-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmain_stage2.py
41 lines (31 loc) · 1.41 KB
/
main_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from options import stage2_opts
from utils import logger, recorders
from datasets import custom_data_loader
from models import custom_model, solver_utils, model_utils
import train_stage2 as train_utils
import test_stage2 as test_utils
args = stage2_opts.TrainOpts().parse()
log = logger.Logger(args)
def main(args):
model = custom_model.buildModel(args)
model_s2 = custom_model.buildModelStage2(args)
models = [model, model_s2]
optimizer, scheduler, records = solver_utils.configOptimizer(args, model_s2)
optimizers = [optimizer, -1]
criterion = solver_utils.Stage2Crit(args)
recorder = recorders.Records(args.log_dir, records)
train_loader, val_loader = custom_data_loader.customDataloader(args)
for epoch in range(args.start_epoch, args.epochs+1):
scheduler.step()
recorder.insertRecord('train', 'lr', epoch, scheduler.get_lr()[0])
train_utils.train(args, train_loader, models, criterion, optimizers, log, epoch, recorder)
if epoch % args.save_intv == 0:
model_utils.saveCheckpoint(args.cp_dir, epoch, model_s2, optimizer, recorder.records, args)
log.plotCurves(recorder, 'train')
if epoch % args.val_intv == 0:
test_utils.test(args, 'val', val_loader, models, log, epoch, recorder)
log.plotCurves(recorder, 'val')
if __name__ == '__main__':
torch.manual_seed(args.seed)
main(args)