forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNNPACK.cpp
601 lines (529 loc) · 19.5 KB
/
NNPACK.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
#include <ATen/ATen.h>
#include <ATen/Config.h>
#if !AT_NNPACK_ENABLED()
namespace at {
namespace native {
at::Tensor _nnpack_spatial_convolution(
const at::Tensor& input,
const at::Tensor& weight,
const at::Tensor& bias,
IntArrayRef padding) {
throw std::runtime_error(
"nnpack_spatial_convolution: ATen not compiled with NNPACK support");
}
at::Tensor _nnpack_spatial_convolution_backward_input(
const at::Tensor& input,
const at::Tensor& gradOutput,
const at::Tensor& weight,
IntArrayRef padding) {
throw std::runtime_error(
"nnpack_spatial_convolution_backward_input: ATen not compiled with NNPACK support");
}
at::Tensor _nnpack_spatial_convolution_backward_weight(
const at::Tensor& input,
at::IntArrayRef weight_size,
const at::Tensor& gradOutput,
IntArrayRef padding) {
throw std::runtime_error(
"nnpack_spatial_convolution_backward_weight: ATen not compiled with NNPACK support");
}
std::tuple<at::Tensor, at::Tensor, at::Tensor>
_nnpack_spatial_convolution_backward(
const at::Tensor& input,
const at::Tensor& gradOutput,
const at::Tensor& weight,
IntArrayRef padding,
std::array<bool, 3> output_mask) {
throw std::runtime_error(
"_nnpack_spatial_convolution_backward: ATen not compiled with NNPACK support");
}
bool _nnpack_available() {
return false;
}
} // namespace native
} // namespace at
#else
#include "nnpack.h"
#include <stdlib.h>
#ifdef _OPENMP
#include <omp.h>
#else
#include <thread>
#endif
namespace at {
namespace native {
// Stolen from Caffe2
static pthreadpool_t nnpack_threadpool_ = nullptr;
static bool called_nnpack_threadpool_ = false;
pthreadpool_t nnpack_threadpool() {
if (! called_nnpack_threadpool_) {
called_nnpack_threadpool_ = true;
enum nnp_status nnpack_status = nnp_initialize();
if (nnpack_status != nnp_status_success) {
if (nnpack_status == nnp_status_out_of_memory) {
throw std::runtime_error("could not initialize NNPack (out of memory)");
} else if (nnpack_status == nnp_status_unsupported_hardware) {
throw std::runtime_error("could not initialize NNPack (unsupported hardware)");
} else {
throw std::runtime_error("could not initialize NNPack (unknown error)");
}
}
unsigned int threads;
#ifdef _OPENMP
threads = omp_get_num_threads();
#else
threads = std::thread::hardware_concurrency();
#endif
nnpack_threadpool_ = pthreadpool_create(threads);
if (nnpack_threadpool_ == nullptr) {
throw std::runtime_error("could not initialize NNPack's pthreadpool");
}
}
return nnpack_threadpool_;
}
bool _nnpack_available() {
if (! called_nnpack_threadpool_) {
try {
return nnpack_threadpool() != nullptr;
} catch (std::runtime_error e) {
}
}
return nnpack_threadpool() != nullptr;
}
// Make thread_local for safety in cases where we have multiple threads running
// Convs at once
static thread_local void* workspace = nullptr;
static thread_local size_t workspace_size = 0;
// NNPack has alignment requirements
const size_t nnpack_memory_alignment_boundary = 64;
static inline void deallocate_workspace() {
if (workspace)
std::free(workspace);
workspace = nullptr;
}
static inline void allocate_workspace() {
if (workspace)
deallocate_workspace();
// Won't work on Windows, but NNPACK doesn't support Windows either
posix_memalign(&workspace, nnpack_memory_alignment_boundary, workspace_size);
}
constexpr int input_batch_size_dim = 0;
constexpr int input_channels_dim = 1;
constexpr int input_height_dim = 2;
constexpr int input_width_dim = 3;
constexpr int output_batch_size_dim = 0;
constexpr int output_channels_dim = 1;
constexpr int output_height_dim = 2;
constexpr int output_width_dim = 3;
constexpr int weight_output_channels_dim = 0;
constexpr int weight_input_channels_dim = 1;
constexpr int weight_height_dim = 2;
constexpr int weight_width_dim = 3;
// Often written as 2 + max_dim (extra dims for batch size and channels)
constexpr int max_dim = 3;
std::vector<int64_t> conv_output_size(
IntArrayRef input_size,
IntArrayRef weight_size,
IntArrayRef padding) {
auto dim = input_size.size();
std::vector<int64_t> output_size(dim);
output_size[output_batch_size_dim] = input_size[input_batch_size_dim];
output_size[output_channels_dim] = weight_size[weight_output_channels_dim];
output_size[output_height_dim] =
input_size[input_height_dim] + 2 * padding[0] - (weight_size[2] - 1);
output_size[output_width_dim] =
input_size[input_width_dim] + 2 * padding[1] - (weight_size[3] - 1);
return output_size;
}
Tensor _nnpack_spatial_convolution(
const at::Tensor& input,
const at::Tensor& weight,
const at::Tensor& bias,
IntArrayRef padding) {
at::Tensor output = at::empty(
conv_output_size(input.sizes(), weight.sizes(), padding),
input.options());
// Our input Tensor must be in the form N,C,H,W
if (input.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D input Tensor N,C,H,W");
}
// Our weight Tensor must be in the form oC,iC,kH,kW
if (weight.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D weight Tensor oC,iC,kH,kW");
}
// Our output Tensor must be in the form N,oC,oH,oW
if (output.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D output Tensor N,oC,oH,oW");
}
// Some basic shape checking, not comprehensive
if (input.size(1) != weight.size(1)) {
std::stringstream err;
err << "Mismatch between number of input channels in input Tensor ("
<< input.size(1) << ") and weight Tensor (" << weight.size(1)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
if (weight.size(0) != output.size(1)) {
std::stringstream err;
err << "Mismatch between number of output channels in weight Tensor ("
<< weight.size(0) << ") and output Tensor (" << output.size(1)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
if (input.size(0) != output.size(0)) {
std::stringstream err;
err << "Mismatch between batch size in input Tensor (" << input.size(0)
<< ") and output Tensor (" << output.size(0)
<< ") in NNPack convolutionOutput";
throw std::runtime_error(err.str());
}
// Setup parameters for the NNPack convolution output function call
// For now, we use the default algorithm
auto algorithm = nnp_convolution_algorithm_auto;
// All Tensors must be float Tensors
if (input.type().ID() != at::TypeID::CPUFloat ||
weight.type().ID() != at::TypeID::CPUFloat ||
output.type().ID() != at::TypeID::CPUFloat ||
(bias.defined() && bias.type().ID() != at::TypeID::CPUFloat)) {
throw std::runtime_error(
"Mismatched Tensor types in NNPack convolutionOutput");
}
const size_t batch_size = input.size(0);
const size_t input_channels = input.size(1);
const size_t output_channels = weight.size(0);
const struct nnp_size input_size = {.width = (size_t)input.size(3),
.height = (size_t)input.size(2)};
const struct nnp_padding input_padding = {.top = (size_t)padding[0],
.right = (size_t)padding[1],
.bottom = (size_t)padding[0],
.left = (size_t)padding[1]};
const struct nnp_size kernel_size = {.width = (size_t)weight.size(3),
.height = (size_t)weight.size(2)};
// If we don't have a defined bias Tensor, we need to create one filled with
// zeroes
auto bias_ =
bias.defined() ? bias : at::zeros({weight.size(0)}, input.options());
// Note: we assume that the output is shaped correctly, probably should add an
// assert
auto input_ = input.contiguous();
auto batched = [&]() -> nnp_status {
return nnp_convolution_output(
algorithm,
batch_size,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
(float*)input_.data_ptr(),
(float*)weight.data_ptr(),
(float*)bias_.data_ptr(),
(float*)output.data_ptr(),
workspace, // workspace_buffer
&workspace_size, // workspace_size
nnp_activation_identity,
nullptr, // activation parameters
nnpack_threadpool(),
nullptr // profile
);
};
auto single = [&]() -> nnp_status {
const nnp_size output_subsample = {.width = 1, .height = 1};
auto input_ = input.contiguous();
return nnp_convolution_inference(
algorithm,
nnp_convolution_transform_strategy_compute,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
output_subsample,
(float*)input_.data_ptr(),
(float*)weight.data_ptr(),
(float*)bias_.data_ptr(),
(float*)output.data_ptr(),
workspace, // workspace_buffer
&workspace_size, // workspace_size
nnp_activation_identity,
nullptr, // activation parameters
nnpack_threadpool(),
nullptr // profile
);
};
auto size_and_allocate_ws = [&]() {
// Run a single pass to get the size of memory workspace buffer
auto status = batch_size == 1 ? single() : batched();
if (status != nnp_status_success) {
throw std::runtime_error("NNPACK SpatialConvolution_updateOutput failed");
}
allocate_workspace();
};
// If no workspace created yet, allocate it
if (workspace == nullptr) {
size_and_allocate_ws();
}
// Try to run with the newly created, or existing workspace
auto status = batch_size == 1 ? single() : batched();
if (status == nnp_status_insufficient_buffer) {
// Need to reallocate the workspace
deallocate_workspace();
size_and_allocate_ws();
// Try one more time
status = batch_size == 1 ? single() : batched();
}
if (status != nnp_status_success) {
throw std::runtime_error("NNPACK SpatialConvolution_updateOutput failed");
}
return output;
}
Tensor _nnpack_spatial_convolution_backward_input(
const at::Tensor& input,
const at::Tensor& gradOutput,
const at::Tensor& weight,
IntArrayRef padding) {
at::Tensor gradInput = at::empty(input.sizes(), input.options());
// Our input and gradInput Tensors must be in the form N,C,H,W
if (input.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolution updateGradInput expects 4D input Tensor N,C,H,W");
}
if (gradInput.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolution updateGradInput expects 4D gradInput Tensor N,C,H,W");
}
// Our weight Tensor must be in the form oC,iC,kH,kW
if (weight.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolution updateGradInput expects 4D weight Tensor oC,iC,kH,kW");
}
// Our gradOutput Tensor must be in the form N,oC,oH,oW
if (gradOutput.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolution updateGradInput expects 4D gradOutput Tensor N,oC,oH,oW");
}
// Some basic shape checking, not comprehensive
if (!input.sizes().equals(gradInput.sizes())) {
std::stringstream err;
err << "Mismatch between input size (" << input.sizes()
<< ") and gradInput size (" << gradInput.sizes()
<< ") in NNPack convolution updateGradInput";
throw std::runtime_error(err.str());
}
if (input.size(1) != weight.size(1)) {
std::stringstream err;
err << "Mismatch between number of input channels in input Tensor ("
<< input.size(1) << ") and weight Tensor (" << weight.size(1)
<< ") in NNPack convolution updateGradInput";
throw std::runtime_error(err.str());
}
if (weight.size(0) != gradOutput.size(1)) {
std::stringstream err;
err << "Mismatch between number of output channels in weight Tensor ("
<< weight.size(0) << ") and gradOutput Tensor (" << gradOutput.size(1)
<< ") in NNPack convolution updateGradInput";
throw std::runtime_error(err.str());
}
if (input.size(0) != gradOutput.size(0)) {
std::stringstream err;
err << "Mismatch between batch size in input Tensor (" << input.size(0)
<< ") and gradOutput Tensor (" << gradOutput.size(0)
<< ") in NNPack convolution updateGradInput";
throw std::runtime_error(err.str());
}
// Setup parameters for the NNPACK convolution input gradient call
// Use the default algorithm
auto algorithm = nnp_convolution_algorithm_auto;
const size_t batch_size = input.size(0);
const size_t input_channels = input.size(1);
const size_t output_channels = weight.size(0);
const struct nnp_size input_size = {.width = (size_t)input.size(3),
.height = (size_t)input.size(2)};
const struct nnp_padding input_padding = {.top = (size_t)padding[0],
.right = (size_t)padding[1],
.bottom = (size_t)padding[0],
.left = (size_t)padding[1]};
const struct nnp_size kernel_size = {.width = (size_t)weight.size(3),
.height = (size_t)weight.size(2)};
auto run = [&]() -> nnp_status {
return nnp_convolution_input_gradient(
algorithm,
batch_size,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
(float*)gradOutput.data_ptr(),
(float*)weight.data_ptr(),
(float*)gradInput.data_ptr(),
workspace, // workspace_buffer
&workspace_size, // workspace_size
nnp_activation_identity,
nullptr, // activation_parameters
nnpack_threadpool(),
nullptr // profile
);
};
auto size_and_allocate_ws = [&]() {
// Run a single pass to get the size of memory workspace buffer
auto status = run();
if (status != nnp_status_success) {
throw std::runtime_error(
"NNPACK SpatialConvolution_updateGradInput failed");
}
allocate_workspace();
};
// If no workspace created yet, allocate it
if (workspace == nullptr) {
size_and_allocate_ws();
}
// Try to run with the newly created, or existing workspace
auto status = run();
if (status == nnp_status_insufficient_buffer) {
// Need to reallocate the workspace
deallocate_workspace();
size_and_allocate_ws();
// Try one more time
status = run();
}
if (status != nnp_status_success) {
throw std::runtime_error(
"NNPACK SpatialConvolution_updateGradInput failed");
}
return gradInput;
}
Tensor _nnpack_spatial_convolution_backward_weight(
const at::Tensor& input,
IntArrayRef weight_size,
const at::Tensor& gradOutput,
IntArrayRef padding) {
at::Tensor gradWeight = at::empty(weight_size, input.options());
// Our input and gradInput Tensors must be in the form N,C,H,W
if (input.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D input Tensor N,C,H,W");
}
// Our gradWeight Tensor must be in the form oC,iC,kH,kW
if (gradWeight.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D gradWeight Tensor oC,iC,kH,kW");
}
// Our weight Tensor must be in the form N,oC,oH,oW
if (gradOutput.ndimension() != 4) {
throw std::runtime_error(
"NNPack convolutionOutput expects 4D gradOutput Tensor N,oC,oH,oW");
}
// Some basic shape checking, not comprehensive
if (input.size(1) != gradWeight.size(1)) {
std::stringstream err;
err << "Mismatch between number of input channels in input Tensor ("
<< input.size(1) << ") and gradWeight Tensor (" << gradWeight.size(1)
<< ") in NNPack convolution accGradWeight";
throw std::runtime_error(err.str());
}
if (gradWeight.size(0) != gradOutput.size(1)) {
std::stringstream err;
err << "Mismatch between number of output channels in gradWeight Tensor ("
<< gradWeight.size(0) << ") and gradOutput Tensor ("
<< gradOutput.size(1) << ") in NNPack convolution accGradWeight";
throw std::runtime_error(err.str());
}
if (input.size(0) != gradOutput.size(0)) {
std::stringstream err;
err << "Mismatch between batch size in input Tensor (" << input.size(0)
<< ") and gradOutput Tensor (" << gradOutput.size(0)
<< ") in NNPack convolution accGradWeight";
throw std::runtime_error(err.str());
}
// Setup parameters for the NNPACK convolution kernel gradient call
// Use the default algorithm
auto algorithm = nnp_convolution_algorithm_auto;
const size_t batch_size = input.size(0);
const size_t input_channels = input.size(1);
const size_t output_channels = gradWeight.size(0);
const struct nnp_size input_size = {.width = (size_t)input.size(3),
.height = (size_t)input.size(2)};
const struct nnp_padding input_padding = {.top = (size_t)padding[0],
.right = (size_t)padding[1],
.bottom = (size_t)padding[0],
.left = (size_t)padding[1]};
const struct nnp_size kernel_size = {.width = (size_t)weight_size[3],
.height = (size_t)weight_size[2]};
auto input_ = input.contiguous();
auto run = [&]() -> nnp_status {
return nnp_convolution_kernel_gradient(
algorithm,
batch_size,
input_channels,
output_channels,
input_size,
input_padding,
kernel_size,
(float*)input_.data_ptr(),
(float*)gradOutput.data_ptr(),
(float*)gradWeight.data_ptr(),
workspace, // workspace_buffer
&workspace_size, // workspace_size
nnp_activation_identity,
nullptr, // activation_parameters
nnpack_threadpool(),
nullptr // profile
);
};
auto size_and_allocate_ws = [&]() {
// Run a single pass to get the size of memory workspace buffer
auto status = run();
if (status != nnp_status_success) {
throw std::runtime_error(
"NNPACK SpatialConvolution_accGradWeight failed");
}
allocate_workspace();
};
// If no workspace created yet, allocate it
if (workspace == nullptr) {
size_and_allocate_ws();
}
// Try to run with the newly created, or existing workspace
auto status = run();
if (status == nnp_status_insufficient_buffer) {
// Need to reallocate the workspace
deallocate_workspace();
size_and_allocate_ws();
// Try one more time
status = run();
}
if (status != nnp_status_success) {
throw std::runtime_error("NNPACK SpatialConvolution_accGradWeight failed");
}
return gradWeight;
}
std::tuple<Tensor, Tensor, Tensor> _nnpack_spatial_convolution_backward(
const at::Tensor& input,
const at::Tensor& grad_output,
const at::Tensor& weight,
IntArrayRef padding,
std::array<bool, 3> output_mask) {
Tensor grad_input, grad_weight, grad_bias;
if (output_mask[0]) {
grad_input = at::_nnpack_spatial_convolution_backward_input(
input, grad_output, weight, padding);
}
if (output_mask[1]) {
grad_weight = at::_nnpack_spatial_convolution_backward_weight(
input, weight.sizes(), grad_output, padding);
}
if (output_mask[2]) {
grad_bias = grad_output.contiguous()
.view({grad_output.size(0), grad_output.size(1), -1})
.sum(0)
.sum(1);
}
return std::tuple<Tensor, Tensor, Tensor>{grad_input, grad_weight, grad_bias};
}
} // namespace native
} // namespace at
#endif // AT_NNPACK_ENABLED