forked from Galaxies99/TransCG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sample_inference.py
69 lines (51 loc) · 2.29 KB
/
sample_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import numpy as np
import open3d as o3d
from PIL import Image
from inference import Inferencer
def draw_point_cloud(color, depth, camera_intrinsics, use_mask = False, use_inpainting = True, scale = 1000.0, inpainting_radius = 5, fault_depth_limit = 0.2, epsilon = 0.01):
"""
Given the depth image, return the point cloud in open3d format.
The code is adapted from [graspnet.py] in the [graspnetAPI] repository.
"""
d = depth.copy()
c = color.copy() / 255.0
if use_inpainting:
fault_mask = (d < fault_depth_limit * scale)
d[fault_mask] = 0
inpainting_mask = (np.abs(d) < epsilon * scale).astype(np.uint8)
d = cv2.inpaint(d, inpainting_mask, inpainting_radius, cv2.INPAINT_NS)
fx, fy = camera_intrinsics[0, 0], camera_intrinsics[1, 1]
cx, cy = camera_intrinsics[0, 2], camera_intrinsics[1, 2]
xmap, ymap = np.arange(d.shape[1]), np.arange(d.shape[0])
xmap, ymap = np.meshgrid(xmap, ymap)
points_z = d / scale
points_x = (xmap - cx) / fx * points_z
points_y = (ymap - cy) / fy * points_z
points = np.stack([points_x, points_y, points_z], axis = -1)
if use_mask:
mask = (points_z > 0)
points = points[mask]
c = c[mask]
else:
points = points.reshape((-1, 3))
c = c.reshape((-1, 3))
cloud = o3d.geometry.PointCloud()
cloud.points = o3d.utility.Vector3dVector(points)
cloud.colors = o3d.utility.Vector3dVector(c)
return cloud
inferencer = Inferencer()
rgb = np.array(Image.open('data/scene1/1/rgb1.png'), dtype = np.float32)
depth = np.array(Image.open('data/scene1/1/depth1.png'), dtype = np.float32)
depth_gt = np.array(Image.open('data/scene1/1/depth1-gt.png'), dtype = np.float32)
depth = depth / 1000
depth_gt = depth_gt / 1000
res = inferencer.inference(rgb, depth)
cam_intrinsics = np.load('data/camera_intrinsics/1-camIntrinsics-D435.npy')
res = np.clip(res, 0.1, 1.5)
depth = np.clip(depth, 0.1, 1.5)
cloud = draw_point_cloud(rgb, res, cam_intrinsics, scale = 1.0)
cloud_gt = draw_point_cloud(rgb, depth_gt, cam_intrinsics, scale = 1.0)
frame = o3d.geometry.TriangleMesh.create_coordinate_frame(0.1)
sphere = o3d.geometry.TriangleMesh.create_sphere(0.002,20).translate([0,0,0.490])
o3d.visualization.draw_geometries([cloud, cloud_gt, frame, sphere])