-
Notifications
You must be signed in to change notification settings - Fork 0
/
Weighted_MixMatch_train_CIFAR.py
472 lines (372 loc) · 17.8 KB
/
Weighted_MixMatch_train_CIFAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data as data
import torchvision.transforms as transforms
import torch.nn.functional as F
from torch.utils.data import WeightedRandomSampler
#import network_models.preact_resnet as preact_resnet
import network_models.wideresnet as wideresnet
#import network_models.resnet as resnet
import MixMatch_dataset.noise_data_augument_CIFAR10 as CIFAR_10_dataset
import MixMatch_dataset.noise_data_augument_CIFAR100 as CIFAR_100_dataset
from MixMatch_dataset.noise_data_augument_CIFAR10 import get_cifar10_select_ind
from MixMatch_dataset.noise_data_augument_CIFAR100 import get_cifar100_select_ind
from MixMatch_utils import Bar, Logger, AverageMeter, accuracy, mkdir_p
#from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='Pytorch MixMatch Training')
# Optimization options
parser.add_argument('--epochs', default=500, type=int, metavar='N', # 1024 -> 500
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.002, type=float,
metavar='LR', help='initial learning rate')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Miscs
parser.add_argument('--manualSeed', type=int, default=0, help='manual seed')
#Device options
parser.add_argument('--gpu', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
#Method options
parser.add_argument('--n-labeled', type=int, default=4000,
help='Number of labeled data')
parser.add_argument('--val-iteration', type=int, default=1024,
help='Number of labeled data')
parser.add_argument('--out', default='MixMatch_result',
help='Directory to output the result')
parser.add_argument('--alpha', default=0.75, type=float)
parser.add_argument('--lambda-u', default=75, type=float) # 75 -> 150
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--ema-decay', default=0.999, type=float)
#args = parser.parse_args()
#args = parser.parse_args(['--epochs', '1024', '--start-epoch', '0', '--batch-size', '64', '--lr', '0.001']
#args = parser.parse_args(['--epochs', '500', '--start-epoch', '0', '--batch-size', '64', '--lr', '0.002']) # change 2020.5.12 epochs 500, lr 0.002
args = parser.parse_args(['--epochs', '500', '--start-epoch', '0', '--batch-size', '64', '--lr', '0.002']) # change 2020.5.12 epochs 500, lr 0.002
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
np.random.seed(args.manualSeed)
best_test_acc = 0 # best test accuracy
best_acc = 0
def Weighted_MixMatch_main(all_data_information, dataset_name, noise_rate, folder, select_num): # dataset_name can be "xxxCIFAR10" or ""xxxCIFAR100"
global best_acc
global best_test_acc
args.out = folder + '/' +args.out
if not os.path.isdir(args.out):
mkdir_p(args.out)
if dataset_name.endswith('CIFAR10'):
num_class = 10
dataset = CIFAR_10_dataset
get_data = get_cifar10_select_ind
net = wideresnet.WideResNet
args.lambda_u = 75
print(f'==> Preparing cifar10')
elif dataset_name.endswith("CIFAR100"):
num_class = 100
dataset = CIFAR_100_dataset
get_data = get_cifar100_select_ind
net = wideresnet.WideResNet
args.lambda_u = 75 # from 75 -> 150
print(f'==> Preparing cifar100')
else:
raise ValueError('Error: no appropriate dataset is given')
# Data
transform_train = transforms.Compose([
dataset.RandomPadandCrop(32),
dataset.RandomFlip(),
dataset.ToTensor(),
])
transform_val = transforms.Compose([
dataset.ToTensor(),
])
train_labeled_set, weight_list, train_unlabeled_set, val_set, test_set = get_data(all_data_information, transform_train=transform_train, transform_val=transform_val)
sampler = WeightedRandomSampler( # weighted resampling
weights=weight_list,
num_samples=len(weight_list),
replacement=True
)
labeled_trainloader = data.DataLoader(train_labeled_set, batch_size=args.batch_size, sampler=sampler, num_workers=0, drop_last=True) # drop last
unlabeled_trainloader = data.DataLoader(train_unlabeled_set, batch_size=args.batch_size, shuffle=True, num_workers=0, drop_last=True)
val_loader = data.DataLoader(val_set, batch_size=args.batch_size, shuffle=False, num_workers=0)
test_loader = data.DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=0)
# Model
if dataset_name.endswith('CIFAR10'):
print("==> creating WideResNet-28-2")
elif dataset_name.endswith('CIFAR100'):
print("==> creating WideResNet-28-2")
def create_model(ema=False):
model = net(num_classes=num_class)
model = model.cuda()
if ema:
for param in model.parameters():
param.detach_()
return model
model = create_model()
ema_model = create_model(ema=True) # Exponential moving average model(decay rate = 0.999)
cudnn.benchmark = True
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
train_criterion = SemiLoss()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
ema_optimizer= WeightEMA(model, ema_model, net, alpha=args.ema_decay, num_class=num_class)
start_epoch = 0
name = "MixMatch_wideresnet_log_for_%s_%.1f_%d"%(dataset_name, noise_rate, select_num)+".txt"
# Resume
title = dataset_name
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.out = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
ema_model.load_state_dict(checkpoint['ema_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.resume, name), title=title, resume=True)
else:
logger = Logger(os.path.join(args.out, name), title=title)
logger.set_names(['epoch', 'Train Loss', 'Train Loss X', 'Train Loss U', 'Valid Loss', 'Valid Acc.', 'Test Loss', 'Test Acc.'])
#writer = SummaryWriter(args.out)
#step = 0
test_accs = []
# Train and val
for epoch in range(start_epoch, args.epochs):
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_loss_x, train_loss_u = train(labeled_trainloader, unlabeled_trainloader, model, optimizer, ema_optimizer, train_criterion, epoch, use_cuda, num_class)
# _, train_acc = validate(labeled_trainloader, ema_model, criterion, epoch, use_cuda, mode='Train Stats')
val_loss, val_acc = validate(val_loader, ema_model, criterion, epoch, use_cuda, mode='Valid Stats')
test_loss, test_acc = validate(test_loader, ema_model, criterion, epoch, use_cuda, mode='Test Stats ')
#step = args.batch_size * args.val_iteration * (epoch + 1)
# append logger file
logger.append([int(epoch), train_loss, train_loss_x, train_loss_u, val_loss, val_acc, test_loss, test_acc])
# save model
is_best = val_acc > best_acc
if is_best:
best_test_acc = test_acc
best_acc = max(val_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'ema_state_dict': ema_model.state_dict(),
'acc': val_acc,
'best_acc': best_acc,
'optimizer' : optimizer.state_dict(),
}, is_best, args.out)
test_accs.append(test_acc)
logger.close()
def train(labeled_trainloader, unlabeled_trainloader, model, optimizer, ema_optimizer, criterion, epoch, use_cuda, num_class=10):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
ws = AverageMeter()
end = time.time()
bar = Bar('Training', max=args.val_iteration)
labeled_train_iter = iter(labeled_trainloader)
unlabeled_train_iter = iter(unlabeled_trainloader)
model.train()
for batch_idx in range(args.val_iteration): # val_iteration
try:
inputs_x, targets_x = labeled_train_iter.next()
except:
labeled_train_iter = iter(labeled_trainloader) # iterate train_loader, get a minibatch
inputs_x, targets_x = labeled_train_iter.next()
try:
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
# measure data loading time
data_time.update(time.time() - end)
batch_size = inputs_x.size(0)
# Transform label to one-hot
if num_class == 10:
targets_x = torch.zeros(batch_size, 10).scatter_(1, targets_x.view(-1,1), 1)
else:
targets_x = torch.zeros(batch_size, 100).scatter_(1, targets_x.view(-1,1), 1)
if use_cuda:
inputs_x, targets_x = inputs_x.cuda(), targets_x.cuda(non_blocking=True)
inputs_u = inputs_u.cuda()
inputs_u2 = inputs_u2.cuda()
with torch.no_grad():
# compute guessed labels of unlabel samples
outputs_u = model(inputs_u)
outputs_u2 = model(inputs_u2)
p = (torch.softmax(outputs_u, dim=1) + torch.softmax(outputs_u2, dim=1)) / 2
pt = p**(1/args.T)
targets_u = pt / pt.sum(dim=1, keepdim=True)
targets_u = targets_u.detach()
# mixup
all_inputs = torch.cat([inputs_x, inputs_u, inputs_u2], dim=0)
all_targets = torch.cat([targets_x, targets_u, targets_u], dim=0)
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1-l)
idx = torch.randperm(all_inputs.size(0))
input_a, input_b = all_inputs, all_inputs[idx]
target_a, target_b = all_targets, all_targets[idx]
mixed_input = l * input_a + (1 - l) * input_b
mixed_target = l * target_a + (1 - l) * target_b
# interleave labeled and unlabed samples between batches to get correct batchnorm calculation
mixed_input = list(torch.split(mixed_input, batch_size))
mixed_input = interleave(mixed_input, batch_size)
logits = [model(mixed_input[0])]
for input in mixed_input[1:]:
logits.append(model(input))
# put interleaved samples back
logits = interleave(logits, batch_size)
logits_x = logits[0]
logits_u = torch.cat(logits[1:], dim=0)
Lx, Lu, w = criterion(logits_x, mixed_target[:batch_size], logits_u, mixed_target[batch_size:], epoch+batch_idx/args.val_iteration)
loss = Lx + w * Lu
# record loss
losses.update(loss.item(), inputs_x.size(0))
losses_x.update(Lx.item(), inputs_x.size(0))
losses_u.update(Lu.item(), inputs_x.size(0))
ws.update(w, inputs_x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
ema_optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Loss_x: {loss_x:.4f} | Loss_u: {loss_u:.4f} | W: {w:.4f}'.format(
batch=batch_idx + 1,
size=args.val_iteration,
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
loss_x=losses_x.avg,
loss_u=losses_u.avg,
w=ws.avg,
)
bar.next()
bar.finish()
ema_optimizer.step(bn=True)
return (losses.avg, losses_x.avg, losses_u.avg,)
def validate(valloader, model, criterion, epoch, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar(f'{mode}', max=len(valloader))
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(valloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def linear_rampup(current, rampup_length=args.epochs):
if rampup_length == 0:
return 1.0
else:
current = np.clip(current / rampup_length, 0.0, 1.0)
return float(current)
class SemiLoss(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch):
probs_u = torch.softmax(outputs_u, dim=1)
Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
Lu = torch.mean((probs_u - targets_u)**2)
return Lx, Lu, args.lambda_u * linear_rampup(epoch) # change w in here
class WeightEMA(object):
def __init__(self, model, ema_model, net, alpha=0.999, num_class=10): # weight exponential moving average
self.model = model
self.ema_model = ema_model
self.alpha = alpha
self.tmp_model = net(num_classes=num_class).cuda() # use net
self.wd = 0.02 * args.lr # revise weight decay size
for param, ema_param in zip(self.model.parameters(), self.ema_model.parameters()):
ema_param.data.copy_(param.data)
def step(self, bn=False):
if bn:
# copy batchnorm stats to ema model
for ema_param, tmp_param in zip(self.ema_model.parameters(), self.tmp_model.parameters()):
tmp_param.data.copy_(ema_param.data.detach())
self.ema_model.load_state_dict(self.model.state_dict())
for ema_param, tmp_param in zip(self.ema_model.parameters(), self.tmp_model.parameters()):
ema_param.data.copy_(tmp_param.data.detach())
else:
one_minus_alpha = 1.0 - self.alpha
for param, ema_param in zip(self.model.parameters(), self.ema_model.parameters()):
ema_param.data.mul_(self.alpha)
ema_param.data.add_(param.data.detach() * one_minus_alpha)
# customized weight decay
param.data.mul_(1 - self.wd)
def interleave_offsets(batch, nu):
groups = [batch // (nu + 1)] * (nu + 1)
for x in range(batch - sum(groups)):
groups[-x - 1] += 1
offsets = [0]
for g in groups:
offsets.append(offsets[-1] + g)
assert offsets[-1] == batch
return offsets
def interleave(xy, batch):
nu = len(xy) - 1
offsets = interleave_offsets(batch, nu)
xy = [[v[offsets[p]:offsets[p + 1]] for p in range(nu + 1)] for v in xy]
for i in range(1, nu + 1):
xy[0][i], xy[i][i] = xy[i][i], xy[0][i]
return [torch.cat(v, dim=0) for v in xy]
if __name__ == '__main__':
pass