDev, &randValue, sizeof(randValue));
if (readBytes < (ssize_t) sizeof(randValue)) {
THError("Unable to read from /dev/urandom");
}
close(randDev);
return randValue;
}
#endif // _WIN32
uint64_t THRandom_seed(THGenerator *_generator)
{
#ifdef _WIN32
uint64_t s = (uint64_t)time(0);
#else
uint64_t s = readURandomLong();
#endif
THRandom_manualSeed(_generator, s);
return s;
}
/* The next 4 methods are taken from http:www.math.keio.ac.jpmatumotoemt.html
Here is the copyright:
Some minor modifications have been made to adapt to "my" C... */
/*
A C-program for MT19937, with initialization improved 2002/2/10.
Coded by Takuji Nishimura and Makoto Matsumoto.
This is a faster version by taking Shawn Cokus's optimization,
Matthe Bellew's simplification, Isaku Wada's double version.
Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: [email protected]
*/
/* Macros for the Mersenne Twister random generator... */
/* Period parameters */
/* #define n 624 */
/* #define m 397 */
#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UMASK 0x80000000UL /* most significant w-r bits */
#define LMASK 0x7fffffffUL /* least significant r bits */
#define MIXBITS(u,v) ( ((u) & UMASK) | ((v) & LMASK) )
#define TWIST(u,v) ((MIXBITS(u,v) >> 1) ^ ((v)&1UL ? MATRIX_A : 0UL))
/*********************************************************** That's it. */
void THRandom_manualSeed(THGenerator *_generator, uint64_t the_seed_)
{
int j;
/* This ensures reseeding resets all of the state (i.e. state for Gaussian numbers) */
THGenerator *blank = THGenerator_newUnseeded();
THGenerator_copy(_generator, blank);
THGenerator_free(blank);
_generator->gen_state.the_initial_seed = the_seed_;
_generator->gen_state.state[0] = _generator->gen_state.the_initial_seed & 0xffffffffUL;
for(j = 1; j < n; j++)
{
_generator->gen_state.state[j] = (1812433253UL * (_generator->gen_state.state[j-1] ^ (_generator->gen_state.state[j-1] >> 30)) + j);
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
/* In the previous versions, mSBs of the seed affect */
/* only mSBs of the array state[]. */
/* 2002/01/09 modified by makoto matsumoto */
_generator->gen_state.state[j] &= 0xffffffffUL; /* for >32 bit machines */
}
_generator->gen_state.left = 1;
_generator->gen_state.seeded = 1;
}
uint64_t THRandom_initialSeed(THGenerator *_generator)
{
return _generator->gen_state.the_initial_seed;
}
void THRandom_nextState(THGenerator *_generator)
{
uint64_t *p = _generator->gen_state.state;
int j;
_generator->gen_state.left = n;
_generator->gen_state.next = 0;
for(j = n-m+1; --j; p++)
*p = p[m] ^ TWIST(p[0], p[1]);
for(j = m; --j; p++)
*p = p[m-n] ^ TWIST(p[0], p[1]);
*p = p[m-n] ^ TWIST(p[0], _generator->gen_state.state[0]);
}
// TODO: this only returns 32-bits of randomness but as a uint64_t. This is
// weird and should be fixed. We should also fix the state to be uint32_t
// instead of uint64_t. (Or switch to a 64-bit random number generator).
uint64_t THRandom_random(THGenerator *_generator)
{
uint64_t y;
if (--(_generator->gen_state.left) == 0)
THRandom_nextState(_generator);
y = *(_generator->gen_state.state + (_generator->gen_state.next)++);
/* Tempering */
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680UL;
y ^= (y << 15) & 0xefc60000UL;
y ^= (y >> 18);
return y;
}
uint64_t THRandom_random64(THGenerator *_generator)
{
uint64_t hi = THRandom_random(_generator);
uint64_t lo = THRandom_random(_generator);
return (hi << 32) | lo;
}
// doubles have 52 bits of mantissa (fractional part)
static uint64_t DOUBLE_MASK = (1ULL << 53) - 1;
static double DOUBLE_DIVISOR = 1.0 / (1ULL << 53);
// floats have 23 bits of mantissa (fractional part)
static uint32_t FLOAT_MASK = (1 << 24) - 1;
static float FLOAT_DIVISOR = 1.0f / (1 << 24);
/* generates a random number on [0,1)-double-interval */
static inline double uniform_double(THGenerator *_generator)
{
uint64_t x = THRandom_random64(_generator);
return (x & DOUBLE_MASK) * DOUBLE_DIVISOR;
}
/* generates a random number on [0,1)-double-interval */
static inline float uniform_float(THGenerator *_generator)
{
uint32_t x = (uint32_t)THRandom_random(_generator);
return (x & FLOAT_MASK) * FLOAT_DIVISOR;
}
/*********************************************************
Thanks *a lot* Takuji Nishimura and Makoto Matsumoto!
Now my own code...
*********************************************************/
double THRandom_standard_uniform(THGenerator *_generator)
{
return uniform_double(_generator);
}
double THRandom_uniform(THGenerator *_generator, double a, double b)
{
return(uniform_double(_generator) * (b - a) + a);
}
float THRandom_uniformFloat(THGenerator *_generator, float a, float b)
{
return(uniform_float(_generator) * (b - a) + a);
}
double THRandom_normal(THGenerator *_generator, double mean, double stdv)
{
THArgCheck(stdv > 0, 2, "standard deviation must be strictly positive");
/* This is known as the Box-Muller method */
if(!_generator->gen_state.normal_is_valid)
{
_generator->gen_state.normal_x = uniform_double(_generator);
_generator->gen_state.normal_y = uniform_double(_generator);
_generator->gen_state.normal_rho = sqrt(-2. * log(1.0-_generator->gen_state.normal_y));
_generator->gen_state.normal_is_valid = 1;
}
else
_generator->gen_state.normal_is_valid = 0;
if(_generator->gen_state.normal_is_valid)
return _generator->gen_state.normal_rho*cos(2.*M_PI*_generator->gen_state.normal_x)*stdv+mean;
else
return _generator->gen_state.normal_rho*sin(2.*M_PI*_generator->gen_state.normal_x)*stdv+mean;
}
double THRandom_exponential(THGenerator *_generator, double lambda)
{
return(-1. / lambda * log(1-uniform_double(_generator)));
}
double THRandom_cauchy(THGenerator *_generator, double median, double sigma)
{
return(median + sigma * tan(M_PI*(uniform_double(_generator)-0.5)));
}
/* Faut etre malade pour utiliser ca.
M'enfin. */
double THRandom_logNormal(THGenerator *_generator, double mean, double stdv)
{
THArgCheck(stdv > 0, 2, "standard deviation must be strictly positive");
return(exp(THRandom_normal(_generator, mean, stdv)));
}
int THRandom_geometric(THGenerator *_generator, double p)
{
THArgCheck(p > 0 && p < 1, 1, "must be > 0 and < 1");
return((int)(log(1-uniform_double(_generator)) / log(p)) + 1);
}
int THRandom_bernoulli(THGenerator *_generator, double p)
{
THArgCheck(p >= 0 && p <= 1, 1, "must be >= 0 and <= 1");
return(uniform_double(_generator) <= p);
}
int THRandom_bernoulliFloat(THGenerator *_generator, float p)
{
THArgCheck(p >= 0 && p <= 1, 1, "must be >= 0 and <= 1");
return(uniform_float(_generator) <= p);
}