From 24c0a69687e73f7e22696cc03cc9e40538077760 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20S=C3=B8gaard?= Date: Sat, 23 Sep 2023 09:30:12 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20graphnet?= =?UTF-8?q?-team/graphnet@3e553bdeee7e98856fc988077dafae0f9c703d4b=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- _modules/graphnet/data/dataset/dataset.html | 11 +- .../sqlite/sqlite_dataset_perturbed.html | 515 -------------- _modules/graphnet/models/coarsening.html | 3 - .../graphnet/models/detector/detector.html | 2 - _modules/graphnet/models/gnn/convnet.html | 2 - _modules/graphnet/models/gnn/dynedge.html | 2 - .../graphnet/models/gnn/dynedge_jinst.html | 2 - .../models/gnn/dynedge_kaggle_tito.html | 2 - _modules/graphnet/models/gnn/gnn.html | 2 - .../graphnet/models/graphs/edges/edges.html | 4 - .../models/graphs/graph_definition.html | 80 ++- _modules/graphnet/models/graphs/graphs.html | 19 +- .../graphnet/models/graphs/nodes/nodes.html | 2 - _modules/graphnet/models/model.html | 10 +- _modules/graphnet/models/standard_model.html | 2 - _modules/graphnet/models/task/task.html | 3 - .../graphnet/training/loss_functions.html | 3 - _modules/graphnet/training/utils.html | 6 +- .../utilities/config/dataset_config.html | 53 +- .../utilities/config/model_config.html | 51 ++ _modules/index.html | 1 - .../api/graphnet.data.dataset.sqlite.rst.txt | 1 - ...et.sqlite.sqlite_dataset_perturbed.rst.txt | 8 - api/graphnet.data.dataset.dataset.html | 13 +- api/graphnet.data.dataset.html | 1 - ....data.dataset.parquet.parquet_dataset.html | 7 +- api/graphnet.data.dataset.sqlite.html | 11 - ...et.data.dataset.sqlite.sqlite_dataset.html | 20 +- ...taset.sqlite.sqlite_dataset_perturbed.html | 626 ------------------ api/graphnet.models.coarsening.html | 51 +- api/graphnet.models.detector.detector.html | 11 +- api/graphnet.models.detector.icecube.html | 44 +- api/graphnet.models.detector.prometheus.html | 11 +- api/graphnet.models.gnn.convnet.html | 7 +- api/graphnet.models.gnn.dynedge.html | 7 +- api/graphnet.models.gnn.dynedge_jinst.html | 7 +- ...aphnet.models.gnn.dynedge_kaggle_tito.html | 7 +- api/graphnet.models.gnn.gnn.html | 9 +- api/graphnet.models.graphs.edges.edges.html | 34 +- ...aphnet.models.graphs.graph_definition.html | 22 +- api/graphnet.models.graphs.graphs.html | 15 +- api/graphnet.models.graphs.nodes.nodes.html | 22 +- api/graphnet.models.model.html | 10 +- api/graphnet.models.standard_model.html | 15 +- api/graphnet.models.task.classification.html | 21 +- api/graphnet.models.task.reconstruction.html | 84 ++- api/graphnet.models.task.task.html | 14 +- api/graphnet.training.loss_functions.html | 96 ++- api/graphnet.training.utils.html | 6 +- ...phnet.utilities.config.dataset_config.html | 34 + api/graphnet.utilities.config.html | 4 + ...raphnet.utilities.config.model_config.html | 34 + genindex.html | 23 +- objects.inv | Bin 6210 -> 6190 bytes py-modindex.html | 5 - searchindex.js | 2 +- sitemap.xml | 2 +- 57 files changed, 693 insertions(+), 1366 deletions(-) delete mode 100644 _modules/graphnet/data/dataset/sqlite/sqlite_dataset_perturbed.html delete mode 100644 _sources/api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.rst.txt delete mode 100644 api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.html diff --git a/_modules/graphnet/data/dataset/dataset.html b/_modules/graphnet/data/dataset/dataset.html index 0d25df931..f82fb0dff 100644 --- a/_modules/graphnet/data/dataset/dataset.html +++ b/_modules/graphnet/data/dataset/dataset.html @@ -351,7 +351,7 @@

Source code for graphn from graphnet.utilities.config import ( Configurable, DatasetConfig, - save_dataset_config, + DatasetConfigSaverABCMeta, ) from graphnet.utilities.config.parsing import traverse_and_apply from graphnet.utilities.logging import Logger @@ -420,7 +420,13 @@

Source code for graphn
[docs] -class Dataset(Logger, Configurable, torch.utils.data.Dataset, ABC): +class Dataset( + Logger, + Configurable, + torch.utils.data.Dataset, + ABC, + metaclass=DatasetConfigSaverABCMeta, +): """Base Dataset class for reading from any intermediate file format.""" # Class method(s) @@ -529,7 +535,6 @@

Source code for graphn .replace("${GRAPHNET}", GRAPHNET_ROOT_DIR) ) - @save_dataset_config def __init__( self, path: Union[str, List[str]], diff --git a/_modules/graphnet/data/dataset/sqlite/sqlite_dataset_perturbed.html b/_modules/graphnet/data/dataset/sqlite/sqlite_dataset_perturbed.html deleted file mode 100644 index 44acbb9c5..000000000 --- a/_modules/graphnet/data/dataset/sqlite/sqlite_dataset_perturbed.html +++ /dev/null @@ -1,515 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - graphnet.data.dataset.sqlite.sqlite_dataset_perturbed — graphnet documentation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Skip to content -
- -
- - -
- - - - -
-
- -
-
-
- -
-
-
-
-
-
- - -
-
-
- -
-
- -

Source code for graphnet.data.dataset.sqlite.sqlite_dataset_perturbed

-"""`Dataset` class(es) for reading perturbed data from SQLite databases."""
-
-from typing import Dict, List, Optional, Tuple, Union
-
-import numpy as np
-from numpy.random import default_rng, Generator
-import torch
-from torch_geometric.data import Data
-
-from .sqlite_dataset import SQLiteDataset
-
-
-
-[docs] -class SQLiteDatasetPerturbed(SQLiteDataset): - """Pytorch dataset for reading perturbed data from SQLite databases. - - This including a pre-processing step, where the input data is randomly - perturbed according to given per-feature "noise" levels. This is intended - to test the stability of a trained model under small changes to the input - parameters. - """ - - def __init__( - self, - path: Union[str, List[str]], - pulsemaps: Union[str, List[str]], - features: List[str], - truth: List[str], - *, - perturbation_dict: Dict[str, float], - node_truth: Optional[List[str]] = None, - index_column: str = "event_no", - truth_table: str = "truth", - node_truth_table: Optional[str] = None, - string_selection: Optional[List[int]] = None, - selection: Optional[List[int]] = None, - dtype: torch.dtype = torch.float32, - loss_weight_table: Optional[str] = None, - loss_weight_column: Optional[str] = None, - loss_weight_default_value: Optional[float] = None, - seed: Optional[Union[int, Generator]] = None, - ): - """Construct SQLiteDatasetPerturbed. - - Args: - path: Path to the file(s) from which this `Dataset` should read. - pulsemaps: Name(s) of the pulse map series that should be used to - construct the nodes on the individual graph objects, and their - features. Multiple pulse series maps can be used, e.g., when - different DOM types are stored in different maps. - features: List of columns in the input files that should be used as - node features on the graph objects. - truth: List of event-level columns in the input files that should - be used added as attributes on the graph objects. - perturbation_dict (Dict[str, float]): Dictionary mapping a feature - name to a standard deviation according to which the values for - this feature should be randomly perturbed. - node_truth: List of node-level columns in the input files that - should be used added as attributes on the graph objects. - index_column: Name of the column in the input files that contains - unique indicies to identify and map events across tables. - truth_table: Name of the table containing event-level truth - information. - node_truth_table: Name of the table containing node-level truth - information. - string_selection: Subset of strings for which data should be read - and used to construct graph objects. Defaults to None, meaning - all strings for which data exists are used. - selection: List of indicies (in `index_column`) of the events in - the input files that should be read. Defaults to None, meaning - that all events in the input files are read. - dtype: Type of the feature tensor on the graph objects returned. - loss_weight_table: Name of the table containing per-event loss - weights. - loss_weight_column: Name of the column in `loss_weight_table` - containing per-event loss weights. This is also the name of the - corresponding attribute assigned to the graph object. - loss_weight_default_value: Default per-event loss weight. - NOTE: This default value is only applied when - `loss_weight_table` and `loss_weight_column` are specified, and - in this case to events with no value in the corresponding - table/column. That is, if no per-event loss weight table/column - is provided, this value is ignored. Defaults to None. - seed: Optional seed for random number generation. Defaults to None. - """ - # Base class constructor - super().__init__( - path=path, - pulsemaps=pulsemaps, - features=features, - truth=truth, - node_truth=node_truth, - index_column=index_column, - truth_table=truth_table, - node_truth_table=node_truth_table, - string_selection=string_selection, - selection=selection, - dtype=dtype, - loss_weight_table=loss_weight_table, - loss_weight_column=loss_weight_column, - loss_weight_default_value=loss_weight_default_value, - ) - - # Custom member variables - assert isinstance(perturbation_dict, dict) - assert len(set(perturbation_dict.keys())) == len( - perturbation_dict.keys() - ) - self._perturbation_dict = perturbation_dict - - self._perturbation_cols = [ - self._features.index(key) for key in self._perturbation_dict.keys() - ] - - if seed is not None: - if isinstance(seed, int): - self.rng = default_rng(seed) - elif isinstance(seed, Generator): - self.rng = seed - else: - raise ValueError( - "Invalid seed. Must be an int or a numpy Generator." - ) - else: - self.rng = default_rng() - - def __getitem__(self, sequential_index: int) -> Data: - """Return graph `Data` object at `index`.""" - if not (0 <= sequential_index < len(self)): - raise IndexError( - f"Index {sequential_index} not in range [0, {len(self) - 1}]" - ) - features, truth, node_truth, loss_weight = self._query( - sequential_index - ) - perturbed_features = self._perturb_features(features) - graph = self._create_graph( - perturbed_features, truth, node_truth, loss_weight - ) - return graph - - def _perturb_features( - self, features: List[Tuple[float, ...]] - ) -> List[Tuple[float, ...]]: - features_array = np.array(features) - perturbed_features = self.rng.normal( - loc=features_array[:, self._perturbation_cols], - scale=np.array( - list(self._perturbation_dict.values()), dtype=np.float - ), - ) - features_array[:, self._perturbation_cols] = perturbed_features - return features_array.tolist()
- -
- -
-
-
-
-
-
- - -
- - - - \ No newline at end of file diff --git a/_modules/graphnet/models/coarsening.html b/_modules/graphnet/models/coarsening.html index 6a260f076..c9a941617 100644 --- a/_modules/graphnet/models/coarsening.html +++ b/_modules/graphnet/models/coarsening.html @@ -346,7 +346,6 @@

Source code for graphnet. std_pool_x, ) from graphnet.models import Model -from graphnet.utilities.config import save_model_config # Utility method(s) from torch_geometric.utils import degree @@ -392,7 +391,6 @@

Source code for graphnet. "sum": (sum_pool, sum_pool_x), } - @save_model_config def __init__( self, reduce: str = "avg", @@ -533,7 +531,6 @@

Source code for graphnet. class AttributeCoarsening(Coarsening): """Coarsen pulses based on specified attributes.""" - @save_model_config def __init__( self, attributes: List[str], diff --git a/_modules/graphnet/models/detector/detector.html b/_modules/graphnet/models/detector/detector.html index eef62aefc..814e04815 100644 --- a/_modules/graphnet/models/detector/detector.html +++ b/_modules/graphnet/models/detector/detector.html @@ -332,7 +332,6 @@

Source code for gr from graphnet.models import Model from graphnet.utilities.decorators import final -from graphnet.utilities.config import save_model_config
@@ -340,7 +339,6 @@

Source code for gr class Detector(Model): """Base class for all detector-specific read-ins in graphnet.""" - @save_model_config def __init__(self) -> None: """Construct `Detector`.""" # Base class constructor diff --git a/_modules/graphnet/models/gnn/convnet.html b/_modules/graphnet/models/gnn/convnet.html index ada586304..61066449f 100644 --- a/_modules/graphnet/models/gnn/convnet.html +++ b/_modules/graphnet/models/gnn/convnet.html @@ -334,7 +334,6 @@

Source code for graphnet from torch_geometric.nn import TAGConv, global_add_pool, global_max_pool from torch_geometric.data import Data -from graphnet.utilities.config import save_model_config from graphnet.models.gnn.gnn import GNN @@ -343,7 +342,6 @@

Source code for graphnet class ConvNet(GNN): """ConvNet (convolutional network) model.""" - @save_model_config def __init__( self, nb_inputs: int, diff --git a/_modules/graphnet/models/gnn/dynedge.html b/_modules/graphnet/models/gnn/dynedge.html index d882546a3..1bb966c10 100644 --- a/_modules/graphnet/models/gnn/dynedge.html +++ b/_modules/graphnet/models/gnn/dynedge.html @@ -331,7 +331,6 @@

Source code for graphnet from torch_scatter import scatter_max, scatter_mean, scatter_min, scatter_sum from graphnet.models.components.layers import DynEdgeConv -from graphnet.utilities.config import save_model_config from graphnet.models.gnn.gnn import GNN from graphnet.models.utils import calculate_xyzt_homophily @@ -348,7 +347,6 @@

Source code for graphnet class DynEdge(GNN): """DynEdge (dynamical edge convolutional) model.""" - @save_model_config def __init__( self, nb_inputs: int, diff --git a/_modules/graphnet/models/gnn/dynedge_jinst.html b/_modules/graphnet/models/gnn/dynedge_jinst.html index 125dc1399..79fbe9a81 100644 --- a/_modules/graphnet/models/gnn/dynedge_jinst.html +++ b/_modules/graphnet/models/gnn/dynedge_jinst.html @@ -334,7 +334,6 @@

Source code for gr from torch_scatter import scatter_max, scatter_mean, scatter_min, scatter_sum from graphnet.models.components.layers import DynEdgeConv -from graphnet.utilities.config import save_model_config from graphnet.models.gnn.gnn import GNN from graphnet.models.utils import calculate_xyzt_homophily @@ -344,7 +343,6 @@

Source code for gr class DynEdgeJINST(GNN): """DynEdge (dynamical edge convolutional) model used in [2209.03042].""" - @save_model_config def __init__( self, nb_inputs: int, diff --git a/_modules/graphnet/models/gnn/dynedge_kaggle_tito.html b/_modules/graphnet/models/gnn/dynedge_kaggle_tito.html index 8895fa50c..99b914c05 100644 --- a/_modules/graphnet/models/gnn/dynedge_kaggle_tito.html +++ b/_modules/graphnet/models/gnn/dynedge_kaggle_tito.html @@ -342,7 +342,6 @@

Source code from torch_scatter import scatter_max, scatter_mean, scatter_min, scatter_sum from graphnet.models.components.layers import DynTrans -from graphnet.utilities.config import save_model_config from graphnet.models.gnn.gnn import GNN from graphnet.models.utils import calculate_xyzt_homophily @@ -359,7 +358,6 @@

Source code class DynEdgeTITO(GNN): """DynEdge (dynamical edge convolutional) model.""" - @save_model_config def __init__( self, nb_inputs: int, diff --git a/_modules/graphnet/models/gnn/gnn.html b/_modules/graphnet/models/gnn/gnn.html index 7a3a22f46..1e183aaa6 100644 --- a/_modules/graphnet/models/gnn/gnn.html +++ b/_modules/graphnet/models/gnn/gnn.html @@ -330,7 +330,6 @@

Source code for graphnet.mod from torch_geometric.data import Data from graphnet.models import Model -from graphnet.utilities.config import save_model_config
@@ -338,7 +337,6 @@

Source code for graphnet.mod class GNN(Model): """Base class for all core GNN models in graphnet.""" - @save_model_config def __init__(self, nb_inputs: int, nb_outputs: int) -> None: """Construct `GNN`.""" # Base class constructor diff --git a/_modules/graphnet/models/graphs/edges/edges.html b/_modules/graphnet/models/graphs/edges/edges.html index e681629cf..294002b15 100644 --- a/_modules/graphnet/models/graphs/edges/edges.html +++ b/_modules/graphnet/models/graphs/edges/edges.html @@ -331,7 +331,6 @@

Source code for g from torch_geometric.nn import knn_graph, radius_graph from torch_geometric.data import Data -from graphnet.utilities.config import save_model_config from graphnet.models.utils import calculate_distance_matrix from graphnet.models import Model @@ -380,7 +379,6 @@

Source code for g class KNNEdges(EdgeDefinition): # pylint: disable=too-few-public-methods """Builds edges from the k-nearest neighbours.""" - @save_model_config def __init__( self, nb_nearest_neighbours: int, @@ -420,7 +418,6 @@

Source code for g class RadialEdges(EdgeDefinition): """Builds graph from a sphere of chosen radius centred at each node.""" - @save_model_config def __init__( self, radius: float, @@ -464,7 +461,6 @@

Source code for g See https://arxiv.org/pdf/1809.06166.pdf. """ - @save_model_config def __init__( self, sigma: float, diff --git a/_modules/graphnet/models/graphs/graph_definition.html b/_modules/graphnet/models/graphs/graph_definition.html index 75075b762..71dac0f62 100644 --- a/_modules/graphnet/models/graphs/graph_definition.html +++ b/_modules/graphnet/models/graphs/graph_definition.html @@ -330,16 +330,15 @@

Source code """ -from typing import Any, List, Optional, Dict, Callable +from typing import Any, List, Optional, Dict, Callable, Union import torch from torch_geometric.data import Data import numpy as np - -from graphnet.utilities.config import save_model_config +from numpy.random import default_rng, Generator from graphnet.models.detector import Detector from .edges import EdgeDefinition -from .nodes import NodeDefinition +from .nodes import NodeDefinition, NodesAsPulses from graphnet.models import Model @@ -348,14 +347,15 @@

Source code class GraphDefinition(Model): """An Abstract class to create graph definitions from.""" - @save_model_config def __init__( self, detector: Detector, - node_definition: NodeDefinition, + node_definition: NodeDefinition = NodesAsPulses(), edge_definition: Optional[EdgeDefinition] = None, node_feature_names: Optional[List[str]] = None, dtype: Optional[torch.dtype] = torch.float, + perturbation_dict: Optional[Dict[str, float]] = None, + seed: Optional[Union[int, Generator]] = None, ): """Construct ´GraphDefinition´. The ´detector´ holds. @@ -368,10 +368,16 @@

Source code Args: detector: The corresponding ´Detector´ representing the data. - node_definition: Definition of nodes. + node_definition: Definition of nodes. Defaults to NodesAsPulses. edge_definition: Definition of edges. Defaults to None. node_feature_names: Names of node feature columns. Defaults to None dtype: data type used for node features. e.g. ´torch.float´ + perturbation_dict: Dictionary mapping a feature name to a standard + deviation according to which the values for this + feature should be randomly perturbed. Defaults + to None. + seed: seed or Generator used to randomly sample perturbations. + Defaults to None. """ # Base class constructor super().__init__(name=__name__, class_name=self.__class__.__name__) @@ -380,6 +386,8 @@

Source code self._detector = detector self._edge_definition = edge_definition self._node_definition = node_definition + self._perturbation_dict = perturbation_dict + if node_feature_names is None: # Assume all features in Detector is used. node_feature_names = list(self._detector.feature_map().keys()) # type: ignore @@ -395,6 +403,24 @@

Source code self.nb_inputs = len(self._node_feature_names) self.nb_outputs = self._node_definition.nb_outputs + # Set perturbation_cols if needed + if isinstance(self._perturbation_dict, dict): + self._perturbation_cols = [ + self._node_feature_names.index(key) + for key in self._perturbation_dict.keys() + ] + if seed is not None: + if isinstance(seed, int): + self.rng = default_rng(seed) + elif isinstance(seed, Generator): + self.rng = seed + else: + raise ValueError( + "Invalid seed. Must be an int or a numpy Generator." + ) + else: + self.rng = default_rng() +
[docs] def forward( # type: ignore @@ -415,9 +441,12 @@

Source code node_feature_names: name of each column. Shape ´[,d]´. truth_dicts: Dictionary containing truth labels. custom_label_functions: Custom label functions. See https://github.com/graphnet-team/graphnet/blob/main/GETTING_STARTED.md#adding-custom-truth-labels. - loss_weight_column: Name of column that holds loss weight. Defaults to None. + loss_weight_column: Name of column that holds loss weight. + Defaults to None. loss_weight: Loss weight associated with event. Defaults to None. - loss_weight_default_value: default value for loss weight. Used in instances where some events have no pre-defined loss weight. Defaults to None. + loss_weight_default_value: default value for loss weight. + Used in instances where some events have + no pre-defined loss weight. Defaults to None. data_path: Path to dataset data files. Defaults to None. Returns: @@ -428,6 +457,9 @@

Source code node_features=node_features, node_feature_names=node_feature_names ) + # Gaussian perturbation of each column if perturbation dict is given + node_features = self._perturb_input(node_features) + # Transform to pytorch tensor node_features = torch.tensor(node_features, dtype=self.dtype) @@ -445,7 +477,8 @@

Source code graph = self._edge_definition(graph) else: self.warnonce( - "No EdgeDefinition provided. Graphs will not have edges defined!" + """No EdgeDefinition provided. + Graphs will not have edges defined!""" # noqa ) # Attach data path - useful for Ensemble datasets. @@ -490,11 +523,31 @@

Source code # was instantiated with. assert len(node_feature_names) == len( self._node_feature_names - ), f"""Input features ({node_feature_names}) is not what {self.__class__.__name__} was instatiated with ({self._node_feature_names})""" + ), f"""Input features ({node_feature_names}) is not what + {self.__class__.__name__} was instatiated + with ({self._node_feature_names})""" # noqa for idx in range(len(node_feature_names)): assert ( node_feature_names[idx] == self._node_feature_names[idx] - ), f""" Order of node features in data are not the same as expected. Got {node_feature_names} vs. {self._node_feature_names}""" + ), f""" Order of node features in data + are not the same as expected. Got {node_feature_names} + vs. {self._node_feature_names}""" # noqa + + def _perturb_input(self, node_features: np.ndarray) -> np.ndarray: + if isinstance(self._perturbation_dict, dict): + self.warning_once( + f"""Will randomly perturb + {list(self._perturbation_dict.keys())} + using stds {self._perturbation_dict.values()}""" # noqa + ) + perturbed_features = self.rng.normal( + loc=node_features[:, self._perturbation_cols], + scale=np.array( + list(self._perturbation_dict.values()), dtype=float + ), + ) + node_features[:, self._perturbation_cols] = perturbed_features + return node_features def _add_loss_weights( self, @@ -582,7 +635,8 @@

Source code graph[feature] = graph.x[:, index].detach() else: self.warnonce( - """Cannot assign graph['x']. This field is reserved for node features. Please rename your input feature.""" + """Cannot assign graph['x']. This field is reserved + for node features. Please rename your input feature.""" # noqa ) return graph diff --git a/_modules/graphnet/models/graphs/graphs.html b/_modules/graphnet/models/graphs/graphs.html index 5f3dc4be7..2e0d1f9f9 100644 --- a/_modules/graphnet/models/graphs/graphs.html +++ b/_modules/graphnet/models/graphs/graphs.html @@ -324,14 +324,14 @@

Source code for graphnet.models.graphs.graphs

 """A module containing different graph representations in GraphNeT."""
 
-from typing import List, Optional
+from typing import List, Optional, Dict, Union
 import torch
+from numpy.random import Generator
 
-from graphnet.utilities.config import save_model_config
 from .graph_definition import GraphDefinition
 from graphnet.models.detector import Detector
 from graphnet.models.graphs.edges import EdgeDefinition, KNNEdges
-from graphnet.models.graphs.nodes import NodeDefinition
+from graphnet.models.graphs.nodes import NodeDefinition, NodesAsPulses
 
 
 
@@ -339,13 +339,14 @@

Source code for graphn class KNNGraph(GraphDefinition): """A Graph representation where Edges are drawn to nearest neighbours.""" - @save_model_config def __init__( self, detector: Detector, - node_definition: NodeDefinition, + node_definition: NodeDefinition = NodesAsPulses(), node_feature_names: Optional[List[str]] = None, dtype: Optional[torch.dtype] = torch.float, + perturbation_dict: Optional[Dict[str, float]] = None, + seed: Optional[Union[int, Generator]] = None, nb_nearest_neighbours: int = 8, columns: List[int] = [0, 1, 2], ) -> None: @@ -356,6 +357,12 @@

Source code for graphn node_definition: Definition of nodes in the graph. node_feature_names: Name of node features. dtype: data type for node features. + perturbation_dict: Dictionary mapping a feature name to a standard + deviation according to which the values for this + feature should be randomly perturbed. Defaults + to None. + seed: seed or Generator used to randomly sample perturbations. + Defaults to None. nb_nearest_neighbours: Number of edges for each node. Defaults to 8. columns: node feature columns used for distance calculation . Defaults to [0, 1, 2]. @@ -370,6 +377,8 @@

Source code for graphn ), dtype=dtype, node_feature_names=node_feature_names, + perturbation_dict=perturbation_dict, + seed=seed, )

diff --git a/_modules/graphnet/models/graphs/nodes/nodes.html b/_modules/graphnet/models/graphs/nodes/nodes.html index 3e7040189..14aecf400 100644 --- a/_modules/graphnet/models/graphs/nodes/nodes.html +++ b/_modules/graphnet/models/graphs/nodes/nodes.html @@ -331,7 +331,6 @@

Source code for g from torch_geometric.data import Data from graphnet.utilities.decorators import final -from graphnet.utilities.config import save_model_config from graphnet.models import Model @@ -340,7 +339,6 @@

Source code for g class NodeDefinition(Model): # pylint: disable=too-few-public-methods """Base class for graph building.""" - @save_model_config def __init__(self) -> None: """Construct `Detector`.""" # Base class constructor diff --git a/_modules/graphnet/models/model.html b/_modules/graphnet/models/model.html index 9654c1e81..2d895f29e 100644 --- a/_modules/graphnet/models/model.html +++ b/_modules/graphnet/models/model.html @@ -342,13 +342,19 @@

Source code for graphnet.model from torch_geometric.data import Data from graphnet.utilities.logging import Logger -from graphnet.utilities.config import Configurable, ModelConfig +from graphnet.utilities.config import ( + Configurable, + ModelConfig, + ModelConfigSaverABC, +) from graphnet.training.callbacks import ProgressBar
[docs] -class Model(Logger, Configurable, LightningModule, ABC): +class Model( + Logger, Configurable, LightningModule, ABC, metaclass=ModelConfigSaverABC +): """Base class for all models in graphnet."""
diff --git a/_modules/graphnet/models/standard_model.html b/_modules/graphnet/models/standard_model.html index cb57cb523..29381cb6c 100644 --- a/_modules/graphnet/models/standard_model.html +++ b/_modules/graphnet/models/standard_model.html @@ -334,7 +334,6 @@

Source code for graph from torch_geometric.data import Data import pandas as pd -from graphnet.utilities.config import save_model_config from graphnet.models.graphs import GraphDefinition from graphnet.models.gnn.gnn import GNN from graphnet.models.model import Model @@ -350,7 +349,6 @@

Source code for graph model (detector read-in, GNN architecture, and task-specific read-outs). """ - @save_model_config def __init__( self, *, diff --git a/_modules/graphnet/models/task/task.html b/_modules/graphnet/models/task/task.html index c43cb2f73..f592e588a 100644 --- a/_modules/graphnet/models/task/task.html +++ b/_modules/graphnet/models/task/task.html @@ -339,7 +339,6 @@

Source code for graphnet.m from graphnet.training.loss_functions import LossFunction # type: ignore[attr-defined] from graphnet.models import Model -from graphnet.utilities.config import save_model_config from graphnet.utilities.decorators import final @@ -365,7 +364,6 @@

Source code for graphnet.m """Return default prediction labels.""" return self._default_prediction_labels - @save_model_config def __init__( self, *, @@ -605,7 +603,6 @@

Source code for graphnet.m class IdentityTask(Task): """Identity, or trivial, task.""" - @save_model_config def __init__( self, nb_outputs: int, diff --git a/_modules/graphnet/training/loss_functions.html b/_modules/graphnet/training/loss_functions.html index dd70fd272..d1b35f50a 100644 --- a/_modules/graphnet/training/loss_functions.html +++ b/_modules/graphnet/training/loss_functions.html @@ -343,7 +343,6 @@

Source code for gra softplus, ) -from graphnet.utilities.config import save_model_config from graphnet.models.model import Model from graphnet.utilities.decorators import final @@ -353,7 +352,6 @@

Source code for gra class LossFunction(Model): """Base class for loss functions in `graphnet`.""" - @save_model_config def __init__(self, **kwargs: Any) -> None: """Construct `LossFunction`, saving model config.""" super().__init__(**kwargs) @@ -461,7 +459,6 @@

Source code for gra (0, num_classes - 1). """ - @save_model_config def __init__( self, options: Union[int, List[Any], Dict[Any, int]], diff --git a/_modules/graphnet/training/utils.html b/_modules/graphnet/training/utils.html index eff87f698..787b594c7 100644 --- a/_modules/graphnet/training/utils.html +++ b/_modules/graphnet/training/utils.html @@ -348,7 +348,7 @@

Source code for graphnet.tra def collate_fn(graphs: List[Data]) -> Batch: """Remove graphs with less than two DOM hits. - Should not occur in "production. + Should not occur in "production". """ graphs = [g for g in graphs if g.n_pulses > 1] return Batch.from_data_list(graphs)

@@ -361,7 +361,7 @@

Source code for graphnet.tra def make_dataloader( db: str, pulsemaps: Union[str, List[str]], - graph_definition: Optional[GraphDefinition], + graph_definition: GraphDefinition, features: List[str], truth: List[str], *, @@ -424,7 +424,7 @@

Source code for graphnet.tra [docs] def make_train_validation_dataloader( db: str, - graph_definition: Optional[GraphDefinition], + graph_definition: GraphDefinition, selection: Optional[List[int]], pulsemaps: Union[str, List[str]], features: List[str], diff --git a/_modules/graphnet/utilities/config/dataset_config.html b/_modules/graphnet/utilities/config/dataset_config.html index 91b338109..3b7b036b5 100644 --- a/_modules/graphnet/utilities/config/dataset_config.html +++ b/_modules/graphnet/utilities/config/dataset_config.html @@ -323,7 +323,8 @@

Source code for graphnet.utilities.config.dataset_config

 """Config classes for the `graphnet.data.dataset` module."""
-
+import warnings
+from abc import ABCMeta
 from functools import wraps
 from typing import (
     TYPE_CHECKING,
@@ -512,6 +513,11 @@ 

Source code [docs] def save_dataset_config(init_fn: Callable) -> Callable: """Save the arguments to `__init__` functions as member `DatasetConfig`.""" + warnings.warn( + "Warning: `save_dataset_config` is deprecated. Config saving " + "is now done automatically, for all classes inheriting from Dataset", + DeprecationWarning, + ) def _replace_model_instance_with_config( obj: Union["Model", Any] @@ -547,6 +553,51 @@

Source code return wrapper

+ + +
+[docs] +class DatasetConfigSaverMeta(type): + """Metaclass for `DatasetConfig` that saves the config after `__init__`.""" + + def __call__(cls: Any, *args: Any, **kwargs: Any) -> object: + """Catch object after construction and save config.""" + + def _replace_model_instance_with_config( + obj: Union["Model", Any] + ) -> Union[ModelConfig, Any]: + """Replace `Model` instances in `obj` with their `ModelConfig`.""" + from graphnet.models import Model + import torch + + if isinstance(obj, Model): + return obj.config + + if isinstance(obj, torch.dtype): + return obj.__str__() + else: + return obj + + # Create object + created_obj = super().__call__(*args, **kwargs) + + # Get all argument values, including defaults + cfg = get_all_argument_values(created_obj.__init__, *args, **kwargs) + cfg = traverse_and_apply(cfg, _replace_model_instance_with_config) + + # Store config in + created_obj._config = DatasetConfig(**cfg) + return created_obj
+ + + +
+[docs] +class DatasetConfigSaverABCMeta(DatasetConfigSaverMeta, ABCMeta): + """Common interface between DatasetConfigSaver and ABC Metaclasses.""" + + pass
+
diff --git a/_modules/graphnet/utilities/config/model_config.html b/_modules/graphnet/utilities/config/model_config.html index e63e73186..0aa31c78e 100644 --- a/_modules/graphnet/utilities/config/model_config.html +++ b/_modules/graphnet/utilities/config/model_config.html @@ -323,9 +323,11 @@

Source code for graphnet.utilities.config.model_config

 """Config classes for the `graphnet.models` module."""
+from abc import ABCMeta
 from functools import wraps
 import inspect
 import re
+import warnings
 from typing import (
     TYPE_CHECKING,
     Any,
@@ -582,6 +584,11 @@ 

Source code f [docs] def save_model_config(init_fn: Callable) -> Callable: """Save the arguments to `__init__` functions as a member `ModelConfig`.""" + warnings.warn( + "Warning: `save_model_config` is deprecated. Config saving is" + "now done automatically for all classes inheriting from Model", + DeprecationWarning, + ) def _replace_model_instance_with_config( obj: Union["Model", Any] @@ -616,6 +623,50 @@

Source code f return wrapper

+ + +
+[docs] +class ModelConfigSaverMeta(type): + """Metaclass for saving `ModelConfig` to `Model` instances.""" + + def __call__(cls: Any, *args: Any, **kwargs: Any) -> object: + """Catch object construction and save config after `__init__`.""" + + def _replace_model_instance_with_config( + obj: Union["Model", Any] + ) -> Union[ModelConfig, Any]: + """Replace `Model` instances in `obj` with their `ModelConfig`.""" + from graphnet.models import Model + + if isinstance(obj, Model): + return obj.config + else: + return obj + + # Create object + created_obj = super().__call__(*args, **kwargs) + + # Get all argument values, including defaults + cfg = get_all_argument_values(created_obj.__init__, *args, **kwargs) + cfg = traverse_and_apply(cfg, _replace_model_instance_with_config) + + # Store config in + created_obj._config = ModelConfig( + class_name=str(cls.__name__), + arguments=dict(**cfg), + ) + return created_obj
+ + + +
+[docs] +class ModelConfigSaverABC(ModelConfigSaverMeta, ABCMeta): + """Common interface between ModelConfigSaver and ABC Metaclasses.""" + + pass
+
diff --git a/_modules/index.html b/_modules/index.html index 120145b62..0a020631b 100644 --- a/_modules/index.html +++ b/_modules/index.html @@ -327,7 +327,6 @@

All modules for which code is available

  • graphnet.data.dataset.dataset
  • graphnet.data.dataset.parquet.parquet_dataset
  • graphnet.data.dataset.sqlite.sqlite_dataset
  • -
  • graphnet.data.dataset.sqlite.sqlite_dataset_perturbed
  • graphnet.data.extractors.i3extractor
  • graphnet.data.extractors.i3featureextractor
  • graphnet.data.extractors.i3genericextractor
  • diff --git a/_sources/api/graphnet.data.dataset.sqlite.rst.txt b/_sources/api/graphnet.data.dataset.sqlite.rst.txt index 9c6789d2d..253056886 100644 --- a/_sources/api/graphnet.data.dataset.sqlite.rst.txt +++ b/_sources/api/graphnet.data.dataset.sqlite.rst.txt @@ -16,7 +16,6 @@ sqlite :maxdepth: 2 graphnet.data.dataset.sqlite.sqlite_dataset - graphnet.data.dataset.sqlite.sqlite_dataset_perturbed diff --git a/_sources/api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.rst.txt b/_sources/api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.rst.txt deleted file mode 100644 index 363bb031b..000000000 --- a/_sources/api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.rst.txt +++ /dev/null @@ -1,8 +0,0 @@ - -sqlite\_dataset\_perturbed -========================== - -.. automodule:: graphnet.data.dataset.sqlite.sqlite_dataset_perturbed - :members: - :undoc-members: - :show-inheritance: diff --git a/api/graphnet.data.dataset.dataset.html b/api/graphnet.data.dataset.dataset.html index ac7ed7ec2..88e9f8603 100644 --- a/api/graphnet.data.dataset.dataset.html +++ b/api/graphnet.data.dataset.dataset.html @@ -130,7 +130,7 @@ - + @@ -643,7 +643,7 @@
    -class graphnet.data.dataset.dataset.Dataset(path, graph_definition, pulsemaps, features, truth, *, node_truth, index_column, truth_table, node_truth_table, string_selection, selection, dtype, loss_weight_table, loss_weight_column, loss_weight_default_value, seed)[source]
    +class graphnet.data.dataset.dataset.Dataset(*args, **kwargs)[source]

    Bases: Logger, Configurable, Dataset, ABC

    Base Dataset class for reading from any intermediate file format.

    Construct Dataset.

    @@ -692,8 +692,13 @@ “10000 random events ~ event_no % 5 > 0” or “20% random events ~ event_no % 5 > 0”).

  • graph_definition (GraphDefinition) – Method that defines the graph representation.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -806,7 +811,7 @@

    Bases: Dataset

    Pytorch dataset for reading from Parquet files.

    Construct Dataset.

    @@ -566,8 +566,13 @@ “10000 random events ~ event_no % 5 > 0” or “20% random events ~ event_no % 5 > 0”).

  • graph_definition (GraphDefinition) – Method that defines the graph representation.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.data.dataset.sqlite.html b/api/graphnet.data.dataset.sqlite.html index 8ea0f5783..4111fca68 100644 --- a/api/graphnet.data.dataset.sqlite.html +++ b/api/graphnet.data.dataset.sqlite.html @@ -339,13 +339,6 @@ sqlite_dataset - -
  • - - - sqlite_dataset_perturbed - -
  • @@ -492,10 +485,6 @@
  • SQLiteDataset
  • -
  • sqlite_dataset_perturbed -
  • diff --git a/api/graphnet.data.dataset.sqlite.sqlite_dataset.html b/api/graphnet.data.dataset.sqlite.sqlite_dataset.html index 7d25db896..121d22fc0 100644 --- a/api/graphnet.data.dataset.sqlite.sqlite_dataset.html +++ b/api/graphnet.data.dataset.sqlite.sqlite_dataset.html @@ -129,7 +129,7 @@ - + @@ -365,13 +365,6 @@ - -
  • - - - sqlite_dataset_perturbed - -
  • @@ -524,7 +517,7 @@

    Dataset class(es) for reading data from SQLite databases.

    -class graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset(path, graph_definition, pulsemaps, features, truth, *, node_truth, index_column, truth_table, node_truth_table, string_selection, selection, dtype, loss_weight_table, loss_weight_column, loss_weight_default_value, seed)[source]
    +class graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset(*args, **kwargs)[source]

    Bases: Dataset

    Pytorch dataset for reading data from SQLite databases.

    Construct Dataset.

    @@ -573,8 +566,13 @@ “10000 random events ~ event_no % 5 > 0” or “20% random events ~ event_no % 5 > 0”).

  • graph_definition (GraphDefinition) – Method that defines the graph representation.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -621,12 +619,12 @@ -
    Skip to content -
    - -
    - - -
    - - - - -
    -
    - -
    -
    -
    - -
    -
    -
    -
    -
    -
    - - -
    -
    -
    - -
    -
    - -
    -

    sqlite_dataset_perturbed

    -

    Dataset class(es) for reading perturbed data from SQLite databases.

    -
    -
    -class graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.SQLiteDatasetPerturbed(path, pulsemaps, features, truth, *, perturbation_dict, node_truth, index_column, truth_table, node_truth_table, string_selection, selection, dtype, loss_weight_table, loss_weight_column, loss_weight_default_value, seed)[source]
    -

    Bases: SQLiteDataset

    -

    Pytorch dataset for reading perturbed data from SQLite databases.

    -

    This including a pre-processing step, where the input data is randomly -perturbed according to given per-feature “noise” levels. This is intended -to test the stability of a trained model under small changes to the input -parameters.

    -

    Construct SQLiteDatasetPerturbed.

    -
    -
    Parameters:
    -
      -
    • path (Union[str, List[str]]) – Path to the file(s) from which this Dataset should read.

    • -
    • pulsemaps (Union[str, List[str]]) – Name(s) of the pulse map series that should be used to -construct the nodes on the individual graph objects, and their -features. Multiple pulse series maps can be used, e.g., when -different DOM types are stored in different maps.

    • -
    • features (List[str]) – List of columns in the input files that should be used as -node features on the graph objects.

    • -
    • truth (List[str]) – List of event-level columns in the input files that should -be used added as attributes on the graph objects.

    • -
    • perturbation_dict (Dict[str, float]) – Dictionary mapping a feature -name to a standard deviation according to which the values for -this feature should be randomly perturbed.

    • -
    • node_truth (Optional[List[str]], default: None) – List of node-level columns in the input files that -should be used added as attributes on the graph objects.

    • -
    • index_column (str, default: 'event_no') – Name of the column in the input files that contains -unique indicies to identify and map events across tables.

    • -
    • truth_table (str, default: 'truth') – Name of the table containing event-level truth -information.

    • -
    • node_truth_table (Optional[str], default: None) – Name of the table containing node-level truth -information.

    • -
    • string_selection (Optional[List[int]], default: None) – Subset of strings for which data should be read -and used to construct graph objects. Defaults to None, meaning -all strings for which data exists are used.

    • -
    • selection (Optional[List[int]], default: None) – List of indicies (in index_column) of the events in -the input files that should be read. Defaults to None, meaning -that all events in the input files are read.

    • -
    • dtype (dtype, default: torch.float32) – Type of the feature tensor on the graph objects returned.

    • -
    • loss_weight_table (Optional[str], default: None) – Name of the table containing per-event loss -weights.

    • -
    • loss_weight_column (Optional[str], default: None) – Name of the column in loss_weight_table -containing per-event loss weights. This is also the name of the -corresponding attribute assigned to the graph object.

    • -
    • loss_weight_default_value (Optional[float], default: None) – Default per-event loss weight. -NOTE: This default value is only applied when -loss_weight_table and loss_weight_column are specified, and -in this case to events with no value in the corresponding -table/column. That is, if no per-event loss weight table/column -is provided, this value is ignored. Defaults to None.

    • -
    • seed (Union[int, Generator, None], default: None) – Optional seed for random number generation. Defaults to None.

    • -
    -
    -
    -
    -
    - - -
    -
    -
    -
    -
    - - - - - \ No newline at end of file diff --git a/api/graphnet.models.coarsening.html b/api/graphnet.models.coarsening.html index 5341555ea..4257e142b 100644 --- a/api/graphnet.models.coarsening.html +++ b/api/graphnet.models.coarsening.html @@ -572,17 +572,20 @@
    -class graphnet.models.coarsening.Coarsening(reduce, transfer_attributes)[source]
    +class graphnet.models.coarsening.Coarsening(*args, **kwargs)[source]

    Bases: Model

    Base class for coarsening operations.

    Construct Coarsening.

    Parameters:
      -
    • reduce (str) –

    • -
    • transfer_attributes (bool) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    @@ -604,68 +607,74 @@
    -class graphnet.models.coarsening.AttributeCoarsening(attributes, reduce, transfer_attributes)[source]
    +class graphnet.models.coarsening.AttributeCoarsening(*args, **kwargs)[source]

    Bases: Coarsening

    Coarsen pulses based on specified attributes.

    Construct SimpleCoarsening.

    Parameters:
      -
    • attributes (List[str]) –

    • -
    • reduce (str) –

    • -
    • transfer_attributes (bool) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    -class graphnet.models.coarsening.DOMCoarsening(reduce, transfer_attributes, keys)[source]
    +class graphnet.models.coarsening.DOMCoarsening(*args, **kwargs)[source]

    Bases: Coarsening

    Coarsen pulses to DOM-level.

    Cluster pulses on the same DOM.

    Parameters:
      -
    • reduce (str) –

    • -
    • transfer_attributes (bool) –

    • -
    • keys (List[str] | None) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    -class graphnet.models.coarsening.CustomDOMCoarsening(reduce, transfer_attributes, keys)[source]
    +class graphnet.models.coarsening.CustomDOMCoarsening(*args, **kwargs)[source]

    Bases: DOMCoarsening

    Coarsen pulses to DOM-level with additional attributes.

    Cluster pulses on the same DOM.

    Parameters:
      -
    • reduce (str) –

    • -
    • transfer_attributes (bool) –

    • -
    • keys (List[str] | None) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    -class graphnet.models.coarsening.DOMAndTimeWindowCoarsening(time_window, reduce, transfer_attributes, keys=['dom_x', 'dom_y', 'dom_z', 'rde', 'pmt_area'], time_key)[source]
    +class graphnet.models.coarsening.DOMAndTimeWindowCoarsening(*args, **kwargs)[source]

    Bases: Coarsening

    Coarsen pulses to DOM-level, with additional time-window clustering.

    Cluster pulses on the same DOM within time_window.

    Parameters:
      -
    • time_window (float) –

    • -
    • reduce (str) –

    • -
    • transfer_attributes (bool) –

    • -
    • keys (List[str]) –

    • -
    • time_key (str) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.detector.detector.html b/api/graphnet.models.detector.detector.html index 773954d8d..1ba47c47f 100644 --- a/api/graphnet.models.detector.detector.html +++ b/api/graphnet.models.detector.detector.html @@ -520,11 +520,20 @@

    Base detector-specific Model class(es).

    -class graphnet.models.detector.detector.Detector[source]
    +class graphnet.models.detector.detector.Detector(*args, **kwargs)[source]

    Bases: Model

    Base class for all detector-specific read-ins in graphnet.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.detector.icecube.html b/api/graphnet.models.detector.icecube.html index e37d2e2da..11d972fa9 100644 --- a/api/graphnet.models.detector.icecube.html +++ b/api/graphnet.models.detector.icecube.html @@ -587,11 +587,20 @@

    IceCube-specific Detector class(es).

    -class graphnet.models.detector.icecube.IceCube86[source]
    +class graphnet.models.detector.icecube.IceCube86(*args, **kwargs)[source]

    Bases: Detector

    Detector class for IceCube-86.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    @@ -606,11 +615,20 @@
    -class graphnet.models.detector.icecube.IceCubeKaggle[source]
    +class graphnet.models.detector.icecube.IceCubeKaggle(*args, **kwargs)[source]

    Bases: Detector

    Detector class for Kaggle Competition.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    @@ -625,11 +643,20 @@
    -class graphnet.models.detector.icecube.IceCubeDeepCore[source]
    +class graphnet.models.detector.icecube.IceCubeDeepCore(*args, **kwargs)[source]

    Bases: Detector

    Detector class for IceCube-DeepCore.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    @@ -644,11 +671,20 @@
    -class graphnet.models.detector.icecube.IceCubeUpgrade[source]
    +class graphnet.models.detector.icecube.IceCubeUpgrade(*args, **kwargs)[source]

    Bases: Detector

    Detector class for IceCube-Upgrade.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.detector.prometheus.html b/api/graphnet.models.detector.prometheus.html index 0c266b36a..8aa25084d 100644 --- a/api/graphnet.models.detector.prometheus.html +++ b/api/graphnet.models.detector.prometheus.html @@ -509,11 +509,20 @@

    Prometheus-specific Detector class(es).

    -class graphnet.models.detector.prometheus.Prometheus[source]
    +class graphnet.models.detector.prometheus.Prometheus(*args, **kwargs)[source]

    Bases: Detector

    Detector class for Prometheus prototype.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.gnn.convnet.html b/api/graphnet.models.gnn.convnet.html index 52d6ba1ea..9ba1f86af 100644 --- a/api/graphnet.models.gnn.convnet.html +++ b/api/graphnet.models.gnn.convnet.html @@ -524,7 +524,7 @@

    Author: Martin Ha Minh

    -class graphnet.models.gnn.convnet.ConvNet(nb_inputs, nb_outputs, nb_intermediate, dropout_ratio)[source]
    +class graphnet.models.gnn.convnet.ConvNet(*args, **kwargs)[source]

    Bases: GNN

    ConvNet (convolutional network) model.

    Construct ConvNet.

    @@ -537,8 +537,13 @@ output layer.

  • nb_intermediate (int, default: 128) – Number of nodes in intermediate layer(s).

  • dropout_ratio (float, default: 0.3) – Fraction of nodes to drop.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.gnn.dynedge.html b/api/graphnet.models.gnn.dynedge.html index 908284418..836c517ca 100644 --- a/api/graphnet.models.gnn.dynedge.html +++ b/api/graphnet.models.gnn.dynedge.html @@ -523,7 +523,7 @@

    Implementation of the DynEdge GNN model architecture.

    -class graphnet.models.gnn.dynedge.DynEdge(nb_inputs, *, nb_neighbours, features_subset, dynedge_layer_sizes, post_processing_layer_sizes, readout_layer_sizes, global_pooling_schemes, add_global_variables_after_pooling)[source]
    +class graphnet.models.gnn.dynedge.DynEdge(*args, **kwargs)[source]

    Bases: GNN

    DynEdge (dynamical edge convolutional) model.

    Construct DynEdge.

    @@ -559,8 +559,13 @@ after global pooling. The alternative is to added (distribute) them to the individual nodes before any convolutional operations.

    +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.gnn.dynedge_jinst.html b/api/graphnet.models.gnn.dynedge_jinst.html index 407d0cb08..17e28429c 100644 --- a/api/graphnet.models.gnn.dynedge_jinst.html +++ b/api/graphnet.models.gnn.dynedge_jinst.html @@ -524,7 +524,7 @@

    Author: Rasmus Oersoe

    -class graphnet.models.gnn.dynedge_jinst.DynEdgeJINST(nb_inputs, layer_size_scale)[source]
    +class graphnet.models.gnn.dynedge_jinst.DynEdgeJINST(*args, **kwargs)[source]

    Bases: GNN

    DynEdge (dynamical edge convolutional) model used in [2209.03042].

    Construct DynEdgeJINST.

    @@ -534,8 +534,13 @@
  • nb_inputs (int) – Number of input features.

  • nb_outputs – Number of output features.

  • layer_size_scale (int, default: 4) – Integer that scales the size of hidden layers.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.gnn.dynedge_kaggle_tito.html b/api/graphnet.models.gnn.dynedge_kaggle_tito.html index a27928192..82027f88a 100644 --- a/api/graphnet.models.gnn.dynedge_kaggle_tito.html +++ b/api/graphnet.models.gnn.dynedge_kaggle_tito.html @@ -529,7 +529,7 @@

    Solution by TITO.

    -class graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO(nb_inputs, features_subset(0, 4, None), dyntrans_layer_sizes, global_pooling_schemes=['max'])[source]
    +class graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO(*args, **kwargs)[source]

    Bases: GNN

    DynEdge (dynamical edge convolutional) model.

    Construct DynEdge.

    @@ -544,8 +544,13 @@ used in the DynTrans layer.

  • global_pooling_schemes (List[str], default: ['max']) – The list global pooling schemes to use. Options are: “min”, “max”, “mean”, and “sum”.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.gnn.gnn.html b/api/graphnet.models.gnn.gnn.html index 78ee2338d..537c08b73 100644 --- a/api/graphnet.models.gnn.gnn.html +++ b/api/graphnet.models.gnn.gnn.html @@ -545,17 +545,20 @@

    Base GNN-specific Model class(es).

    -class graphnet.models.gnn.gnn.GNN(nb_inputs, nb_outputs)[source]
    +class graphnet.models.gnn.gnn.GNN(*args, **kwargs)[source]

    Bases: Model

    Base class for all core GNN models in graphnet.

    Construct GNN.

    Parameters:
      -
    • nb_inputs (int) –

    • -
    • nb_outputs (int) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.graphs.edges.edges.html b/api/graphnet.models.graphs.edges.edges.html index 98b04f64a..01668c62f 100644 --- a/api/graphnet.models.graphs.edges.edges.html +++ b/api/graphnet.models.graphs.edges.edges.html @@ -557,20 +557,20 @@

    Class(es) for building/connecting graphs.

    -class graphnet.models.graphs.edges.edges.EdgeDefinition(name, class_name, level, log_folder, **kwargs)[source]
    +class graphnet.models.graphs.edges.edges.EdgeDefinition(*args, **kwargs)[source]

    Bases: Model

    Base class for graph building.

    Construct Logger.

    Parameters:
      -
    • name (str | None) –

    • -
    • class_name (str | None) –

    • -
    • level (int) –

    • -
    • log_folder (str | None) –

    • +
    • args (Any) –

    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    @@ -592,7 +592,7 @@
    -class graphnet.models.graphs.edges.edges.KNNEdges(nb_nearest_neighbours, columns=[0, 1, 2])[source]
    +class graphnet.models.graphs.edges.edges.KNNEdges(*args, **kwargs)[source]

    Bases: EdgeDefinition

    Builds edges from the k-nearest neighbours.

    K-NN Edge definition.

    @@ -606,13 +606,18 @@
  • [0 (Defaults to) –

  • 1

  • 2].

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    -class graphnet.models.graphs.edges.edges.RadialEdges(radius, columns=[0, 1, 2])[source]
    +class graphnet.models.graphs.edges.edges.RadialEdges(*args, **kwargs)[source]

    Bases: EdgeDefinition

    Builds graph from a sphere of chosen radius centred at each node.

    Radial edges.

    @@ -627,13 +632,18 @@
  • [0 (Defaults to) –

  • 1

  • 2].

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    -class graphnet.models.graphs.edges.edges.EuclideanEdges(sigma, threshold, columns)[source]
    +class graphnet.models.graphs.edges.edges.EuclideanEdges(*args, **kwargs)[source]

    Bases: EdgeDefinition

    Builds edges according to Euclidean distance between nodes.

    See https://arxiv.org/pdf/1809.06166.pdf.

    @@ -641,11 +651,13 @@
    Parameters:
      -
    • sigma (float) –

    • -
    • threshold (float) –

    • -
    • columns (List[int]) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.graphs.graph_definition.html b/api/graphnet.models.graphs.graph_definition.html index 8dcade719..d4b8a4846 100644 --- a/api/graphnet.models.graphs.graph_definition.html +++ b/api/graphnet.models.graphs.graph_definition.html @@ -519,7 +519,7 @@ passed to dataloaders during training and deployment.

    -class graphnet.models.graphs.graph_definition.GraphDefinition(detector, node_definition, edge_definition, node_feature_names, dtype)[source]
    +class graphnet.models.graphs.graph_definition.GraphDefinition(*args, **kwargs)[source]

    Bases: Model

    An Abstract class to create graph definitions from.

    Construct ´GraphDefinition´. The ´detector´ holds.

    @@ -531,12 +531,23 @@
    Parameters:
    • detector (Detector) – The corresponding ´Detector´ representing the data.

    • -
    • node_definition (NodeDefinition) – Definition of nodes.

    • +
    • node_definition (NodeDefinition, default: NodesAsPulses()) – Definition of nodes. Defaults to NodesAsPulses.

    • edge_definition (Optional[EdgeDefinition], default: None) – Definition of edges. Defaults to None.

    • node_feature_names (Optional[List[str]], default: None) – Names of node feature columns. Defaults to None

    • dtype (Optional[dtype], default: torch.float32) – data type used for node features. e.g. ´torch.float´

    • +
    • perturbation_dict (Optional[Dict[str, float]], default: None) – Dictionary mapping a feature name to a standard +deviation according to which the values for this +feature should be randomly perturbed. Defaults +to None.

    • +
    • seed (Union[int, Generator, None], default: None) – seed or Generator used to randomly sample perturbations. +Defaults to None.

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    @@ -549,9 +560,12 @@
  • node_feature_names (List[str]) – name of each column. Shape ´[,d]´.

  • truth_dicts (Optional[List[Dict[str, Any]]], default: None) – Dictionary containing truth labels.

  • custom_label_functions (Optional[Dict[str, Callable[..., Any]]], default: None) – Custom label functions. See https://github.com/graphnet-team/graphnet/blob/main/GETTING_STARTED.md#adding-custom-truth-labels.

  • -
  • loss_weight_column (Optional[str], default: None) – Name of column that holds loss weight. Defaults to None.

  • +
  • loss_weight_column (Optional[str], default: None) – Name of column that holds loss weight. +Defaults to None.

  • loss_weight (Optional[float], default: None) – Loss weight associated with event. Defaults to None.

  • -
  • loss_weight_default_value (Optional[float], default: None) – default value for loss weight. Used in instances where some events have no pre-defined loss weight. Defaults to None.

  • +
  • loss_weight_default_value (Optional[float], default: None) – default value for loss weight. +Used in instances where some events have +no pre-defined loss weight. Defaults to None.

  • data_path (Optional[str], default: None) – Path to dataset data files. Defaults to None.

  • diff --git a/api/graphnet.models.graphs.graphs.html b/api/graphnet.models.graphs.graphs.html index 0d889a033..88980e719 100644 --- a/api/graphnet.models.graphs.graphs.html +++ b/api/graphnet.models.graphs.graphs.html @@ -501,7 +501,7 @@

    A module containing different graph representations in GraphNeT.

    -class graphnet.models.graphs.graphs.KNNGraph(detector, node_definition, node_feature_names, dtype, nb_nearest_neighbours, columns=[0, 1, 2])[source]
    +class graphnet.models.graphs.graphs.KNNGraph(*args, **kwargs)[source]

    Bases: GraphDefinition

    A Graph representation where Edges are drawn to nearest neighbours.

    Construct k-nn graph representation.

    @@ -509,16 +509,27 @@
    Parameters:
    • detector (Detector) – Detector that represents your data.

    • -
    • node_definition (NodeDefinition) – Definition of nodes in the graph.

    • +
    • node_definition (NodeDefinition, default: NodesAsPulses()) – Definition of nodes in the graph.

    • node_feature_names (Optional[List[str]], default: None) – Name of node features.

    • dtype (Optional[dtype], default: torch.float32) – data type for node features.

    • +
    • perturbation_dict (Optional[Dict[str, float]], default: None) – Dictionary mapping a feature name to a standard +deviation according to which the values for this +feature should be randomly perturbed. Defaults +to None.

    • +
    • seed (Union[int, Generator, None], default: None) – seed or Generator used to randomly sample perturbations. +Defaults to None.

    • nb_nearest_neighbours (int, default: 8) – Number of edges for each node. Defaults to 8.

    • columns (List[int], default: [0, 1, 2]) – node feature columns used for distance calculation

    • [0 (. Defaults to) –

    • 1

    • 2].

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.graphs.nodes.nodes.html b/api/graphnet.models.graphs.nodes.nodes.html index a5ac7ba2d..f08873a7c 100644 --- a/api/graphnet.models.graphs.nodes.nodes.html +++ b/api/graphnet.models.graphs.nodes.nodes.html @@ -557,11 +557,20 @@

    Class(es) for building/connecting graphs.

    -class graphnet.models.graphs.nodes.nodes.NodeDefinition[source]
    +class graphnet.models.graphs.nodes.nodes.NodeDefinition(*args, **kwargs)[source]

    Bases: Model

    Base class for graph building.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    @@ -604,11 +613,20 @@
    -class graphnet.models.graphs.nodes.nodes.NodesAsPulses[source]
    +class graphnet.models.graphs.nodes.nodes.NodesAsPulses(*args, **kwargs)[source]

    Bases: NodeDefinition

    Represent each measured pulse of Cherenkov Radiation as a node.

    Construct Detector.

    +
    Parameters:
    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.model.html b/api/graphnet.models.model.html index 286f23f20..cee61ff8f 100644 --- a/api/graphnet.models.model.html +++ b/api/graphnet.models.model.html @@ -575,20 +575,20 @@

    Base class(es) for building models.

    -class graphnet.models.model.Model(name, class_name, level, log_folder, **kwargs)[source]
    +class graphnet.models.model.Model(*args, **kwargs)[source]

    Bases: Logger, Configurable, LightningModule, ABC

    Base class for all models in graphnet.

    Construct Logger.

    Parameters:
      -
    • name (str | None) –

    • -
    • class_name (str | None) –

    • -
    • level (int) –

    • -
    • log_folder (str | None) –

    • +
    • args (Any) –

    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.standard_model.html b/api/graphnet.models.standard_model.html index b886a0725..9d0aa3ed8 100644 --- a/api/graphnet.models.standard_model.html +++ b/api/graphnet.models.standard_model.html @@ -608,7 +608,7 @@

    Standard model class(es).

    -class graphnet.models.standard_model.StandardModel(*, graph_definition, gnn, tasks, optimizer_class=<class 'torch.optim.adam.Adam'>, optimizer_kwargs, scheduler_class, scheduler_kwargs, scheduler_config)[source]
    +class graphnet.models.standard_model.StandardModel(*args, **kwargs)[source]

    Bases: Model

    Main class for standard models in graphnet.

    This class chains together the different elements of a complete GNN-based @@ -617,16 +617,13 @@

    Parameters:
      -
    • graph_definition (GraphDefinition) –

    • -
    • gnn (GNN) –

    • -
    • tasks (Task | List[Task]) –

    • -
    • optimizer_class (type) –

    • -
    • optimizer_kwargs (Dict | None) –

    • -
    • scheduler_class (type | None) –

    • -
    • scheduler_kwargs (Dict | None) –

    • -
    • scheduler_config (Dict | None) –

    • +
    • args (Any) –

    • +
    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.task.classification.html b/api/graphnet.models.task.classification.html index 50cf9ca15..36c17b4fd 100644 --- a/api/graphnet.models.task.classification.html +++ b/api/graphnet.models.task.classification.html @@ -590,7 +590,7 @@

    Classification-specific Model class(es).

    -class graphnet.models.task.classification.MulticlassClassificationTask(nb_outputs, target_labels, *args, **kwargs)[source]
    +class graphnet.models.task.classification.MulticlassClassificationTask(*args, **kwargs)[source]

    Bases: IdentityTask

    General task for classifying any number of classes.

    Requires the same number of input features as the number of classes being @@ -602,17 +602,18 @@

    Parameters:
      -
    • nb_outputs (int) –

    • -
    • target_labels (List[str] | Any) –

    • args (Any) –

    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    -class graphnet.models.task.classification.BinaryClassificationTask(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.classification.BinaryClassificationTask(*args, **kwargs)[source]

    Bases: Task

    Performs binary classification.

    Construct Task.

    @@ -652,8 +653,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -670,7 +676,7 @@
    -class graphnet.models.task.classification.BinaryClassificationTaskLogits(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.classification.BinaryClassificationTaskLogits(*args, **kwargs)[source]

    Bases: Task

    Performs binary classification form logits.

    Construct Task.

    @@ -710,8 +716,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.task.reconstruction.html b/api/graphnet.models.task.reconstruction.html index 06b772e83..d676c53b9 100644 --- a/api/graphnet.models.task.reconstruction.html +++ b/api/graphnet.models.task.reconstruction.html @@ -1059,7 +1059,7 @@

    Reconstruction-specific Model class(es).

    -class graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa(*args, **kwargs)[source]

    Bases: Task

    Reconstructs azimuthal angle and associated kappa (1/var).

    Construct Task.

    @@ -1099,8 +1099,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1117,7 +1122,7 @@
    -class graphnet.models.task.reconstruction.AzimuthReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.AzimuthReconstruction(*args, **kwargs)[source]

    Bases: AzimuthReconstructionWithKappa

    Reconstructs azimuthal angle.

    Construct Task.

    @@ -1157,8 +1162,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1175,7 +1185,7 @@
    -class graphnet.models.task.reconstruction.DirectionReconstructionWithKappa(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.DirectionReconstructionWithKappa(*args, **kwargs)[source]

    Bases: Task

    Reconstructs direction with kappa from the 3D-vMF distribution.

    Construct Task.

    @@ -1215,8 +1225,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1233,7 +1248,7 @@
    -class graphnet.models.task.reconstruction.ZenithReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.ZenithReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs zenith angle.

    Construct Task.

    @@ -1273,8 +1288,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1291,7 +1311,7 @@
    -class graphnet.models.task.reconstruction.ZenithReconstructionWithKappa(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.ZenithReconstructionWithKappa(*args, **kwargs)[source]

    Bases: ZenithReconstruction

    Reconstructs zenith angle and associated kappa (1/var).

    Construct Task.

    @@ -1331,8 +1351,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1349,7 +1374,7 @@
    -class graphnet.models.task.reconstruction.EnergyReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.EnergyReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs energy using stable method.

    Construct Task.

    @@ -1389,8 +1414,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1407,7 +1437,7 @@
    -class graphnet.models.task.reconstruction.EnergyReconstructionWithPower(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.EnergyReconstructionWithPower(*args, **kwargs)[source]

    Bases: Task

    Reconstructs energy.

    Construct Task.

    @@ -1447,8 +1477,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1465,7 +1500,7 @@
    -class graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty(*args, **kwargs)[source]

    Bases: EnergyReconstruction

    Reconstructs energy and associated uncertainty (log(var)).

    Construct Task.

    @@ -1505,8 +1540,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1523,7 +1563,7 @@
    -class graphnet.models.task.reconstruction.VertexReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.VertexReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs vertex position and time.

    Construct Task.

    @@ -1563,8 +1603,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1581,7 +1626,7 @@
    -class graphnet.models.task.reconstruction.PositionReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.PositionReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs vertex position.

    Construct Task.

    @@ -1621,8 +1666,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1639,7 +1689,7 @@
    -class graphnet.models.task.reconstruction.TimeReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.TimeReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs time.

    Construct Task.

    @@ -1679,8 +1729,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -1697,7 +1752,7 @@
    -class graphnet.models.task.reconstruction.InelasticityReconstruction(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.reconstruction.InelasticityReconstruction(*args, **kwargs)[source]

    Bases: Task

    Reconstructs interaction inelasticity.

    That is, 1-(track energy / hadronic energy).

    @@ -1738,8 +1793,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.models.task.task.html b/api/graphnet.models.task.task.html index 35d5c451e..c557bedc1 100644 --- a/api/graphnet.models.task.task.html +++ b/api/graphnet.models.task.task.html @@ -623,7 +623,7 @@

    Base physics task-specific Model class(es).

    -class graphnet.models.task.task.Task(*, hidden_size, loss_function, target_labels, prediction_labels, transform_prediction_and_target, transform_target, transform_inference, transform_support, loss_weight)[source]
    +class graphnet.models.task.task.Task(*args, **kwargs)[source]

    Bases: Model

    Base class for all reconstruction and classification tasks.

    Construct Task.

    @@ -663,8 +663,13 @@ is tested on the range [-1e6, 1e6].

  • loss_weight (Optional[str], default: None) – Name of the attribute in data containing per-event loss weights.

  • +
  • args (Any) –

  • +
  • kwargs (Any) –

  • +
    Return type:
    +

    object

    +
    @@ -734,7 +739,7 @@
    -class graphnet.models.task.task.IdentityTask(nb_outputs, target_labels, *args, **kwargs)[source]
    +class graphnet.models.task.task.IdentityTask(*args, **kwargs)[source]

    Bases: Task

    Identity, or trivial, task.

    Construct IdentityTask.

    @@ -743,12 +748,13 @@
    Parameters:
      -
    • nb_outputs (int) –

    • -
    • target_labels (List[str] | Any) –

    • args (Any) –

    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    diff --git a/api/graphnet.training.loss_functions.html b/api/graphnet.training.loss_functions.html index feb15b1bf..0dd1cc788 100644 --- a/api/graphnet.training.loss_functions.html +++ b/api/graphnet.training.loss_functions.html @@ -634,13 +634,19 @@ handles per-event weights, etc.

    -class graphnet.training.loss_functions.LossFunction(**kwargs)[source]
    +class graphnet.training.loss_functions.LossFunction(*args, **kwargs)[source]

    Bases: Model

    Base class for loss functions in graphnet.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    @@ -669,44 +675,62 @@
    -class graphnet.training.loss_functions.MSELoss(**kwargs)[source]
    +class graphnet.training.loss_functions.MSELoss(*args, **kwargs)[source]

    Bases: LossFunction

    Mean squared error loss.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    -class graphnet.training.loss_functions.RMSELoss(**kwargs)[source]
    +class graphnet.training.loss_functions.RMSELoss(*args, **kwargs)[source]

    Bases: MSELoss

    Root mean squared error loss.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    -class graphnet.training.loss_functions.LogCoshLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.LogCoshLoss(*args, **kwargs)[source]

    Bases: LossFunction

    Log-cosh loss function.

    Acts like x^2 for small x; and like |x| for large x.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    -class graphnet.training.loss_functions.CrossEntropyLoss(options, *args, **kwargs)[source]
    +class graphnet.training.loss_functions.CrossEntropyLoss(*args, **kwargs)[source]

    Bases: LossFunction

    Compute cross-entropy loss for classification tasks.

    Predictions are an [N, num_class]-matrix of logits (i.e., non-softmax’ed @@ -716,16 +740,18 @@

    Parameters:
      -
    • options (int | List[Any] | Dict[Any, int]) –

    • args (Any) –

    • kwargs (Any) –

    +
    Return type:
    +

    object

    +
    -class graphnet.training.loss_functions.BinaryCrossEntropyLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.BinaryCrossEntropyLoss(*args, **kwargs)[source]

    Bases: LossFunction

    Compute binary cross entropy loss.

    Predictions are vector probabilities (i.e., values between 0 and 1), and @@ -733,7 +759,13 @@

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    @@ -800,7 +832,7 @@
    -class graphnet.training.loss_functions.VonMisesFisherLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.VonMisesFisherLoss(*args, **kwargs)[source]

    Bases: LossFunction

    General class for calculating von Mises-Fisher loss.

    Requires implementation for specific dimension m in which the target and @@ -808,7 +840,13 @@

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    @@ -868,37 +906,55 @@
    -class graphnet.training.loss_functions.VonMisesFisher2DLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.VonMisesFisher2DLoss(*args, **kwargs)[source]

    Bases: VonMisesFisherLoss

    von Mises-Fisher loss function vectors in the 2D plane.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    -class graphnet.training.loss_functions.EuclideanDistanceLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.EuclideanDistanceLoss(*args, **kwargs)[source]

    Bases: LossFunction

    Mean squared error in three dimensions.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    -class graphnet.training.loss_functions.VonMisesFisher3DLoss(**kwargs)[source]
    +class graphnet.training.loss_functions.VonMisesFisher3DLoss(*args, **kwargs)[source]

    Bases: VonMisesFisherLoss

    von Mises-Fisher loss function vectors in the 3D plane.

    Construct LossFunction, saving model config.

    Parameters:
    -

    kwargs (Any) –

    +
      +
    • args (Any) –

    • +
    • kwargs (Any) –

    • +
    +
    +
    Return type:
    +

    object

    diff --git a/api/graphnet.training.utils.html b/api/graphnet.training.utils.html index ac1d9919d..e8087500c 100644 --- a/api/graphnet.training.utils.html +++ b/api/graphnet.training.utils.html @@ -490,7 +490,7 @@
    graphnet.training.utils.collate_fn(graphs)[source]

    Remove graphs with less than two DOM hits.

    -

    Should not occur in “production.

    +

    Should not occur in “production”.

    Return type:

    Batch

    @@ -512,7 +512,7 @@
    @@ -697,6 +715,10 @@
  • save_dataset_config() +
  • +
  • DatasetConfigSaverMeta +
  • +
  • DatasetConfigSaverABCMeta
  • @@ -909,6 +931,18 @@
    +
    +
    +class graphnet.utilities.config.dataset_config.DatasetConfigSaverMeta[source]
    +

    Bases: type

    +

    Metaclass for DatasetConfig that saves the config after __init__.

    +
    +
    +
    +class graphnet.utilities.config.dataset_config.DatasetConfigSaverABCMeta(name, bases, namespace, **kwargs)[source]
    +

    Bases: DatasetConfigSaverMeta, ABCMeta

    +

    Common interface between DatasetConfigSaver and ABC Metaclasses.

    +
    diff --git a/api/graphnet.utilities.config.html b/api/graphnet.utilities.config.html index 59a759d23..f5cd2c868 100644 --- a/api/graphnet.utilities.config.html +++ b/api/graphnet.utilities.config.html @@ -492,11 +492,15 @@
  • dataset_config
  • model_config
  • parsing
      diff --git a/api/graphnet.utilities.config.model_config.html b/api/graphnet.utilities.config.model_config.html index 52531fc50..4ce00d05b 100644 --- a/api/graphnet.utilities.config.model_config.html +++ b/api/graphnet.utilities.config.model_config.html @@ -397,6 +397,10 @@
    • save_model_config() +
    • +
    • ModelConfigSaverMeta +
    • +
    • ModelConfigSaverABC
  • @@ -451,6 +455,20 @@ save_model_config() + +
  • + + + ModelConfigSaverMeta + + +
  • +
  • + + + ModelConfigSaverABC + +
  • @@ -554,6 +572,10 @@
  • save_model_config() +
  • +
  • ModelConfigSaverMeta +
  • +
  • ModelConfigSaverABC
  • @@ -648,6 +670,18 @@ +
    +
    +class graphnet.utilities.config.model_config.ModelConfigSaverMeta[source]
    +

    Bases: type

    +

    Metaclass for saving ModelConfig to Model instances.

    +
    +
    +
    +class graphnet.utilities.config.model_config.ModelConfigSaverABC(name, bases, namespace, **kwargs)[source]
    +

    Bases: ModelConfigSaverMeta, ABCMeta

    +

    Common interface between ModelConfigSaver and ABC Metaclasses.

    +
    diff --git a/genindex.html b/genindex.html index 7ef7dc30a..d0b6238bf 100644 --- a/genindex.html +++ b/genindex.html @@ -483,6 +483,10 @@

    D

  • Dataset (class in graphnet.data.dataset.dataset)
  • DatasetConfig (class in graphnet.utilities.config.dataset_config) +
  • +
  • DatasetConfigSaverABCMeta (class in graphnet.utilities.config.dataset_config) +
  • +
  • DatasetConfigSaverMeta (class in graphnet.utilities.config.dataset_config)
  • debug() (graphnet.utilities.logging.Logger method)
  • @@ -526,6 +530,8 @@

    D

  • (graphnet.models.task.task.Task property)
  • + + -
  • ModelConfig (class in graphnet.utilities.config.model_config) +
  • +
  • ModelConfigSaverABC (class in graphnet.utilities.config.model_config) +
  • +
  • ModelConfigSaverMeta (class in graphnet.utilities.config.model_config)
  • module @@ -1695,8 +1696,6 @@

    M

  • graphnet.data.dataset.sqlite
  • graphnet.data.dataset.sqlite.sqlite_dataset -
  • -
  • graphnet.data.dataset.sqlite.sqlite_dataset_perturbed
  • graphnet.data.extractors
  • @@ -2096,8 +2095,6 @@

    S

  • SQLiteDataConverter (class in graphnet.data.sqlite.sqlite_dataconverter)
  • SQLiteDataset (class in graphnet.data.dataset.sqlite.sqlite_dataset) -
  • -
  • SQLiteDatasetPerturbed (class in graphnet.data.dataset.sqlite.sqlite_dataset_perturbed)
  • standard_arguments (graphnet.utilities.argparse.ArgumentParser attribute)
  • diff --git a/objects.inv b/objects.inv index e2a8e9d3320ab422b2aefc6b85dc595c1a5818d6..15dce94cf086e5602b7ab8ee5819bad45d3cb43e 100644 GIT binary patch delta 5851 zcmV<179{DyFs?9=cwftM<2aVx>nj-1y{yzsl_Mr5s#i|indK?l>9(C+5wl^yBqX8C zR|24I)z|d5%$E&bq)3S*E+CTfBGUqR?>QI1#ghQIrl{Ctmy`>zk@m*X1$^zi-Zx6yn=p-tl;8hRS< z(AX2Wh6bL>3(GJ?`aZ))&i?`dKKL6<95 zgELTGgK^_LWE;`uX@496mko{Mn^J(HV@CX{==#g;Ce++@T=Oc(z^#WI`BZvybH=yqS2#y~m zrrVIC=VansUrA3ek8;+iuT;s!obWn!upS6 ze=&FJ9>cqQ{O64bI+gH%5l69m6t0sg_?=S}@toS0`F4VqtZfLAvpN7rZzy>&Ew9h6 znyme0H$>{gw#-m!?~_Jnm4kE0BzSCMF~Ur6J<*>pn|Hi(Bz=VuFDdqNDSF95sJQ z(0X2*);PnIL|(OLU)QDf9Oz!3ebrGuwWr$>iwT?UGbJ&_QSO!c4t19d=u#JXfD-YO zME42G@NY`wL5TR|Nw0kt!!n+hd8VfE%qwF$0bH`C8{qov?&(&<-^h5M3>mP?e`1gr zg^Myt{Q8&!WtXftR2FT9iSx;W9%F1)5QhBH-c)o-cS}*E`TFtPE4_yXSeV6dp7}Kh zZB3Wd?rC11{qy_P<2Rr5cG+Mdrs{>tLqD&Ea!OkhbI`A)H``)q+|Dp17S#RL}Li7#r$GvM*N&;v8pTh8f3k7!wtb z=+?TP3bV|^Bqj!>C=rAE)0rS1XROE>4uu^&%vUO7*t`aUie?r2- zG|xDW5KVHwv^OpBG$G5qUBRDS?)k{m@C9#Kh_W~=)s`za2KE#I8P4psP}F8z~Qqjn>fm<&Dwv1uK{?^IiZEbTI1>f>GmqpN>k$(1&0?XN_%{`5n z%@ZrJ>rB66y>Gw|I9v<;5Ek@S9P~E)@Xal>f(~fY1M8;Me~hE~mnhrnafaM! ztVX?Ah|_{^E&exyX-+N14EDeqiy4f8wi6?pqK+2OGSUr>np{}>>5)y4qmn4(6rX}w z56MMcnVuWEHq@i#)K2ZRL@h(n2DoK=kQ&YziHV713PWEeMB^%>Cah>QJ-?% z2LZ<|R$Im~LOPSB`#Z`KD%yoS1?RgK2WPesFA$+`M6UAy&scO54l#)yn`G;dVY3_@ zQq1z?)jA3WAb?ZbkMO9TJXQ}L8n!_^%wpQ8HZ6?+*y)^%f5SzRZ&RENtxwc40~x=Q zA!k~EEvu)EE%H`|UhU(!mtST04nJL=-PXo*mo(TGcO$OPuCo=UIE(N}tx#LaE)t9~ zOs6qKJiy67|D>Pym#KLkWjaWPfG z@fzFbOHLeVk!N`Ds*nRwKuxPf6ST$D30!Nqb1W~n*_Fs2Ib^eEeGLkC`Nsve}@(`5F`kzsy9A$k>`m^t(NjG zby~@x>Nb(BZPOIW!9_{GS;k;GV*ot;Ekt; zvM#twIXk%eZU0qHj`^DpbRmxf1nJhWX&1^Btu&8KwPH`aUlr*BpKr_ z*`hUEGRJ6`r2NnI-Q$x(J~jE=iF`87h4Dr89U(W%9^g!D=s9I&Q_rOH>H6uLOMV_u zdvbbZEtnkI8bVt{`S0u99VDY_NDG!z27p1c=a6JYsTXkjZZGi!))zO9gDk`LzFv#j ze@jSbd|9;*0xwP=`FwQ}556-Ljkh2wqnY^)rAuWiNBeROOH=RW5mG_mE74z;-KP zsM%WB1K*crc_;pN_O$~}FEUpL8;RAeK#v`jTD~R9N_EaIUp0mhQ>UJtGqn$ejak0x zkJU@nAFE?(soM&1$ixPq1!=h=+?u;Ca6or;frMOX>kca~OOr_oArKlO7JeGSDrj5W zT2uGLA5D{b3PS-6lfDWye@KKt^W_d5AD-oBBJUHrXhlAmlnr%5z5K@#FU8~+l?e|! zE4^(O@APIJ)X>wJ)LKD3nHe|vns9b9f6??G)NA&P`#8R144c=3Zbcpt6*otFBd>`y z=di&IYFh`^pzi6M|3%W0ZypZVt*PrGKZ>Hesy7dd)%wQf9N*+LHOo(R21km zZc@{KM1MIn?t?ha&ains=#tRtyyaEF@Gd{?mnxZ`oum2Fl>I;88B*IkGanoIUH?G?k(N4C-xMJ zQS*CAk3sW#h`d~3X74zpJh5jC7&O0EbQm+QNBm3Pne{%iPjr!<*eeE2n%^%v&6(FT z{ugIt_GR5J(i3~eph@$4MyENa_l)_L;|AG3ps##{g}7n6erE>bgJ1pV8%bk`v45#iPu1+R^6@KU=BKSK5jRx;fAt8NL(H z9eYyW)O)l-{ECt>Oqch3+RtGqDQjD&r6QC>WukZb%FSAlJfkjJX~^|04IT)=`}Qv$ zZt^rQHYC}Oe}(^&WuZRkqb|og0#<$tv_Eg<)BZeFPgjKV!P_dEQZOueww>oC{UU+` zZwn5Afrv6T{5h68{$*spj~>VH%g79WV6xuu5i_L;s4RX{5o{cD^?vQJEMjB~?sHKH zYLVm+KdZznj#i7wAK}lJ&4L=VvW;&8{$&DSicuVje^JKpCmd~<)h^op?5rgEbF!8Y ztzGhrq8A20t7Tnqm-hrmSYF?KLo$r$%|oyM_YpZWsIRdl169|XiRNpH8T*Xr_^H@o zo3F`^Kq%s%uHmBz2?(1N)kO(D{^_oZWhnVCx%{> zkHxqff8twOAT0=JevDwf=f+-Jo6v)pH}cQec*_^O9U9KNz=}CwSoJNSOl>JZGPkW@ zb{SI9L#`TFAa_sI#CvPuq5eMh6RPO`^g z%GqY}vSI8?HD;TKW{%9eeY~1D;~u7`_*b6Ye~JMh`$E_T(_b!Ur8}FKZgw&uu@0m3 zWlAsXXAMyydd2q>k>ht1@lm-gOJZ#~KyPeTt@1>zS*-@Yd));-gevDDyG36%CUlBk z^f&+H%?QJ53|`QBu-X`sPs62d9uQ;XGT|d-k6y?Lt!r~V3ILDUQ~3O6j%jw2zu6m= ze=aHz$M=kgt}LC90kpz4F3s@mC~z*o7xDlf$7_6`lCBH+4HXDnCF_E_Jg4hYeq`xh zhWc~6kHrmscO)B`_~BQxBeA{_u4cI%)ZOLn%lmEjm7-B|(csFpT)Aa;I?IpoT=x~06cWALJoiFo5OEoLVj zzPV{4QuU^;;Z%UuX#)Ng!AZ|AwGkYkqwd8vWA?NeDguf_yAr~pcChY`nX_kQzK*pG4Py2d&>zw_K?po8R|6TDGI8RjamN z=HNEXm0B*j557mahtpP4b8!;3M>!{E zakBDRGftjJPGwzWSbYZ?6~*xBn`0R3E2*9P`aMmDYO=5SWWuhUey0V;P%qniB;bwz z_?BQqlWoX&UKCPD%uY#lobHrnnK%BYG{JwAFqJJn!-er}(Z@xnvm(Y(P7%*3Xq(1P z8qzSVh-g%|AYdcvfGYlqe^!*7g(?hdNLwrx_>CB|<9CiTW)=#@g_j*(6f5H=0XG>l z9yUpfoN`cM8c|4L)}kV}&G)KBs~EkYHPG}H7l1?_Lz|XC)Q)H~9RFVX;)sOUK_ zdBAx5Yn(^HC!r=If7J8fT>e}%aaw{+d@X-}-I89a+lP=`vhCBWB{V`EY~#quUoV7w zsI}#Ob-PRo?zahf!OiJ2UI39&|I+wL)vT9j*@dfU`)!)!59X-k|?$Dk-_CwT145QStf0{x6wgQ_!Zb|D@ZPE^; zOH8vUiqsr*kZUKWfp_6S&?Pym17L!NjwWkF*x1ZQFCWr<)rxyR-e$rYXPAl^f`1@Asvrwwq!gl^Gu&I_pzo^zp|(Eq0J&u+vRtoyqx4f zx3c8mfz=8z4jcBeps820HzRG#qN!t(XcHa_L*>ed!zVUF)b8>hG-5AEfo09L5E?0iZ9*Mzkg*|XOn5k;1LnIhl7fHUA8@>8@YY{V> ztiyd!qSvYR2LM28;i`8sK|8vM9LlpHt!8ri^QED@#ytFE&O_W-9wp5dXDo&(7WxC&cVmI-6*P_hZKEji zJaHh9;-)bXzdFHV%<nG z`|EHg)jG>;&_cx2!Yu24$eBli1yVQS=ETO5;GS%aCyknRZwIltAW)|E3OAR zh(rCc!Ky!v0YE2GeRT;4vMpT=C7W@Jz8m0e(DeoJf&8@qe%>8~+VMsBpdGgWezgNc z*YTl`pdGguye1z+0?00XgO~+uch8iXbnUsDx;nlOp}sjjkiQna_k9n412peD3QS

    A6CD?8*#TRZ90gTqF}NKS0NdE7 z8tC5(@ck-q`29;+f=0xD0)FKNobceHj-VN{a5>!vC+#>D7_{RS@FO^I+Jl2TK{I9n zI@thcYaWFNOkm-(DH_hzwVOKFi(FXuO9S}!HdhC`@M3u1E&#i^!#6O2#qeHH0BUnr zXqB71LLO--3J5BvkN>zov%Cz6%r(c8i4k(<-Hirdf#a)WVc`BUv6Dx2eN0zFU2*k9PWN|6R ze%nvgQ28ej#W78PaZHfN1GTSQ-g}9JlL(1GegH%Q@(p1M21*U7 z{alhnsmpb#1iuGg@9xYJph*)W^1)9*vDq>bu}?WASQr#HmfjkS^?)fw8IsdWJyocq zB`1C_FePfC*f`ifRJ@qn2}`#>1zk(ZjWlSx6r?c27%LxU?7omivV#oX8=Q-xCt{$o zSj$z(SR}mV1y!teu50;ou@f^s*pSd0?&KPWu(K_rqADB}SO}9lIE(G4>VX!&)l0*g lz46qdcE9Btk-(NV!-z(kwxW*HI*1s`Rmu)iA;ZZ{Qd6w`Pb`jPt)Lkd-(eJ`D$F_pC7+H|2mqFD70xDL_<&G z9U6NA*U-Qd`Gp1_&ne`8Lg*D!j;WZn9tg#Ax?pfIYx8QkS2id7!jtKkVG7TbE=v2Z3Mx4a%QMluo63Ujfq$?bsQWSfXQwpVl(#oKRriq^AbZFtR zY51K}6!DzeRzvrKmc%v$$weK2qc@bin3gve*G<;`tQ#WrVOwS>wRhd4v&wRYtQCw+ zEC%8UuGd56%jP}r97$heBx(@$a^yo@e;0o~(!II(qN9AgyW5h}O}L5hWx2w7ZTMr@ za)ohmnN$36Ec#XmnD`t9J(LN<_c>wsSxzp#Bxp0QO&gqHN+Pe?bExZ5dyaH(F23q0 zpW4%HiN%ENZbeB~j9-u`0B+)~HGW@F&c@!c(dD3g2#juR0e`TJj z)eh#BF`WP|STezrMsml(tPvu*(<%r23VNItcUqE2yIQ5)E;QwT>SIf_0#V@>Fu(?LQXNK zehF@Cx+M5O^XB4FM))MS%LWTMe=8D_;k59p&d1s=3GdLpxp-2McMsP$mp)n0XOYDe zwVLUb1#L~2T&PixPoleQu#uOkUve9IPKj;miKKqJ^GfIu`yg$}NkTZm4yy&V z3OsRpm8hQUc`-KBPh?-N6T~^r!VEKx<1i*F9?_k3*%@Y;he=EfN>L&PfA{AzK|Ib_ zkuw|$J9wC{RmQM+4O&x_`gx?*^l=TNss4n7g=wB~93h(Iera!7;%P#bd%J=^yWAR+ zr{N3Uu@Gf(SjZWtbWF@P^UVk^K~h#g1>!e`1F!{7{$vS*=kUws5+_G<-#(kz6Id?&xcQsE?~W7kQ%l z;q!3gtW0O8CXuKKD}1Jen?>NcY2}XzNMWy_VXvOMUX4Pxo(}4s!rOe~3*4a!uw@J* z4tJOi@BW+1DEQ9Mxh#TiAoa6{6j;taZSHBrY@S$&-DLVr>q7&6f572d=*O_2%>$rK z1IO=hp%rvM)1R~PJ{njzt!A9ezeL$ik2B+uC2ARpw!oe3 zgVb=&NKE`hM7?)ue{N1S(^eHqOtOUJTsFvuD1P z@i2>NquR7I0$`_eG7c9>zDsd7v_4VG3}pOXhFoX?wyd5uP7+uddbLmEUVfF~d;ENJ zaaSADUD9A%+>N-oxXIR-;w-{vwL)zvyG$_3FrCH_@c<_S{gZy)U#8}Hl*>~hnQ&(- z)Lzs9b@{oPf8SlUm^!nfhseS(1MqU4(>Fxp{ubh728!b{!eL(2uW@^4#-3ay<9T}Z z``u*uC9pqd@iR&BA7Y}BzfDOr8Frbi5EoM=9B;6FzU0J_7I}sTZ&W!F1=O@!G(kH| zoxrt*JIC^BmtBkekwZ3n_IJ`b^Egz&(+HpC%lfHPf2By~Nm7-8&xGfbCaXy_f6|sI zW(;lcjErK`Cl3!Hxm?Dpsy9A$k>`m^t(NjGby~@9XkHfKY6oiUI;h|rdhdgru$fud zTy#asr=&|s7FIuyqt^zyqGEl`IYI-KqTY5yHF4GHcce8EaNa8Tq<+@M73we_0pYrJSAI4_sT(2M@#r_dZ~Pc$dkw z7Ep#5Sx|;lvStkdk|8a4Ag)t}xDbSYl8kYeY|$DnnPW6eQvT=W{^{8vpPGE`L_Qhk z!uX>4j*y#W4{#?Nedq>F$tm9P`C556ypTEx3*U5Ga5 zcRie5WN^nkk+qBx5@V#A1U7LJf4je*gXR&%1SL~3b={K(@x?kcdLl#?wAArL_$7JeGSDrj5WT2l|ipG=cp3PS-clcEYWe@TQu^W_d5 zAD-neMBXQK*@}ENDI4mBdihT!UW&;tDia=dR(jhm-s#Ocs-fpIskMT7HZyMX4dLu; z{-WtWsMj1A_i=p37&fm5-HALPDsGPUMqU$Z&S8Ta)V2<+K|Rp<{1-_}zI{Amx2CR( z{3O;9D#dg*`PGH-?QyRHf1}&*2jSb_P*I@sxJga_5&h-ZxDVnud&B1SpesVF^OooF zA)5hb_9C!(^ZSw2w0S-0I>U6co4KRvB0aOm44O2*mvowQe$S9z`jEe2dKMR{**~DK z9NYFWoMvy=$MBwSS%fJ^B-8h1oyCV5HhfS|>ay_T_*2umdA;f;f5XCI#Qc%)x%;es z>NEQgz_9sUXTYd=J?0^2rLJ@{GD@r6Je1G;|n^os}%ye&8e1|rJX@W)v0_?MCWK6)C%Pa`w@ zfyrjeN6eHaptAT)MX+(q)%&%>vWSr}xX(o)s6~=P{HzkQI9e?xe}q3?H4AFc$~L|Y z_@@bgDMoQ9e?}R@pK!EcR=a5Xv$K-u&&gUsw06k~MK271R?E8JE*}Vvu)MzemSh;w z+s9u2?;~<%P+wz92CA+%6U{diGxiIjkJ{IGCe~52sfwUl?`7wg^o*R2@Z9)%X z-pW5?<1JtCZfH2~0xRZ#Vb!;QGPR`u$=tSr*=0;c?6v6I@?v*urlFP`>fi+t&PY|? z{cvR_8x!;0=9|mA-zFzm$|^ZL^&O4MI>{b~DQDZs%Z9Np)tGG_nmID>?&*5sjC-7( z;$L}oe=%96n9wPD(ck=&HzN$MF?d1i!D?ejJ`I<;c|eSj z%Y=`VJ$fN0w64wdC;&X>K;f4^b4;__{LS8|e{@lSIKE{>bYT`vDp?oYT12aifpLgS8~Ye~qO2u%|PAL(7kA zfBB2}eOc35%DRu$hi)nF>=?W#WFp?UOpDn`hi`70h*Z6)Yd964b((;GO>h#k+4$w? z5G6_7ILgshi3f*4r_xs!302=g23FptnnUevsa+mW!z%DGvnOSvMeJK7oRA!J%i4te zYM4Daznmh-3kID#hqj`FhaD(h>7Z*bf6+zn&+E}$jBJ4U_<& z1&qHa)z)z^SgQ4F8Ke>jD)zL?m#+dI&7s3wP+&nE2J|8-h$3iY!6rX1c5 zj&BJ@G}(oW=S3lf#2kfGhpNtLmU-`cP80k)%&Bbg={d)@MIRcR&WadEIYm6DpqKS~ zX-LDcCZbW@fq;#u1FHBdT2XQlsxYh}ZLwJ3w_^B;-#N~hnJ$hCFFU*_e^$m%0&X&9 zJZzE{Ipv_jG@_8gtVKm`o39p&Rxx@(8=&beE&z!t8z0DHl{SE6Jg709d5;7Gclj1 zvA<~bV40kNWb1sQ9AcQ?f8tj>mE$l@F-oT|f;U9#1C-;Z!k~xw;PHPyibq^v#J`Y) zkKQ&kp=DJt3{zPzuQ8x1%;dB(e*>?(Ll{%Ux1hdP2}0UsEr<&iCgcU!i!{I`Dq7_w z4;YVsj`Jw^B-CVtdLDe1KNn4$mS7WK%Rk(-q?hUr8YEXQ`}ArFe~nNF+cs|yy?uxiVp3{kd8+-TQZ)Od8Q9S z`&iSdU)j_7&}NZnisYw_yqx4nx3c8ufz=8zRrj)>saLZ%ezNoD|wlEQ8(0T;zrys z?f%phl(Bt?DyV}%9(BeNo0E|4oDJ=2)LTbDEl^)w^&!`anpgjZQu1Bl#i;Z&q59du z2O4(*$D3V4JVoHNVNmsWtT{BDC`f^2&9x93DT8f79dM9=D`>!aJjes)&4A+3$Z#lQ z+Bm?f+oRMX9;(DZ8i!_KFOvxr94UUd_fH;g&XZT0s{jB@$@M)xunHGRzLOiW`gv;+ zGu5rbeNdv;sWvZ@P81eBc(@tFiS#MHtp>%)+XsINoo#K)rbYO4(N;>NoS#~Td6 zHKL{jb-;!j{z)>%9niHxi$h0QnO@Lllan76E`N@WP2eZ+#FP)h2?HlJ6!u3)}Rh9hHe?P!!~Xs z4fO8?1 zFoDJJMpgi7bIWUB0*m1-SOC=KX05;k7DL;m0GRu2Re}1c@OqZ@S_^oLMhkfznpW9i z))3vtYRStwyujrroQf*0ms?dY*WSDJx4#Gf_wU6z$={-_ycE4(>{rnfd`i>?%KR16 zSAySyd>tV9hD7bheaq>K1PV%3g}%zP-{a?>gZB0;lOPu#f4fiBQ27TD#W78BOpwR} zwdq}6&4`4P2#G*`qe24mEny1fAHm_WpW3d+q*mPqN)4&KDoLW$<+@aY--ECB_ht#u zq=^yv;D?~t?ih*Kr<@Wj42l~|Zw#W65jHHDpot!jr_UT ziy0qmNa)>wa*adS*_KgJ6^;rlgvlM8#qLw}K#Sk$rD4t9cxq95*zv7MU`v}}M5Aq6 UQO9YWC;j|E6xrhc0rH>lnZZ+IF#rGn diff --git a/py-modindex.html b/py-modindex.html index c3e8451b2..6a97e1d01 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -395,11 +395,6 @@

    Python Module Index

        graphnet.data.dataset.sqlite.sqlite_dataset - - -     - graphnet.data.dataset.sqlite.sqlite_dataset_perturbed -     diff --git a/searchindex.js b/searchindex.js index 200c93687..1e27dc996 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["about", "api/graphnet", "api/graphnet.constants", "api/graphnet.data", "api/graphnet.data.constants", "api/graphnet.data.dataconverter", "api/graphnet.data.dataloader", "api/graphnet.data.dataset", "api/graphnet.data.dataset.dataset", "api/graphnet.data.dataset.parquet", "api/graphnet.data.dataset.parquet.parquet_dataset", "api/graphnet.data.dataset.sqlite", "api/graphnet.data.dataset.sqlite.sqlite_dataset", "api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed", "api/graphnet.data.extractors", "api/graphnet.data.extractors.i3extractor", "api/graphnet.data.extractors.i3featureextractor", "api/graphnet.data.extractors.i3genericextractor", "api/graphnet.data.extractors.i3hybridrecoextractor", "api/graphnet.data.extractors.i3ntmuonlabelsextractor", "api/graphnet.data.extractors.i3particleextractor", "api/graphnet.data.extractors.i3pisaextractor", "api/graphnet.data.extractors.i3quesoextractor", "api/graphnet.data.extractors.i3retroextractor", "api/graphnet.data.extractors.i3splinempeextractor", "api/graphnet.data.extractors.i3truthextractor", "api/graphnet.data.extractors.i3tumextractor", "api/graphnet.data.extractors.utilities", "api/graphnet.data.extractors.utilities.collections", "api/graphnet.data.extractors.utilities.frames", "api/graphnet.data.extractors.utilities.types", "api/graphnet.data.parquet", "api/graphnet.data.parquet.parquet_dataconverter", "api/graphnet.data.pipeline", "api/graphnet.data.sqlite", "api/graphnet.data.sqlite.sqlite_dataconverter", "api/graphnet.data.sqlite.sqlite_utilities", "api/graphnet.data.utilities", "api/graphnet.data.utilities.parquet_to_sqlite", "api/graphnet.data.utilities.random", "api/graphnet.data.utilities.string_selection_resolver", "api/graphnet.deployment", "api/graphnet.deployment.i3modules", "api/graphnet.deployment.i3modules.deployer", "api/graphnet.deployment.i3modules.graphnet_module", "api/graphnet.models", "api/graphnet.models.coarsening", "api/graphnet.models.components", "api/graphnet.models.components.layers", "api/graphnet.models.components.pool", "api/graphnet.models.detector", "api/graphnet.models.detector.detector", "api/graphnet.models.detector.icecube", "api/graphnet.models.detector.prometheus", "api/graphnet.models.gnn", "api/graphnet.models.gnn.convnet", "api/graphnet.models.gnn.dynedge", "api/graphnet.models.gnn.dynedge_jinst", "api/graphnet.models.gnn.dynedge_kaggle_tito", "api/graphnet.models.gnn.gnn", "api/graphnet.models.graphs", "api/graphnet.models.graphs.edges", "api/graphnet.models.graphs.edges.edges", "api/graphnet.models.graphs.graph_definition", "api/graphnet.models.graphs.graphs", "api/graphnet.models.graphs.nodes", "api/graphnet.models.graphs.nodes.nodes", "api/graphnet.models.model", "api/graphnet.models.standard_model", "api/graphnet.models.task", "api/graphnet.models.task.classification", "api/graphnet.models.task.reconstruction", "api/graphnet.models.task.task", "api/graphnet.models.utils", "api/graphnet.pisa", "api/graphnet.pisa.fitting", "api/graphnet.pisa.plotting", "api/graphnet.training", "api/graphnet.training.callbacks", "api/graphnet.training.labels", "api/graphnet.training.loss_functions", "api/graphnet.training.utils", "api/graphnet.training.weight_fitting", "api/graphnet.utilities", "api/graphnet.utilities.argparse", "api/graphnet.utilities.config", "api/graphnet.utilities.config.base_config", "api/graphnet.utilities.config.configurable", "api/graphnet.utilities.config.dataset_config", "api/graphnet.utilities.config.model_config", "api/graphnet.utilities.config.parsing", "api/graphnet.utilities.config.training_config", "api/graphnet.utilities.decorators", "api/graphnet.utilities.filesys", "api/graphnet.utilities.imports", "api/graphnet.utilities.logging", "api/graphnet.utilities.maths", "api/modules", "contribute", "index", "install"], "filenames": ["about.md", "api/graphnet.rst", "api/graphnet.constants.rst", "api/graphnet.data.rst", "api/graphnet.data.constants.rst", "api/graphnet.data.dataconverter.rst", "api/graphnet.data.dataloader.rst", "api/graphnet.data.dataset.rst", "api/graphnet.data.dataset.dataset.rst", "api/graphnet.data.dataset.parquet.rst", "api/graphnet.data.dataset.parquet.parquet_dataset.rst", "api/graphnet.data.dataset.sqlite.rst", "api/graphnet.data.dataset.sqlite.sqlite_dataset.rst", "api/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.rst", "api/graphnet.data.extractors.rst", "api/graphnet.data.extractors.i3extractor.rst", "api/graphnet.data.extractors.i3featureextractor.rst", "api/graphnet.data.extractors.i3genericextractor.rst", "api/graphnet.data.extractors.i3hybridrecoextractor.rst", "api/graphnet.data.extractors.i3ntmuonlabelsextractor.rst", "api/graphnet.data.extractors.i3particleextractor.rst", "api/graphnet.data.extractors.i3pisaextractor.rst", "api/graphnet.data.extractors.i3quesoextractor.rst", "api/graphnet.data.extractors.i3retroextractor.rst", "api/graphnet.data.extractors.i3splinempeextractor.rst", "api/graphnet.data.extractors.i3truthextractor.rst", "api/graphnet.data.extractors.i3tumextractor.rst", "api/graphnet.data.extractors.utilities.rst", "api/graphnet.data.extractors.utilities.collections.rst", "api/graphnet.data.extractors.utilities.frames.rst", "api/graphnet.data.extractors.utilities.types.rst", "api/graphnet.data.parquet.rst", "api/graphnet.data.parquet.parquet_dataconverter.rst", "api/graphnet.data.pipeline.rst", "api/graphnet.data.sqlite.rst", "api/graphnet.data.sqlite.sqlite_dataconverter.rst", "api/graphnet.data.sqlite.sqlite_utilities.rst", "api/graphnet.data.utilities.rst", "api/graphnet.data.utilities.parquet_to_sqlite.rst", "api/graphnet.data.utilities.random.rst", "api/graphnet.data.utilities.string_selection_resolver.rst", "api/graphnet.deployment.rst", "api/graphnet.deployment.i3modules.rst", "api/graphnet.deployment.i3modules.deployer.rst", "api/graphnet.deployment.i3modules.graphnet_module.rst", "api/graphnet.models.rst", "api/graphnet.models.coarsening.rst", "api/graphnet.models.components.rst", "api/graphnet.models.components.layers.rst", "api/graphnet.models.components.pool.rst", "api/graphnet.models.detector.rst", "api/graphnet.models.detector.detector.rst", "api/graphnet.models.detector.icecube.rst", "api/graphnet.models.detector.prometheus.rst", "api/graphnet.models.gnn.rst", "api/graphnet.models.gnn.convnet.rst", "api/graphnet.models.gnn.dynedge.rst", "api/graphnet.models.gnn.dynedge_jinst.rst", "api/graphnet.models.gnn.dynedge_kaggle_tito.rst", "api/graphnet.models.gnn.gnn.rst", "api/graphnet.models.graphs.rst", "api/graphnet.models.graphs.edges.rst", "api/graphnet.models.graphs.edges.edges.rst", "api/graphnet.models.graphs.graph_definition.rst", "api/graphnet.models.graphs.graphs.rst", "api/graphnet.models.graphs.nodes.rst", "api/graphnet.models.graphs.nodes.nodes.rst", "api/graphnet.models.model.rst", "api/graphnet.models.standard_model.rst", "api/graphnet.models.task.rst", "api/graphnet.models.task.classification.rst", "api/graphnet.models.task.reconstruction.rst", "api/graphnet.models.task.task.rst", "api/graphnet.models.utils.rst", "api/graphnet.pisa.rst", "api/graphnet.pisa.fitting.rst", "api/graphnet.pisa.plotting.rst", "api/graphnet.training.rst", "api/graphnet.training.callbacks.rst", "api/graphnet.training.labels.rst", "api/graphnet.training.loss_functions.rst", "api/graphnet.training.utils.rst", "api/graphnet.training.weight_fitting.rst", "api/graphnet.utilities.rst", "api/graphnet.utilities.argparse.rst", "api/graphnet.utilities.config.rst", "api/graphnet.utilities.config.base_config.rst", "api/graphnet.utilities.config.configurable.rst", "api/graphnet.utilities.config.dataset_config.rst", "api/graphnet.utilities.config.model_config.rst", "api/graphnet.utilities.config.parsing.rst", "api/graphnet.utilities.config.training_config.rst", "api/graphnet.utilities.decorators.rst", "api/graphnet.utilities.filesys.rst", "api/graphnet.utilities.imports.rst", "api/graphnet.utilities.logging.rst", "api/graphnet.utilities.maths.rst", "api/modules.rst", "contribute.md", "index.rst", "install.md"], "titles": ["About", "API", "constants", "data", "constants", "dataconverter", "dataloader", "dataset", "dataset", "parquet", "parquet_dataset", "sqlite", "sqlite_dataset", "sqlite_dataset_perturbed", "extractors", "i3extractor", "i3featureextractor", "i3genericextractor", "i3hybridrecoextractor", "i3ntmuonlabelsextractor", "i3particleextractor", "i3pisaextractor", "i3quesoextractor", "i3retroextractor", "i3splinempeextractor", "i3truthextractor", "i3tumextractor", "utilities", "collections", "frames", "types", "parquet", "parquet_dataconverter", "pipeline", "sqlite", "sqlite_dataconverter", "sqlite_utilities", "utilities", "parquet_to_sqlite", "random", "string_selection_resolver", "deployment", "i3modules", "deployer", "graphnet_module", "models", "coarsening", "components", "layers", "pool", "detector", "detector", "icecube", "prometheus", "gnn", "convnet", "dynedge", "dynedge_jinst", "dynedge_kaggle_tito", "gnn", "graphs", "edges", "edges", "graph_definition", "graphs", "nodes", "nodes", "model", "standard_model", "task", "classification", "reconstruction", "task", "utils", "pisa", "fitting", "plotting", "training", "callbacks", "labels", "loss_functions", "utils", "weight_fitting", "utilities", "argparse", "config", "base_config", "configurable", "dataset_config", "model_config", "parsing", "training_config", "decorators", "filesys", "imports", "logging", "maths", "src", "Contribute", "About", "Install"], "terms": {"graphnet": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 37, 38, 39, 40, 41, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 100], "i": [0, 1, 8, 10, 12, 13, 15, 17, 28, 29, 30, 35, 36, 39, 40, 44, 46, 49, 55, 56, 62, 66, 70, 71, 72, 73, 76, 78, 79, 80, 82, 84, 89, 90, 93, 94, 95, 98, 99, 100], "an": [0, 5, 30, 32, 33, 35, 40, 44, 63, 80, 93, 95, 98, 99, 100], "open": [0, 98, 99], "sourc": [0, 4, 5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99], "python": [0, 1, 5, 14, 15, 17, 28, 30, 98, 99, 100], "framework": [0, 99], "aim": [0, 1, 98, 99], "provid": [0, 1, 8, 10, 12, 13, 44, 45, 80, 98, 99, 100], "high": [0, 99], "qualiti": [0, 99], "user": [0, 45, 78, 99, 100], "friendli": [0, 99], "end": [0, 1, 5, 32, 35, 99], "function": [0, 5, 6, 8, 30, 36, 39, 44, 46, 49, 52, 53, 63, 67, 70, 71, 72, 73, 75, 76, 80, 81, 83, 88, 89, 90, 93, 94, 96, 99], "perform": [0, 46, 48, 49, 54, 56, 58, 68, 70, 71, 72, 99], "reconstruct": [0, 1, 16, 18, 19, 23, 24, 26, 33, 41, 45, 58, 69, 72, 99], "task": [0, 1, 45, 68, 70, 71, 80, 98, 99], "neutrino": [0, 1, 48, 58, 75, 99], "telescop": [0, 1, 99], "us": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 20, 25, 27, 28, 32, 33, 35, 36, 37, 38, 40, 41, 44, 45, 48, 49, 51, 56, 57, 58, 62, 63, 64, 67, 69, 70, 71, 72, 73, 75, 78, 79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 94, 95, 98, 99, 100], "graph": [0, 1, 6, 8, 10, 12, 13, 44, 45, 48, 49, 51, 61, 62, 63, 65, 66, 73, 79, 81, 98, 99], "neural": [0, 1, 99], "network": [0, 1, 55, 99], "gnn": [0, 1, 33, 45, 55, 56, 57, 58, 63, 68, 99, 100], "make": [0, 5, 82, 88, 89, 98, 99, 100], "fast": [0, 99, 100], "easi": [0, 99], "train": [0, 1, 7, 13, 40, 41, 44, 63, 68, 78, 79, 80, 81, 82, 84, 88, 89, 91, 97, 99, 100], "complex": [0, 45, 99], "model": [0, 1, 13, 41, 44, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 68, 69, 70, 71, 72, 73, 76, 77, 78, 80, 81, 84, 86, 88, 89, 91, 97, 99, 100], "can": [0, 1, 8, 10, 12, 13, 15, 17, 20, 38, 44, 49, 63, 75, 76, 82, 84, 86, 88, 89, 98, 99, 100], "event": [0, 1, 8, 10, 12, 13, 22, 36, 38, 40, 44, 49, 63, 70, 71, 72, 73, 75, 80, 82, 88, 99], "state": [0, 99], "art": [0, 99], "arbitrari": [0, 99], "detector": [0, 1, 25, 45, 52, 53, 63, 64, 66, 68, 99], "configur": [0, 1, 8, 45, 67, 68, 75, 83, 85, 86, 88, 89, 91, 95, 99], "infer": [0, 1, 33, 41, 44, 68, 70, 71, 72, 99, 100], "time": [0, 4, 36, 46, 49, 71, 95, 99, 100], "ar": [0, 1, 4, 5, 8, 10, 12, 13, 17, 30, 32, 35, 38, 40, 44, 49, 56, 58, 60, 61, 62, 63, 64, 65, 70, 75, 80, 82, 88, 89, 98, 99, 100], "order": [0, 28, 46, 73, 99], "magnitud": [0, 99], "faster": [0, 99], "than": [0, 6, 70, 71, 72, 81, 95, 99], "tradit": [0, 99], "techniqu": [0, 99], "common": [0, 1, 80, 86, 91, 92, 94, 99], "ml": [0, 1, 99], "develop": [0, 1, 98, 99, 100], "physicist": [0, 1, 99], "wish": [0, 98, 99], "tool": [0, 1, 99], "research": [0, 99], "By": [0, 38, 70, 71, 72, 99], "unit": [0, 5, 94, 98, 99], "both": [0, 17, 70, 71, 72, 76, 99], "group": [0, 5, 32, 35, 49, 99], "increas": [0, 78, 99], "longev": [0, 99], "usabl": [0, 99], "individu": [0, 5, 8, 10, 12, 13, 49, 56, 73, 99], "code": [0, 25, 36, 63, 88, 89, 99], "contribut": [0, 99, 100], "from": [0, 1, 6, 8, 10, 12, 13, 14, 15, 17, 19, 20, 22, 28, 29, 30, 33, 35, 38, 44, 49, 58, 62, 63, 66, 67, 70, 71, 72, 73, 76, 78, 79, 80, 86, 87, 88, 89, 91, 95, 98, 99, 100], "build": [0, 1, 45, 51, 62, 66, 67, 86, 88, 89, 99], "gener": [0, 5, 8, 10, 12, 13, 17, 44, 60, 61, 65, 70, 80, 99], "reusabl": [0, 99], "softwar": [0, 80, 99], "packag": [0, 1, 39, 90, 93, 94, 98, 99, 100], "base": [0, 4, 5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 33, 35, 38, 40, 44, 46, 48, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 78, 79, 80, 82, 84, 86, 87, 88, 89, 91, 94, 95, 99], "engin": [0, 99], "best": [0, 98, 99], "practic": [0, 98, 99], "lower": [0, 76, 99], "technic": [0, 99], "threshold": [0, 44, 62, 99], "most": [0, 1, 40, 99, 100], "scientif": [0, 1, 99], "problem": [0, 62, 98, 99], "The": [0, 5, 8, 10, 12, 28, 30, 33, 35, 36, 44, 46, 48, 49, 56, 58, 62, 63, 70, 71, 72, 73, 75, 76, 78, 79, 80, 99], "improv": [0, 1, 84, 99], "classif": [0, 1, 45, 69, 72, 80, 99], "yield": [0, 56, 75, 80, 99], "veri": [0, 40, 99], "accur": [0, 99], "e": [0, 1, 5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 28, 30, 32, 33, 35, 36, 40, 44, 46, 48, 49, 51, 52, 53, 55, 59, 62, 63, 66, 67, 68, 70, 71, 72, 73, 78, 79, 80, 82, 86, 95, 98, 99, 100], "g": [0, 1, 5, 8, 10, 12, 13, 25, 28, 30, 32, 33, 35, 36, 40, 44, 49, 63, 70, 71, 72, 73, 82, 95, 98, 99, 100], "low": [0, 99], "energi": [0, 4, 33, 70, 71, 72, 82, 99], "observ": [0, 99], "icecub": [0, 1, 16, 29, 30, 45, 48, 50, 58, 94, 99, 100], "here": [0, 98, 99, 100], "implement": [0, 1, 5, 15, 31, 32, 34, 35, 48, 55, 56, 57, 58, 62, 80, 98, 99], "wa": [0, 99], "appli": [0, 8, 10, 12, 13, 15, 49, 55, 56, 57, 58, 59, 68, 90, 99], "oscil": [0, 74, 99], "lead": [0, 99], "signific": [0, 99], "angular": [0, 99], "rang": [0, 70, 71, 72, 99], "relev": [0, 1, 30, 39, 93, 98, 99], "studi": [0, 99], "furthermor": [0, 99], "shown": [0, 99], "could": [0, 98, 99], "muon": [0, 19, 99], "v": [0, 99], "therebi": [0, 1, 88, 89, 99], "effici": [0, 99], "puriti": [0, 99], "sampl": [0, 40, 99], "analysi": [0, 33, 99, 100], "similarli": [0, 30, 99], "ha": [0, 5, 30, 32, 35, 36, 44, 55, 80, 93, 99, 100], "great": [0, 99], "point": [0, 24, 79, 80, 99], "analys": [0, 41, 74, 99], "final": [0, 49, 78, 88, 99], "millisecond": [0, 99], "allow": [0, 41, 45, 49, 78, 86, 91, 99, 100], "whole": [0, 99], "new": [0, 1, 35, 48, 86, 91, 98, 99], "type": [0, 5, 6, 8, 10, 12, 13, 14, 15, 27, 28, 29, 32, 35, 36, 38, 39, 40, 46, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 72, 73, 75, 76, 78, 80, 81, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 99], "cosmic": [0, 99], "alert": [0, 99], "which": [0, 8, 10, 12, 13, 15, 16, 25, 29, 33, 40, 44, 46, 49, 56, 67, 70, 75, 80, 84, 99, 100], "were": [0, 99], "previous": [0, 99], "unfeas": [0, 99], "possibl": [0, 28, 98, 99], "identifi": [0, 5, 8, 10, 12, 13, 25, 88, 89, 99], "10": [0, 33, 84, 99], "tev": [0, 99], "monitor": [0, 99], "rate": [0, 78, 99], "direct": [0, 58, 70, 71, 72, 77, 79, 99], "real": [0, 99], "thi": [0, 3, 5, 8, 10, 12, 13, 15, 17, 30, 32, 35, 36, 39, 44, 45, 49, 56, 66, 68, 70, 71, 72, 73, 75, 76, 78, 80, 82, 86, 88, 89, 91, 95, 98, 99, 100], "enabl": [0, 3, 99], "first": [0, 78, 86, 91, 98, 99], "ever": [0, 99], "despit": [0, 99], "larg": [0, 80, 99], "background": [0, 99], "origin": [0, 75, 99], "compris": [0, 99], "number": [0, 5, 8, 10, 12, 13, 32, 33, 35, 40, 48, 49, 55, 56, 57, 58, 59, 62, 64, 66, 70, 71, 72, 78, 84, 99], "modul": [0, 3, 8, 30, 33, 41, 44, 45, 48, 50, 54, 60, 61, 63, 64, 65, 67, 69, 74, 77, 83, 85, 88, 89, 90, 91, 94, 99], "necessari": [0, 28, 98, 99], "workflow": [0, 99], "ingest": [0, 1, 3, 50, 99], "raw": [0, 66, 99], "data": [0, 1, 4, 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 46, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 62, 63, 64, 67, 68, 70, 71, 72, 73, 79, 81, 84, 86, 88, 91, 94, 97, 99, 100], "domain": [0, 1, 3, 41, 99], "specif": [0, 1, 3, 5, 8, 10, 12, 16, 30, 31, 32, 34, 35, 36, 41, 46, 49, 50, 51, 52, 53, 54, 59, 62, 63, 66, 68, 69, 70, 71, 72, 80, 98, 99, 100], "format": [0, 1, 3, 5, 8, 28, 32, 35, 76, 88, 98, 99, 100], "deploi": [0, 1, 41, 44, 99], "chain": [0, 1, 41, 45, 68, 99, 100], "illustr": [0, 98, 99], "figur": [0, 76, 99], "level": [0, 8, 10, 12, 13, 25, 36, 46, 49, 62, 67, 95, 99, 100], "overview": [0, 99], "typic": [0, 28, 99], "convert": [0, 1, 3, 5, 28, 32, 35, 38, 99, 100], "industri": [0, 3, 99], "standard": [0, 3, 4, 5, 13, 32, 35, 40, 52, 53, 63, 66, 68, 84, 98, 99], "intermedi": [0, 1, 3, 5, 8, 32, 35, 55, 99, 100], "file": [0, 1, 3, 5, 8, 10, 12, 13, 15, 28, 32, 35, 38, 39, 44, 63, 67, 75, 78, 80, 84, 85, 86, 87, 88, 89, 93, 95, 99, 100], "read": [0, 3, 8, 10, 12, 13, 28, 51, 56, 68, 69, 99, 100], "simpl": [0, 45, 99], "physic": [0, 1, 15, 29, 30, 41, 44, 45, 69, 70, 71, 72, 99], "orient": [0, 45, 99], "compon": [0, 1, 45, 48, 49, 68, 99], "manag": [0, 15, 77, 99], "experi": [0, 1, 77, 99], "log": [0, 1, 71, 77, 78, 80, 83, 99, 100], "deploy": [0, 1, 42, 44, 63, 97, 99], "modular": [0, 45, 99], "subclass": [0, 45, 99], "torch": [0, 8, 10, 12, 13, 45, 48, 63, 64, 67, 68, 94, 99, 100], "nn": [0, 45, 48, 62, 64, 99], "mean": [0, 5, 8, 10, 12, 13, 32, 35, 45, 56, 58, 80, 89, 99], "onli": [0, 1, 8, 10, 12, 13, 45, 49, 70, 71, 72, 75, 82, 89, 94, 99, 100], "need": [0, 28, 45, 67, 80, 99, 100], "import": [0, 1, 36, 45, 83, 99], "few": [0, 45, 98, 99], "exist": [0, 8, 10, 12, 13, 33, 35, 36, 45, 79, 88, 99], "purpos": [0, 45, 80, 99], "built": [0, 45, 99], "them": [0, 1, 28, 45, 56, 70, 71, 72, 75, 99, 100], "togeth": [0, 45, 62, 68, 99], "form": [0, 45, 70, 86, 91, 99], "complet": [0, 45, 68, 99], "extend": [0, 1, 99], "suit": [0, 99], "through": [0, 80, 99], "layer": [0, 45, 47, 49, 55, 56, 57, 58, 70, 71, 72, 99], "connect": [0, 62, 63, 66, 80, 99], "etc": [0, 80, 95, 99], "optimis": [0, 1, 99], "differ": [0, 8, 10, 12, 13, 15, 64, 68, 98, 99, 100], "track": [0, 15, 19, 71, 98, 99], "These": [0, 63, 98, 99], "prepar": [0, 80, 99], "satisfi": [0, 99], "o": [0, 70, 71, 72, 99], "load": [0, 6, 8, 39, 67, 86, 88, 99], "requir": [0, 21, 36, 70, 80, 88, 89, 91, 99, 100], "when": [0, 5, 8, 10, 12, 13, 28, 32, 35, 36, 44, 48, 56, 58, 79, 95, 98, 99, 100], "batch": [0, 6, 33, 46, 48, 49, 68, 73, 81, 84, 99], "do": [0, 44, 80, 88, 89, 98, 99, 100], "predict": [0, 20, 24, 26, 33, 44, 55, 67, 68, 70, 71, 72, 80, 81, 99], "either": [0, 8, 10, 12, 80, 99, 100], "contain": [0, 5, 8, 10, 12, 13, 28, 29, 32, 33, 35, 44, 56, 60, 61, 63, 64, 65, 67, 70, 71, 72, 80, 82, 84, 99, 100], "imag": [0, 1, 98, 99, 100], "portabl": [0, 99], "depend": [0, 99, 100], "free": [0, 80, 99], "split": [0, 46, 99], "up": [0, 5, 32, 35, 44, 98, 99, 100], "interfac": [0, 74, 99, 100], "block": [0, 1, 99], "pre": [0, 13, 51, 63, 79, 98, 99], "directli": [0, 15, 99], "while": [0, 17, 78, 99], "continu": [0, 80, 99], "expand": [0, 99], "": [0, 5, 6, 8, 10, 12, 13, 15, 28, 35, 38, 55, 56, 68, 70, 71, 72, 73, 78, 82, 84, 88, 89, 95, 96, 99, 100], "capabl": [0, 99], "project": [0, 98, 99], "receiv": [0, 99], "fund": [0, 99], "european": [0, 99], "union": [0, 6, 8, 10, 12, 13, 17, 28, 30, 44, 46, 48, 49, 56, 67, 68, 70, 71, 72, 88, 91, 93, 99], "horizon": [0, 99], "2020": [0, 99], "innov": [0, 99], "programm": [0, 99], "under": [0, 13, 99], "mari": [0, 99], "sk\u0142odowska": [0, 99], "curi": [0, 99], "grant": [0, 80, 99], "agreement": [0, 98, 99], "No": [0, 99], "890778": [0, 99], "work": [0, 4, 29, 98, 99, 100], "rasmu": [0, 57, 99], "\u00f8rs\u00f8e": [0, 99], "partli": [0, 99], "punch4nfdi": [0, 99], "consortium": [0, 99], "support": [0, 30, 98, 99, 100], "dfg": [0, 99], "nfdi": [0, 99], "39": [0, 99, 100], "1": [0, 5, 8, 28, 32, 35, 40, 46, 49, 56, 58, 62, 64, 70, 71, 72, 73, 78, 80, 82, 88, 99, 100], "germani": [0, 99], "conveni": [1, 98, 100], "collabor": 1, "solv": [1, 98], "It": [1, 28, 36, 44, 98], "leverag": 1, "advanc": [1, 49], "machin": [1, 100], "learn": [1, 44, 78, 100], "without": [1, 62, 66, 75, 80, 100], "have": [1, 5, 17, 32, 35, 36, 40, 49, 63, 70, 71, 72, 98, 100], "expert": 1, "themselv": [1, 88, 89], "acceler": 1, "area": 1, "phyic": 1, "design": 1, "principl": 1, "all": [1, 5, 8, 10, 12, 13, 15, 17, 32, 35, 36, 44, 48, 49, 51, 56, 59, 63, 67, 72, 80, 86, 87, 88, 89, 90, 91, 95, 98, 100], "streamlin": 1, "process": [1, 5, 13, 15, 44, 51, 56, 98, 100], "transform": [1, 49, 70, 71, 72, 82], "extens": [1, 93], "basic": 1, "across": [1, 2, 8, 10, 12, 13, 30, 37, 49, 68, 80, 83, 84, 85, 95], "variou": 1, "easili": 1, "architectur": [1, 55, 56, 57, 58, 68], "main": [1, 54, 63, 68, 98, 100], "featur": [1, 3, 4, 5, 8, 10, 12, 13, 16, 33, 44, 48, 49, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 70, 73, 81, 88, 98], "i3": [1, 5, 15, 29, 30, 32, 35, 39, 44, 93, 100], "more": [1, 8, 36, 39, 86, 88, 89, 91, 95], "index": [1, 5, 8, 10, 12, 30, 36, 49, 78], "sqlite": [1, 3, 7, 12, 13, 33, 35, 36, 38, 100], "suitabl": 1, "plug": 1, "plai": 1, "abstract": [1, 5, 8, 51, 59, 63, 67, 72, 87], "awai": 1, "detail": [1, 100], "expos": 1, "physicst": 1, "what": [1, 63, 98], "i3modul": [1, 41, 44], "includ": [1, 13, 67, 68, 75, 80, 86, 98], "docker": 1, "run": [1, 38], "containeris": 1, "fashion": 1, "subpackag": [1, 3, 7, 14, 41, 45, 60, 83], "dataset": [1, 3, 6, 9, 10, 11, 12, 13, 19, 40, 63, 84, 88], "extractor": [1, 3, 5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 35, 44], "parquet": [1, 3, 7, 10, 32, 38, 100], "util": [1, 3, 14, 28, 29, 30, 36, 38, 39, 40, 45, 77, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97], "constant": [1, 3, 97], "dataconvert": [1, 3, 32, 35], "dataload": [1, 3, 33, 63, 67, 68, 81, 91], "pipelin": [1, 3], "coarsen": [1, 45, 49], "standard_model": [1, 45], "pisa": [1, 21, 33, 75, 76, 94, 97, 100], "fit": [1, 67, 74, 76, 80, 82, 91], "plot": [1, 74], "callback": [1, 67, 77], "label": [1, 8, 19, 22, 55, 63, 68, 72, 76, 77, 81], "loss_funct": [1, 70, 71, 72, 77], "weight_fit": [1, 77], "config": [1, 6, 40, 75, 80, 83, 84, 86, 87, 88, 89, 90, 91], "argpars": [1, 83], "decor": [1, 5, 83, 94], "filesi": [1, 83], "math": [1, 83], "submodul": [1, 3, 7, 9, 11, 14, 27, 31, 34, 37, 42, 45, 47, 50, 54, 60, 61, 65, 69, 74, 77, 83, 85, 90], "global": [2, 4, 56, 58, 67], "i3extractor": [3, 5, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 35], "i3featureextractor": [3, 4, 14, 35, 44], "i3genericextractor": [3, 14, 35], "i3hybridrecoextractor": [3, 14], "i3ntmuonlabelsextractor": [3, 14], "i3particleextractor": [3, 14], "i3pisaextractor": [3, 14], "i3quesoextractor": [3, 14], "i3retroextractor": [3, 14], "i3splinempeextractor": [3, 14], "i3truthextractor": [3, 4, 14], "i3tumextractor": [3, 14], "parquet_dataconvert": [3, 31], "sqlite_dataconvert": [3, 34], "sqlite_util": [3, 34], "parquet_to_sqlit": [3, 37], "random": [3, 8, 10, 12, 13, 37, 40, 88], "string_selection_resolv": [3, 37], "truth": [3, 4, 8, 10, 12, 13, 16, 25, 33, 36, 63, 81, 82, 88], "fileset": [3, 5], "init_global_index": [3, 5], "cache_output_fil": [3, 5], "collate_fn": [3, 6, 77, 81], "do_shuffl": [3, 6], "insqlitepipelin": [3, 33], "class": [4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 38, 40, 44, 46, 48, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 78, 79, 80, 82, 84, 86, 87, 88, 89, 90, 91, 95, 98], "object": [4, 5, 8, 10, 12, 13, 15, 17, 28, 30, 44, 49, 51, 63, 70, 71, 72, 75, 84, 95], "namespac": [4, 67], "name": [4, 5, 6, 8, 10, 12, 13, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 32, 33, 35, 36, 38, 44, 62, 63, 64, 66, 67, 70, 71, 72, 75, 79, 82, 84, 86, 88, 89, 90, 91, 95, 98, 100], "icecube86": [4, 50, 52], "dom_x": [4, 44, 46], "dom_i": [4, 44, 46], "dom_z": [4, 44, 46], "dom_tim": 4, "charg": [4, 44, 80], "rde": [4, 46], "pmt_area": [4, 46], "deepcor": [4, 16, 52], "upgrad": [4, 16, 52, 100], "string": [4, 5, 8, 10, 12, 13, 28, 32, 35, 40, 49, 86], "pmt_number": 4, "dom_numb": 4, "pmt_dir_x": 4, "pmt_dir_i": 4, "pmt_dir_z": 4, "dom_typ": 4, "prometheu": [4, 45, 50], "sensor_pos_x": 4, "sensor_pos_i": 4, "sensor_pos_z": 4, "t": [4, 30, 36, 76, 78, 80, 100], "kaggl": [4, 48, 52, 58], "x": [4, 5, 25, 32, 35, 48, 49, 66, 67, 72, 73, 76, 80, 82], "y": [4, 25, 73, 76, 100], "z": [4, 5, 25, 32, 35, 73, 100], "auxiliari": 4, "energy_track": 4, "position_x": 4, "position_i": 4, "position_z": 4, "azimuth": [4, 71, 79], "zenith": [4, 71, 79], "pid": [4, 40, 88], "elast": 4, "sim_typ": 4, "interaction_typ": 4, "interaction_tim": [4, 71], "inelast": [4, 71], "stopped_muon": 4, "injection_energi": 4, "injection_typ": 4, "injection_interaction_typ": 4, "injection_zenith": 4, "injection_azimuth": 4, "injection_bjorkenx": 4, "injection_bjorkeni": 4, "injection_position_x": 4, "injection_position_i": 4, "injection_position_z": 4, "injection_column_depth": 4, "primary_lepton_1_typ": 4, "primary_hadron_1_typ": 4, "primary_lepton_1_position_x": 4, "primary_lepton_1_position_i": 4, "primary_lepton_1_position_z": 4, "primary_hadron_1_position_x": 4, "primary_hadron_1_position_i": 4, "primary_hadron_1_position_z": 4, "primary_lepton_1_direction_theta": 4, "primary_lepton_1_direction_phi": 4, "primary_hadron_1_direction_theta": 4, "primary_hadron_1_direction_phi": 4, "primary_lepton_1_energi": 4, "primary_hadron_1_energi": 4, "total_energi": 4, "i3_fil": [5, 15], "str": [5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 52, 53, 56, 58, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 95], "gcd_file": [5, 15, 44], "paramet": [5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 55, 56, 57, 58, 59, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96], "output_fil": [5, 32, 35], "global_index": 5, "avail": [5, 17, 33, 94], "pool": [5, 45, 46, 47, 56, 58], "worker": [5, 32, 33, 35, 39, 84, 95], "return": [5, 6, 8, 10, 12, 13, 15, 28, 29, 30, 32, 35, 36, 38, 39, 40, 46, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 62, 63, 66, 67, 68, 70, 72, 73, 75, 76, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96], "none": [5, 6, 8, 10, 12, 13, 15, 17, 25, 29, 30, 32, 33, 35, 36, 38, 40, 44, 46, 48, 49, 56, 58, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75, 78, 80, 81, 82, 84, 86, 87, 88, 90, 93, 95], "synchron": 5, "list": [5, 6, 8, 10, 12, 13, 15, 17, 25, 28, 30, 32, 33, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 56, 58, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 76, 78, 80, 81, 82, 88, 90, 91, 93, 95], "process_method": 5, "cach": 5, "output": [5, 32, 35, 38, 55, 56, 57, 59, 66, 67, 68, 75, 82, 88, 89, 100], "typevar": 5, "f": [5, 49], "bound": [5, 76], "callabl": [5, 6, 8, 30, 48, 49, 51, 52, 53, 63, 70, 71, 72, 81, 82, 86, 88, 89, 90, 94], "ani": [5, 6, 8, 10, 12, 28, 29, 30, 32, 35, 44, 48, 49, 56, 62, 63, 67, 68, 70, 72, 76, 80, 82, 84, 86, 87, 88, 89, 90, 91, 95, 100], "outdir": [5, 32, 33, 35, 38, 75], "gcd_rescu": [5, 32, 35, 93], "nb_files_to_batch": [5, 32, 35], "sequential_batch_pattern": [5, 32, 35], "input_file_batch_pattern": [5, 32, 35], "index_column": [5, 8, 10, 12, 13, 32, 35, 36, 40, 75, 81, 82, 88], "icetray_verbos": [5, 32, 35], "abc": [5, 8, 15, 33, 67, 79, 82, 87], "logger": [5, 8, 15, 33, 38, 40, 62, 67, 79, 82, 83, 95, 100], "construct": [5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 35, 38, 40, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 75, 78, 79, 80, 81, 82, 84, 87, 88, 89, 95], "regular": [5, 30, 32, 35], "express": [5, 32, 35, 67, 80], "accord": [5, 13, 32, 35, 46, 49, 62], "match": [5, 32, 35, 82, 93, 96], "certain": [5, 32, 35, 38, 75], "pattern": [5, 32, 35], "wildcard": [5, 32, 35], "same": [5, 30, 32, 35, 36, 46, 49, 70, 73, 78, 90, 95], "input": [5, 8, 10, 12, 13, 32, 33, 35, 44, 52, 55, 56, 57, 58, 59, 63, 66, 70, 72, 73, 86, 91], "replac": [5, 32, 35, 86, 88, 89, 91], "period": [5, 32, 35], "special": [5, 17, 32, 35, 44, 73], "interpret": [5, 32, 35, 70], "liter": [5, 32, 35], "charact": [5, 32, 35], "regex": [5, 32, 35], "For": [5, 30, 32, 35, 78], "instanc": [5, 8, 15, 25, 30, 32, 35, 44, 63, 67, 75, 79, 81, 87, 100], "A": [5, 8, 32, 33, 35, 44, 49, 64, 73, 75, 80, 82, 100], "_": [5, 32, 35], "0": [5, 8, 10, 12, 32, 35, 40, 44, 46, 49, 55, 56, 58, 62, 64, 73, 75, 76, 80, 88], "9": [5, 32, 35], "5": [5, 8, 10, 12, 32, 35, 40, 84, 100], "zst": [5, 32, 35], "find": [5, 32, 35, 93], "whose": [5, 32, 35, 44], "one": [5, 8, 32, 35, 36, 44, 49, 67, 88, 89, 93, 98, 100], "capit": [5, 32, 35], "letter": [5, 32, 35], "follow": [5, 32, 35, 56, 68, 80, 82, 98, 100], "underscor": [5, 32, 35], "five": [5, 32, 35], "upgrade_genie_step4_141020_a_000000": [5, 32, 35], "upgrade_genie_step4_141020_a_000001": [5, 32, 35], "upgrade_genie_step4_141020_a_000008": [5, 32, 35], "upgrade_genie_step4_141020_a_000009": [5, 32, 35], "would": [5, 32, 35, 98], "upgrade_genie_step4_141020_a_00000x": [5, 32, 35], "suffix": [5, 32, 35], "upgrade_genie_step4_141020_a_000010": [5, 32, 35], "separ": [5, 28, 32, 35, 78, 100], "upgrade_genie_step4_141020_a_00001x": [5, 32, 35], "int": [5, 6, 8, 10, 12, 13, 19, 22, 32, 33, 35, 40, 48, 49, 55, 56, 57, 58, 59, 62, 64, 66, 67, 68, 70, 71, 72, 73, 75, 78, 80, 81, 82, 84, 88, 91, 95], "properti": [5, 8, 15, 20, 30, 49, 59, 66, 68, 72, 79, 87, 95], "file_suffix": [5, 32, 35], "execut": [5, 36], "method": [5, 8, 10, 12, 15, 27, 28, 29, 30, 32, 35, 44, 48, 49, 71, 80, 82], "set": [5, 17, 70, 71, 72, 98], "inherit": [5, 15, 30, 51, 66, 80, 95], "path": [5, 8, 10, 12, 13, 36, 39, 44, 63, 67, 75, 76, 84, 86, 87, 88, 93, 100], "correspond": [5, 8, 10, 12, 13, 28, 30, 35, 39, 56, 63, 82, 93, 100], "gcd": [5, 15, 29, 39, 44, 93], "save_data": [5, 32, 35], "save": [5, 15, 28, 32, 35, 36, 67, 75, 80, 81, 82, 86, 87, 88, 89, 100], "ordereddict": [5, 32, 35], "extract": [5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 35, 38, 39, 44, 70, 71, 72], "merge_fil": [5, 32, 35], "input_fil": [5, 32, 35], "merg": [5, 32, 35, 80, 100], "result": [5, 32, 35, 49, 78, 80, 81, 90, 100], "option": [5, 8, 10, 12, 13, 25, 32, 33, 35, 44, 48, 49, 56, 58, 63, 64, 67, 70, 71, 72, 75, 76, 80, 82, 83, 84, 86, 88, 93, 100], "default": [5, 8, 10, 12, 13, 17, 25, 28, 32, 33, 35, 36, 38, 44, 48, 49, 55, 56, 57, 58, 62, 63, 64, 66, 67, 70, 71, 72, 75, 76, 78, 79, 80, 82, 84, 86, 88, 93], "current": [5, 32, 35, 40, 78, 98, 100], "rais": [5, 8, 17, 32, 67, 86, 91], "notimplementederror": [5, 32], "If": [5, 8, 17, 32, 33, 35, 67, 70, 71, 72, 75, 78, 82, 98, 100], "been": [5, 32, 44, 80, 98], "backend": [5, 9, 11, 32, 35], "question": 5, "get_map_funct": 5, "nb_file": 5, "map": [5, 8, 10, 12, 13, 16, 17, 35, 36, 44, 52, 53, 86, 88, 89, 91], "pure": [5, 14, 15, 17, 30], "multiprocess": [5, 100], "tupl": [5, 8, 10, 12, 29, 30, 48, 56, 58, 70, 71, 72, 73, 75, 76, 81, 84], "remov": [6, 81, 84], "less": [6, 81], "two": [6, 56, 75, 78, 80, 81], "dom": [6, 8, 10, 12, 13, 46, 49, 81], "hit": [6, 81], "should": [6, 8, 10, 12, 13, 15, 28, 40, 48, 49, 80, 81, 86, 88, 89, 91, 98, 100], "occur": [6, 81], "product": [6, 81], "selection_nam": 6, "check": [6, 29, 30, 35, 36, 84, 93, 94, 98, 100], "whether": [6, 29, 30, 35, 36, 56, 67, 80, 90, 93, 94], "shuffl": [6, 39, 81], "select": [6, 8, 10, 12, 13, 22, 40, 81, 82, 88, 98], "bool": [6, 29, 30, 35, 36, 40, 44, 46, 56, 67, 68, 75, 78, 80, 81, 82, 84, 90, 93, 94, 95], "batch_siz": [6, 33, 73, 81], "num_work": [6, 81], "persistent_work": [6, 81], "prefetch_factor": 6, "kwarg": [6, 48, 62, 67, 70, 72, 80, 82, 86, 95], "t_co": 6, "classmethod": [6, 8, 67, 80, 86, 87], "from_dataset_config": 6, "datasetconfig": [6, 8, 40, 85, 88], "dict": [6, 8, 13, 17, 28, 30, 33, 35, 51, 52, 53, 63, 67, 68, 75, 76, 78, 80, 81, 84, 86, 88, 89, 90, 91], "parquet_dataset": [7, 9], "sqlite_dataset": [7, 11], "sqlite_dataset_perturb": [7, 11], "columnmissingexcept": [7, 8], "load_modul": [7, 8, 67], "parse_graph_definit": [7, 8], "ensembledataset": [7, 8, 88], "except": 8, "indic": [8, 40, 49, 78, 84, 98], "miss": 8, "column": [8, 10, 12, 13, 36, 44, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 82], "class_nam": [8, 62, 67, 89, 95], "cfg": 8, "graphdefinit": [8, 10, 12, 44, 60, 61, 63, 64, 65, 68, 81, 98], "graph_definit": [8, 10, 12, 44, 45, 60, 68, 81, 88], "pulsemap": [8, 10, 12, 13, 16, 35, 44, 81, 88], "node_truth": [8, 10, 12, 13, 81, 88], "truth_tabl": [8, 10, 12, 13, 75, 81, 82, 88], "node_truth_t": [8, 10, 12, 13, 81, 88], "string_select": [8, 10, 12, 13, 81, 88], "dtype": [8, 10, 12, 13, 63, 64, 96], "loss_weight_t": [8, 10, 12, 13, 81, 88], "loss_weight_column": [8, 10, 12, 13, 63, 81, 88], "loss_weight_default_valu": [8, 10, 12, 13, 63, 88], "seed": [8, 10, 12, 13, 40, 81, 88], "puls": [8, 10, 12, 13, 16, 17, 29, 30, 35, 36, 44, 46, 49, 66, 73], "seri": [8, 10, 12, 13, 16, 17, 29, 30, 36, 44], "node": [8, 10, 12, 13, 45, 46, 49, 55, 56, 58, 60, 61, 62, 63, 64, 70, 71, 72, 73], "multipl": [8, 10, 12, 13, 15, 78, 88, 95], "store": [8, 10, 12, 13, 15, 33, 36, 75, 79], "ad": [8, 10, 12, 13, 16, 56, 63, 75], "attribut": [8, 10, 12, 13, 46, 70, 71, 72], "event_no": [8, 10, 12, 13, 36, 40, 82, 88], "uniqu": [8, 10, 12, 13, 36, 38, 88], "indici": [8, 10, 12, 13, 29, 40, 80], "tabl": [8, 10, 12, 13, 15, 33, 35, 36, 63, 75, 82], "inform": [8, 10, 12, 13, 15, 17, 25, 76], "subset": [8, 10, 12, 13, 48, 56, 58], "given": [8, 10, 12, 13, 35, 49, 62, 70, 71, 72, 82, 84], "queri": [8, 10, 12, 36, 40], "pass": [8, 10, 12, 48, 55, 56, 57, 58, 59, 63, 67, 68, 70, 71, 72, 80, 82, 98], "float32": [8, 10, 12, 13, 63, 64], "tensor": [8, 10, 12, 13, 46, 48, 49, 51, 55, 56, 57, 58, 59, 66, 67, 68, 70, 71, 72, 73, 80, 96], "per": [8, 10, 12, 13, 17, 36, 49, 70, 71, 72, 80, 82], "loss": [8, 10, 12, 13, 63, 68, 70, 71, 72, 78, 80, 84], "weight": [8, 10, 12, 13, 44, 63, 70, 71, 72, 75, 80, 82, 89, 100], "also": [8, 10, 12, 13, 40, 88], "assign": [8, 10, 12, 13, 38, 46, 49, 98], "float": [8, 10, 12, 13, 44, 46, 55, 62, 63, 67, 75, 76, 78, 80, 81, 88], "note": [8, 10, 12, 13, 76, 89], "valu": [8, 10, 12, 13, 25, 28, 35, 36, 49, 63, 76, 79, 80, 84, 86], "specifi": [8, 10, 12, 13, 40, 46, 70, 71, 72, 76, 78, 100], "case": [8, 10, 12, 13, 17, 44, 49, 70, 71, 72, 100], "That": [8, 10, 12, 13, 56, 71, 79], "ignor": [8, 10, 12, 13, 30], "resolv": [8, 10, 12, 40], "10000": [8, 10, 12, 40], "20": [8, 10, 12, 40, 95], "defin": [8, 10, 12, 40, 44, 49, 60, 61, 62, 63, 65, 86, 88, 89, 91], "represent": [8, 10, 12, 30, 49, 64], "from_config": [8, 67, 87, 88, 89], "concaten": [8, 28, 56], "query_t": [8, 10, 12], "sequential_index": [8, 10, 12], "some": [8, 10, 12, 63], "out": [8, 56, 68, 69, 80, 95, 98, 100], "sequenti": 8, "len": 8, "self": [8, 63, 75, 86, 91], "_may_": 8, "_indic": 8, "entir": [8, 67], "impos": 8, "befor": [8, 56, 70, 71, 72, 78], "scalar": [8, 73, 80], "length": [8, 30, 78], "element": [8, 28, 30, 68, 73, 90], "present": [8, 84, 93, 94], "add_label": 8, "fn": [8, 30, 86, 90], "kei": [8, 17, 28, 29, 30, 35, 36, 46, 49, 79, 88, 89], "add": [8, 56, 84, 98, 100], "custom": [8, 63, 78], "concatdataset": 8, "singl": [8, 15, 49, 56, 79, 88, 89], "collect": [8, 14, 15, 27, 80, 96], "iter": 8, "parquetdataset": [9, 10], "pytorch": [10, 12, 13, 78, 100], "sqlitedataset": [11, 12, 13], "sqlitedatasetperturb": [11, 13], "databas": [12, 13, 33, 35, 36, 38, 75, 82, 100], "perturb": 13, "perturbation_dict": 13, "step": [13, 68, 78], "where": [13, 63, 64, 66, 79], "randomli": [13, 40, 89], "nois": [13, 16, 29, 44], "intend": [13, 100], "test": [13, 40, 70, 71, 72, 81, 88, 94, 98], "stabil": 13, "small": [13, 80], "chang": [13, 75, 80, 98], "dictionari": [13, 28, 29, 30, 33, 35, 63, 75, 76, 86, 88, 89, 91], "deviat": 13, "i3fram": [14, 15, 17, 29, 30, 44], "frame": [14, 15, 17, 27, 30, 35, 44], "i3extractorcollect": [14, 15], "i3featureextractoricecube86": [14, 16], "i3featureextractoricecubedeepcor": [14, 16], "i3featureextractoricecubeupgrad": [14, 16], "i3pulsenoisetruthflagicecubeupgrad": [14, 16], "i3galacticplanehybridrecoextractor": [14, 18], "i3ntmuonlabelextractor": [14, 19], "i3splinempeicextractor": [14, 24], "__call__": 15, "icetrai": [15, 29, 30, 44, 94], "keep": 15, "proven": 15, "set_fil": 15, "refer": [15, 88], "being": [15, 44, 70, 71, 72], "get": [15, 29, 78, 81, 100], "treat": 15, "86": [16, 52], "flag": [16, 44], "exclude_kei": 17, "dynam": [17, 48, 56, 57, 58], "pars": [17, 76, 83, 84, 85, 86, 91], "call": [17, 30, 35, 49, 75, 82, 95], "tri": [17, 30], "automat": [17, 80, 98], "cast": [17, 30], "done": [17, 49, 95, 98], "recurs": [17, 30, 90, 93], "each": [17, 28, 30, 36, 38, 39, 46, 49, 52, 53, 56, 58, 62, 63, 64, 66, 67, 70, 71, 72, 73, 75, 76, 78, 93], "look": [17, 100], "member": [17, 30, 88, 89, 95], "variabl": [17, 30, 56, 73, 82, 95], "signatur": [17, 30], "similar": [17, 30, 100], "handl": [17, 80, 84, 95], "hand": 17, "mc": [17, 35, 36], "tree": [17, 35], "trigger": 17, "exclud": [17, 38, 100], "valueerror": [17, 67], "hybrid": 18, "galatict": 18, "plane": [18, 80], "tum": [19, 26], "dnn": [19, 26], "padding_valu": [19, 22], "northeren": 19, "i3particl": 20, "other": [20, 36, 62, 80, 98], "algorithm": 20, "comparison": [20, 80], "quantiti": [21, 70, 71, 72, 73], "queso": 22, "retro": [23, 33], "splinemp": 24, "border": 25, "mctree": [25, 29], "ndarrai": [25, 63, 82], "arrai": [25, 28], "boundari": 25, "volum": 25, "coordin": [25, 73], "particl": [25, 36, 79], "start": [25, 98, 100], "stop": [25, 84], "within": [25, 46, 48, 49, 56, 62], "hard": 25, "i3mctre": 25, "flatten_nested_dictionari": [27, 28], "serialis": [27, 28], "transpose_list_of_dict": [27, 28], "frame_is_montecarlo": [27, 29], "frame_is_nois": [27, 29], "get_om_keys_and_pulseseri": [27, 29], "is_boost_enum": [27, 30], "is_boost_class": [27, 30], "is_icecube_class": [27, 30], "is_typ": [27, 30], "is_method": [27, 30], "break_cyclic_recurs": [27, 30], "get_member_vari": [27, 30], "cast_object_to_pure_python": [27, 30], "cast_pulse_series_to_pure_python": [27, 30], "manipul": [28, 60, 61, 65], "obj": [28, 30, 90], "parent_kei": 28, "flatten": 28, "nest": 28, "non": [28, 30, 35, 36, 80], "exampl": [28, 40, 46, 49, 80, 88, 89, 100], "d": [28, 63, 66, 98], "b": [28, 46, 49], "c": [28, 49, 80, 100], "2": [28, 49, 56, 58, 62, 64, 71, 73, 75, 76, 80, 88, 100], "a__b": 28, "applic": 28, "combin": [28, 88], "parent": 28, "__": [28, 30], "nester": 28, "json": [28, 88], "therefor": 28, "we": [28, 30, 40, 98, 100], "outer": 28, "abl": [28, 100], "de": 28, "transpos": 28, "mont": 29, "carlo": 29, "simul": [29, 44], "pulseseri": 29, "calibr": [29, 30], "gcd_dict": [29, 30], "p": [29, 35, 80], "om": [29, 30], "dataclass": 29, "i3calibr": 29, "indicesfor": 29, "boost": 30, "enum": 30, "ensur": [30, 39, 80, 95, 98, 100], "isn": 30, "return_discard": 30, "valid": [30, 40, 68, 70, 71, 72, 80, 84, 86, 91], "mangl": 30, "take": [30, 35, 49, 98], "mainli": 30, "cannot": [30, 86, 91], "trivial": [30, 72], "doe": [30, 89], "try": 30, "equival": 30, "its": 30, "like": [30, 49, 73, 80, 96, 98], "otherwis": [30, 80], "itself": [30, 70, 71, 72], "deem": 30, "wai": [30, 40, 98, 100], "optic": 30, "found": [30, 80], "parquetdataconvert": [31, 32], "module_dict": 33, "devic": 33, "retro_table_nam": 33, "n_worker": [33, 75], "pipeline_nam": 33, "creat": [33, 35, 36, 63, 86, 87, 91, 98, 100], "initialis": [33, 89], "gnn_module_for_energy_regress": 33, "modulelist": 33, "comput": [33, 68, 70, 71, 72, 73, 80], "directori": [33, 38, 75, 93], "100": [33, 100], "size": [33, 48, 49, 56, 57, 58, 84], "alreadi": [33, 36, 100], "error": [33, 80, 95, 98], "prompt": 33, "avoid": [33, 95, 98], "overwrit": [33, 78], "sqlitedataconvert": [34, 35, 100], "construct_datafram": [34, 35], "is_pulse_map": [34, 35], "is_mc_tre": [34, 35], "database_exist": [34, 36], "database_table_exist": [34, 36], "run_sql_cod": [34, 36], "save_to_sql": [34, 36], "attach_index": [34, 36], "create_t": [34, 36], "create_table_and_save_to_sql": [34, 36], "db": [35, 81], "max_table_s": 35, "maximum": [35, 49, 70, 71, 72, 84], "row": [35, 36], "exce": 35, "limit": [35, 80], "any_pulsemap_is_non_empti": 35, "data_dict": 35, "empti": [35, 44], "retriev": 35, "splitinicepuls": 35, "least": [35, 98, 100], "true": [35, 36, 44, 75, 78, 80, 82, 88, 89, 91], "becaus": [35, 39], "instead": [35, 80, 86, 91], "alwai": 35, "panda": [35, 40, 82], "datafram": [35, 36, 40, 67, 68, 75, 81, 82], "table_nam": [35, 36], "database_path": [36, 75, 82], "df": 36, "must": [36, 46, 78, 82, 98], "attach": 36, "default_typ": 36, "null": 36, "integer_primary_kei": 36, "NOT": [36, 80], "integ": [36, 56, 57, 80], "primari": 36, "Such": 36, "appropri": [36, 70, 71, 72], "expect": [36, 40, 44, 66], "doesn": 36, "parquettosqliteconvert": [37, 38], "pairwise_shuffl": [37, 39], "stringselectionresolv": [37, 40], "parquet_path": 38, "mc_truth_tabl": 38, "excluded_field": 38, "id": 38, "everi": [38, 100], "field": [38, 76, 79, 86, 88, 89, 91], "One": [38, 76], "choos": 38, "argument": [38, 82, 84, 86, 88, 89, 91], "exclude_field": 38, "database_nam": 38, "convers": [38, 100], "rng": 39, "relat": [39, 93], "i3_list": [39, 93], "gcd_list": [39, 93], "correpond": 39, "handi": 39, "even": 39, "files_list": 39, "gcd_shuffl": 39, "i3_shuffl": 39, "use_cach": 40, "flexibl": 40, "below": [40, 76, 82, 98, 100], "show": [40, 78], "involv": 40, "cover": 40, "yml": [40, 84, 88, 89], "50000": [40, 88], "ab": [40, 80, 88], "12": [40, 88], "14": [40, 88], "16": [40, 88], "13": [40, 100], "compat": 40, "syntax": [40, 80], "mai": [40, 66, 100], "fix": 40, "graphnet_modul": [41, 42], "graphneti3modul": [42, 44], "i3inferencemodul": [42, 44], "i3pulsecleanermodul": [42, 44], "pulsemap_extractor": 44, "produc": [44, 79, 82], "write": [44, 100], "constructor": 44, "knngraph": [44, 60, 64], "associ": [44, 63, 71, 80], "model_config": [44, 83, 85, 86, 88, 91], "state_dict": [44, 67], "model_nam": [44, 75], "prediction_column": [44, 67, 68, 81], "pulsmap": 44, "modelconfig": [44, 67, 85, 88, 89], "summar": 44, "Will": [44, 62], "help": [44, 84, 98], "entri": [44, 56, 76, 84], "dynedg": [44, 45, 54, 57, 58], "energy_reco": 44, "discard_empty_ev": 44, "clean": [44, 98, 100], "assum": [44, 51, 72, 73], "7": [44, 49, 75], "consid": [44, 100], "posit": [44, 49, 71], "signal": 44, "els": 44, "fals": [44, 56, 67, 75, 78, 80, 82, 88], "elimin": 44, "speed": 44, "especi": 44, "sinc": [44, 80], "further": 44, "calcul": [44, 62, 64, 68, 73, 79, 80], "convnet": [45, 54], "dynedge_jinst": [45, 54], "dynedge_kaggle_tito": [45, 54], "edg": [45, 48, 49, 56, 57, 58, 60, 63, 64, 65, 66, 73], "unbatch_edge_index": [45, 46], "attributecoarsen": [45, 46], "domcoarsen": [45, 46], "customdomcoarsen": [45, 46], "domandtimewindowcoarsen": [45, 46], "standardmodel": [45, 68], "calculate_xyzt_homophili": [45, 73], "calculate_distance_matrix": [45, 73], "knn_graph_batch": [45, 73], "oper": [46, 48, 54, 56], "cluster": [46, 48, 49, 56, 58], "local": [46, 84], "edge_index": [46, 48, 73], "vector": [46, 49, 80], "longtensor": [46, 49, 73], "mathbf": [46, 49], "ldot": [46, 49], "n": [46, 49, 80], "reduc": 46, "transfer_attribut": 46, "reduce_opt": 46, "avg": 46, "avg_pool": 46, "avg_pool_x": 46, "max": [46, 48, 56, 58, 80, 84], "max_pool": [46, 49], "max_pool_x": [46, 49], "min": [46, 49, 56, 58], "min_pool": [46, 47, 49], "min_pool_x": [46, 47, 49], "sum": [46, 49, 56, 58, 68], "sum_pool": [46, 47, 49], "sum_pool_x": [46, 47, 49], "forward": [46, 48, 51, 55, 56, 57, 58, 59, 62, 63, 66, 67, 68, 72, 80], "simplecoarsen": 46, "addit": [46, 48, 67, 68, 80, 82], "time_window": 46, "time_kei": 46, "window": 46, "dynedgeconv": [47, 48, 56], "edgeconvtito": [47, 48], "dyntran": [47, 48, 58], "sum_pool_and_distribut": [47, 49], "group_bi": [47, 49], "group_pulses_to_dom": [47, 49], "group_pulses_to_pmt": [47, 49], "std_pool_x": [47, 49], "std_pool": [47, 49], "aggr": 48, "nb_neighbor": 48, "features_subset": [48, 56, 58], "edgeconv": 48, "lightningmodul": [48, 67, 78, 95], "convolut": [48, 55, 56, 57, 58], "mlp": [48, 56], "aggreg": [48, 49], "8": [48, 49, 56, 64, 80, 98, 100], "neighbour": [48, 56, 58, 62, 64, 73], "after": [48, 56, 78, 84], "sequenc": 48, "slice": [48, 56, 58], "sparsetensor": 48, "messagepass": 48, "tito": [48, 58], "solut": [48, 58, 98], "deep": [48, 58], "competit": [48, 52, 58], "reset_paramet": 48, "reset": 48, "learnabl": [48, 54, 55, 56, 57, 58, 59], "messag": [48, 78, 95], "x_i": 48, "x_j": 48, "layer_s": 48, "n_head": 48, "dyntrans1": 48, "head": 48, "multiheadattent": 48, "just": [49, 100], "negat": 49, "cluster_index": 49, "distribut": [49, 56, 71, 80, 82], "ident": [49, 72], "pmt": 49, "f1": 49, "f2": 49, "6": [49, 76], "groupbi": 49, "3": [49, 55, 58, 71, 73, 75, 76, 80, 98, 100], "matrix": [49, 62, 73, 80], "mathbb": 49, "r": [49, 62, 100], "n_1": 49, "n_b": 49, "obtain": [49, 80], "wise": 49, "dens": 49, "fc": 49, "known": 49, "std": 49, "repres": [49, 63, 64, 66, 86, 88, 89], "averag": [49, 80], "torch_geometr": 49, "version": [49, 70, 71, 72, 78, 98, 100], "standardis": 50, "icecubekaggl": [50, 52], "icecubedeepcor": [50, 52], "icecubeupgrad": [50, 52], "ins": 51, "feature_map": [51, 52, 53], "node_featur": [51, 63], "node_feature_nam": [51, 63, 64, 66], "adjac": 51, "dimens": [52, 53, 55, 56, 58, 80], "prototyp": 53, "dynedgejinst": [54, 57], "dynedgetito": [54, 58], "author": [55, 57, 80], "martin": 55, "minh": 55, "nb_input": [55, 56, 57, 58, 59, 70, 71, 72], "nb_output": [55, 57, 59, 66, 70, 72], "nb_intermedi": 55, "dropout_ratio": 55, "128": [55, 56, 84], "fraction": 55, "drop": 55, "nb_neighbour": 56, "dynedge_layer_s": 56, "post_processing_layer_s": 56, "readout_layer_s": 56, "global_pooling_schem": [56, 58], "add_global_variables_after_pool": 56, "k": [56, 58, 62, 64, 73, 80], "nearest": [56, 58, 62, 64, 73], "latent": [56, 58, 70], "metric": [56, 58, 78], "dimenion": [56, 58], "multi": 56, "perceptron": 56, "256": 56, "336": 56, "hidden": [56, 57, 70, 72], "skip": 56, "post": 56, "_and_": 56, "As": 56, "last": [56, 70, 72, 78], "scheme": [56, 58], "altern": [56, 80, 98], "exact": [57, 80], "2209": 57, "03042": 57, "oerso": 57, "layer_size_scal": 57, "4": [57, 58, 71, 76], "scale": [57, 63, 70, 71, 72, 80], "ic": 58, "univers": 58, "south": 58, "pole": 58, "dyntrans_layer_s": 58, "core": 59, "edgedefinit": [60, 61, 62, 63, 65], "how": [60, 61, 65], "drawn": [60, 61, 64, 65], "between": [60, 61, 62, 65, 68, 73, 78, 80], "knnedg": [61, 62], "radialedg": [61, 62], "euclideanedg": [61, 62], "log_fold": [62, 67, 95], "_construct_edg": 62, "nb_nearest_neighbour": [62, 64], "definit": [62, 63, 64, 66, 67, 98], "space": [62, 82], "distanc": [62, 64, 73], "radiu": 62, "sphere": 62, "chosen": [62, 95], "centr": 62, "radial": 62, "center": 62, "sigma": 62, "euclidean": [62, 98], "see": [62, 63, 78, 98, 100], "http": [62, 63, 80, 98], "arxiv": [62, 80], "org": [62, 80, 100], "pdf": 62, "1809": 62, "06166": 62, "hold": 63, "alter": 63, "dure": [63, 70, 71, 72, 78], "node_definit": [63, 64], "edge_definit": 63, "geometri": 63, "nodedefinit": [63, 64, 65, 66], "truth_dict": 63, "custom_label_funct": 63, "loss_weight": [63, 70, 71, 72], "data_path": 63, "shape": [63, 66, 73, 80], "num_nod": 63, "github": [63, 80, 100], "com": [63, 80, 100], "team": [63, 98], "blob": [63, 80], "getting_start": 63, "md": 63, "your": [64, 98, 100], "nodesaspuls": [65, 66], "num_puls": 66, "overridden": 66, "set_number_of_input": 66, "measur": [66, 73], "cherenkov": 66, "radiat": 66, "train_dataload": 67, "val_dataload": 67, "max_epoch": 67, "gpu": [67, 68, 84, 100], "ckpt_path": 67, "log_every_n_step": 67, "gradient_clip_v": 67, "distribution_strategi": [67, 68], "trainer_kwarg": 67, "pytorch_lightn": [67, 95], "trainer": [67, 78, 81], "predict_as_datafram": [67, 68], "additional_attribut": [67, 68, 81], "save_state_dict": 67, "load_state_dict": 67, "karg": 67, "trust": 67, "enough": 67, "eval": [67, 100], "lambda": 67, "consequ": 67, "optimizer_class": 68, "optim": [68, 78], "adam": 68, "optimizer_kwarg": 68, "scheduler_class": 68, "scheduler_kwarg": 68, "scheduler_config": 68, "target_label": [68, 70, 71, 72], "target": [68, 70, 71, 72, 80, 91], "prediction_label": [68, 70, 71, 72], "configure_optim": 68, "shared_step": 68, "batch_idx": 68, "share": 68, "training_step": 68, "train_batch": 68, "validation_step": 68, "val_batch": 68, "compute_loss": [68, 70, 71, 72], "pred": [68, 72], "verbos": [68, 78], "activ": [68, 72, 98, 100], "mode": [68, 72], "deactiv": [68, 72], "multiclassclassificationtask": [69, 70], "binaryclassificationtask": [69, 70], "binaryclassificationtasklogit": [69, 70], "azimuthreconstructionwithkappa": [69, 71], "azimuthreconstruct": [69, 71], "directionreconstructionwithkappa": [69, 71], "zenithreconstruct": [69, 71], "zenithreconstructionwithkappa": [69, 71], "energyreconstruct": [69, 71], "energyreconstructionwithpow": [69, 71], "energyreconstructionwithuncertainti": [69, 71], "vertexreconstruct": [69, 71], "positionreconstruct": [69, 71], "timereconstruct": [69, 71], "inelasticityreconstruct": [69, 71], "identitytask": [69, 70, 72], "arg": [70, 72, 80, 84, 86, 91, 95], "classifi": 70, "untransform": 70, "logit": [70, 80], "affin": [70, 71, 72], "hidden_s": [70, 71, 72], "transform_prediction_and_target": [70, 71, 72], "transform_target": [70, 71, 72], "transform_infer": [70, 71, 72], "transform_support": [70, 71, 72], "binari": [70, 80], "feed": [70, 71, 72], "lossfunct": [70, 71, 72, 77, 80], "auto": [70, 71, 72], "matic": [70, 71, 72], "_pred": [70, 71, 72], "numer": [70, 71, 72], "stabl": [70, 71, 72], "log10": [70, 71, 72, 82], "rather": [70, 71, 72, 95], "conjunct": [70, 71, 72], "invers": [70, 71, 72], "recov": [70, 71, 72], "minimum": [70, 71, 72], "restrict": [70, 71, 72, 80], "invert": [70, 71, 72], "1e6": [70, 71, 72], "default_target_label": [70, 71, 72], "default_prediction_label": [70, 71, 72], "target_pr": 70, "angl": [71, 79], "kappa": [71, 80], "var": 71, "azimuth_pr": 71, "azimuth_kappa": 71, "3d": [71, 80], "vmf": 71, "dir_x_pr": 71, "dir_y_pr": 71, "dir_z_pr": 71, "direction_kappa": 71, "zenith_pr": 71, "zenith_kappa": 71, "energy_pr": 71, "uncertainti": 71, "energy_sigma": 71, "vertex": 71, "position_x_pr": 71, "position_y_pr": 71, "position_z_pr": 71, "interaction_time_pr": 71, "interact": 71, "hadron": 71, "inelasticity_pr": 71, "wrt": 72, "train_ev": 72, "xyzt": 73, "homophili": 73, "notic": [73, 80], "xyz_coord": 73, "pairwis": 73, "nb_dom": 73, "updat": [73, 75, 78], "config_updat": [74, 75], "weightfitt": [74, 75, 77, 82], "contourfitt": [74, 75], "read_entri": [74, 76], "plot_2d_contour": [74, 76], "plot_1d_contour": [74, 76], "contour": [75, 76], "config_path": 75, "new_config_path": 75, "dummy_sect": 75, "temp": 75, "dummi": 75, "section": 75, "header": 75, "configupdat": 75, "programat": 75, "statistical_fit": 75, "fit_weight": [75, 82], "config_outdir": 75, "weight_nam": [75, 82], "pisa_config_dict": 75, "add_to_databas": [75, 82], "flux": 75, "_database_path": 75, "statist": 75, "effect": [75, 78, 98], "account": 75, "systemat": 75, "hypersurfac": 75, "assumpt": 75, "regard": 75, "pipeline_path": 75, "post_fix": 75, "include_retro": 75, "fit_1d_contour": 75, "run_nam": 75, "config_dict": 75, "grid_siz": 75, "theta23_minmax": 75, "36": 75, "54": 75, "dm31_minmax": 75, "1d": [75, 76], "fit_2d_contour": 75, "2d": [75, 76, 80], "content": 76, "contour_data": 76, "xlim": 76, "ylim": 76, "0023799999999999997": 76, "0025499999999999997": 76, "chi2_critical_valu": 76, "width": 76, "height": 76, "path_to_pisa_fit_result": 76, "name_of_my_model_in_fit": 76, "legend": 76, "color": 76, "linestyl": 76, "style": [76, 98], "line": [76, 78, 84], "upper": 76, "axi": 76, "605": 76, "critic": [76, 95], "chi2": 76, "90": 76, "cl": 76, "right": [76, 80], "176": 76, "inch": 76, "388": 76, "706": 76, "abov": [76, 80, 82, 100], "352": 76, "piecewiselinearlr": [77, 78], "progressbar": [77, 78], "mseloss": [77, 80], "rmseloss": [77, 80], "logcoshloss": [77, 80], "crossentropyloss": [77, 80], "binarycrossentropyloss": [77, 80], "logcmk": [77, 80], "vonmisesfisherloss": [77, 80], "vonmisesfisher2dloss": [77, 80], "euclideandistanceloss": [77, 80], "vonmisesfisher3dloss": [77, 80], "make_dataload": [77, 81], "make_train_validation_dataload": [77, 81], "get_predict": [77, 81], "save_result": [77, 81], "uniform": [77, 82], "bjoernlow": [77, 82], "mileston": 78, "factor": 78, "last_epoch": 78, "_lrschedul": 78, "interpol": 78, "linearli": 78, "denot": 78, "multipli": 78, "closest": 78, "vice": 78, "versa": 78, "wrap": [78, 88, 89], "epoch": [78, 84], "print": [78, 95], "stdout": 78, "get_lr": 78, "refresh_r": 78, "process_posit": 78, "tqdmprogressbar": 78, "progress": 78, "bar": 78, "customis": 78, "lightn": 78, "init_validation_tqdm": 78, "overrid": 78, "init_predict_tqdm": 78, "init_test_tqdm": 78, "init_train_tqdm": 78, "get_metr": 78, "on_train_epoch_start": 78, "previou": 78, "behaviour": 78, "on_train_epoch_end": 78, "don": [78, 100], "duplciat": 78, "runtim": [79, 100], "azimuth_kei": 79, "zenith_kei": 79, "access": [79, 100], "azimiuth": 79, "return_el": 80, "elementwis": 80, "term": 80, "squar": 80, "root": [80, 100], "cosh": 80, "act": 80, "cross": 80, "entropi": 80, "num_class": 80, "softmax": 80, "ed": 80, "probabl": 80, "mit": 80, "licens": 80, "copyright": 80, "2019": 80, "ryabinin": 80, "permiss": 80, "herebi": 80, "person": 80, "copi": 80, "document": 80, "deal": 80, "modifi": 80, "publish": 80, "sublicens": 80, "sell": 80, "permit": 80, "whom": 80, "furnish": 80, "so": [80, 100], "subject": 80, "condit": 80, "shall": 80, "substanti": 80, "portion": 80, "THE": 80, "AS": 80, "warranti": 80, "OF": 80, "kind": 80, "OR": 80, "impli": 80, "BUT": 80, "TO": 80, "merchant": 80, "FOR": 80, "particular": [80, 98], "AND": 80, "noninfring": 80, "IN": 80, "NO": 80, "holder": 80, "BE": 80, "liabl": 80, "claim": 80, "damag": 80, "liabil": 80, "action": 80, "contract": 80, "tort": 80, "aris": 80, "WITH": 80, "_____________________": 80, "mryab": 80, "vmf_loss": 80, "master": 80, "py": [80, 100], "bessel": 80, "exponenti": 80, "ditto": 80, "iv": 80, "1812": 80, "04616": 80, "spite": 80, "suggest": 80, "sec": 80, "paper": 80, "m": 80, "correct": 80, "static": [80, 98], "ctx": 80, "backward": 80, "grad_output": 80, "von": 80, "mise": 80, "fisher": 80, "log_cmk_exact": 80, "c_": 80, "exactli": [80, 95], "log_cmk_approx": 80, "approx": 80, "minu": 80, "sign": 80, "log_cmk": 80, "kappa_switch": 80, "diverg": 80, "700": 80, "float64": 80, "precis": 80, "unaccur": 80, "switch": 80, "three": 80, "database_indic": 81, "test_siz": 81, "node_level": 81, "tag": [81, 98, 100], "archiv": 81, "public": 82, "uniformweightfitt": 82, "bin": 82, "privat": 82, "_fit_weight": 82, "sql": 82, "desir": [82, 93], "np": 82, "happen": 82, "x_low": 82, "wherea": 82, "curv": 82, "base_config": [83, 85], "dataset_config": [83, 85], "training_config": [83, 85], "argumentpars": [83, 84], "is_gcd_fil": [83, 93], "is_i3_fil": [83, 93], "has_extens": [83, 93], "find_i3_fil": [83, 93], "has_icecube_packag": [83, 94], "has_torch_packag": [83, 94], "has_pisa_packag": [83, 94], "requires_icecub": [83, 94], "repeatfilt": [83, 95], "eps_lik": [83, 96], "consist": [84, 95, 98], "cli": 84, "pop_default": 84, "usag": 84, "descript": 84, "command": [84, 100], "standard_argu": 84, "home": [84, 100], "runner": 84, "lib": [84, 100], "python3": 84, "training_example_data_sqlit": 84, "earli": 84, "patienc": 84, "narg": 84, "50": 84, "example_energy_reconstruction_model": 84, "num": 84, "fetch": 84, "with_standard_argu": 84, "overwritten": [84, 86], "baseconfig": [85, 86, 87, 88, 89, 91], "get_all_argument_valu": [85, 86], "save_dataset_config": [85, 88], "save_model_config": [85, 89], "traverse_and_appli": [85, 90], "list_all_submodul": [85, 90], "get_all_grapnet_class": [85, 90], "is_graphnet_modul": [85, 90], "is_graphnet_class": [85, 90], "get_graphnet_class": [85, 90], "trainingconfig": [85, 91], "basemodel": [86, 88, 89], "keyword": [86, 91], "validationerror": [86, 91], "pydantic_cor": [86, 91], "__init__": [86, 88, 89, 91, 100], "__pydantic_self__": [86, 91], "dump": [86, 88, 89], "yaml": [86, 87], "as_dict": [86, 88, 89], "classvar": [86, 88, 89, 91], "configdict": [86, 88, 89, 91], "conform": [86, 88, 89, 91], "pydant": [86, 88, 89, 91], "model_field": [86, 88, 89, 91], "fieldinfo": [86, 88, 89, 91], "metadata": [86, 88, 89, 91], "about": [86, 88, 89, 91], "__fields__": [86, 88, 89, 91], "v1": [86, 88, 89, 91, 100], "re": [87, 100], "save_config": 87, "dataconfig": 88, "transpar": [88, 89, 98], "reproduc": [88, 89], "In": [88, 89, 100], "session": [88, 89], "anoth": [88, 89], "you": [88, 89, 98, 100], "still": 88, "csv": 88, "train_select": 88, "test_select": 88, "unambigu": [88, 89], "annot": [88, 89, 91], "nonetyp": 88, "init_fn": [88, 89], "trainabl": 89, "hyperparamet": 89, "instanti": 89, "thu": 89, "fn_kwarg": 90, "structur": 90, "moduletyp": 90, "grapnet": 90, "lookup": 90, "early_stopping_pati": 91, "system": [93, 100], "filenam": 93, "dir": 93, "search": 93, "test_funct": 94, "filter": 95, "repeat": 95, "nb_repeats_allow": 95, "record": 95, "logrecord": 95, "clear": 95, "intuit": 95, "composit": 95, "loggeradapt": 95, "clash": 95, "setlevel": 95, "deleg": 95, "msg": 95, "warn": 95, "info": [95, 100], "debug": 95, "warning_onc": 95, "onc": 95, "handler": 95, "file_handl": 95, "filehandl": 95, "stream_handl": 95, "streamhandl": 95, "assort": 96, "ep": 96, "api": 97, "To": [98, 100], "sure": [98, 100], "smooth": 98, "guidelin": 98, "guid": 98, "encourag": 98, "contributor": 98, "discuss": 98, "bug": 98, "anyth": 98, "place": 98, "describ": 98, "yourself": 98, "ownership": 98, "prioriti": 98, "situat": 98, "lot": 98, "effort": 98, "go": 98, "turn": 98, "outsid": 98, "scope": 98, "better": 98, "fork": 98, "repo": 98, "dedic": 98, "branch": [98, 100], "repositori": 98, "own": [98, 100], "accept": 98, "autom": 98, "review": 98, "pep8": 98, "docstr": 98, "googl": 98, "hint": 98, "adher": 98, "pep": 98, "pylint": 98, "flake8": 98, "black": 98, "well": 98, "recommend": [98, 100], "mypi": 98, "pydocstyl": 98, "docformatt": 98, "commit": 98, "hook": 98, "instal": 98, "come": 98, "pip": [98, 100], "Then": 98, "everytim": 98, "pep257": 98, "concept": 98, "ljvmiranda921": 98, "io": 98, "notebook": 98, "2018": 98, "06": 98, "21": 98, "precommit": 98, "environ": 100, "virtual": 100, "anaconda": 100, "prove": 100, "instruct": 100, "setup": 100, "want": 100, "part": 100, "achiev": 100, "bash": 100, "shell": 100, "cvmf": 100, "opensciencegrid": 100, "py3": 100, "v4": 100, "sh": 100, "rhel_7_x86_64": 100, "metaproject": 100, "env": 100, "alia": 100, "script": 100, "With": 100, "now": 100, "light": 100, "extra": 100, "geometr": 100, "won": 100, "later": 100, "torch_cpu": 100, "txt": 100, "cpu": 100, "torch_gpu": 100, "prefer": 100, "unix": 100, "git": 100, "clone": 100, "usernam": 100, "cd": 100, "conda": 100, "gcc_linux": 100, "64": 100, "gxx_linux": 100, "libgcc": 100, "cudatoolkit": 100, "11": 100, "forg": 100, "torch_maco": 100, "On": 100, "maco": 100, "box": 100, "compil": 100, "gcc": 100, "date": 100, "possibli": 100, "cuda": 100, "toolkit": 100, "recent": 100, "omit": 100, "newer": 100, "export": 100, "ld_library_path": 100, "anaconda3": 100, "miniconda3": 100, "bashrc": 100, "librari": 100, "rm": 100, "asogaard": 100, "latest": 100, "dc423315742c": 100, "01_icetrai": 100, "01_convert_i3_fil": 100, "2023": 100, "01": 100, "24": 100, "41": 100, "27": 100, "graphnet_20230124": 100, "134127": 100, "46": 100, "convert_i3_fil": 100, "ic86": 100, "thread": 100, "00": 100, "79": 100, "42": 100, "26": 100, "413": 100, "88it": 100, "specialis": 100, "ones": 100, "push": 100, "vx": 100}, "objects": {"": [[1, 0, 0, "-", "graphnet"]], "graphnet": [[2, 0, 0, "-", "constants"], [3, 0, 0, "-", "data"], [41, 0, 0, "-", "deployment"], [45, 0, 0, "-", "models"], [74, 0, 0, "-", "pisa"], [77, 0, 0, "-", "training"], [83, 0, 0, "-", "utilities"]], "graphnet.data": [[4, 0, 0, "-", "constants"], [5, 0, 0, "-", "dataconverter"], [6, 0, 0, "-", "dataloader"], [7, 0, 0, "-", "dataset"], [14, 0, 0, "-", "extractors"], [31, 0, 0, "-", "parquet"], [33, 0, 0, "-", "pipeline"], [34, 0, 0, "-", "sqlite"], [37, 0, 0, "-", "utilities"]], "graphnet.data.constants": [[4, 1, 1, "", "FEATURES"], [4, 1, 1, "", "TRUTH"]], "graphnet.data.constants.FEATURES": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.constants.TRUTH": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.dataconverter": [[5, 1, 1, "", "DataConverter"], [5, 1, 1, "", "FileSet"], [5, 5, 1, "", "cache_output_files"], [5, 5, 1, "", "init_global_index"]], "graphnet.data.dataconverter.DataConverter": [[5, 3, 1, "", "execute"], [5, 4, 1, "", "file_suffix"], [5, 3, 1, "", "get_map_function"], [5, 3, 1, "", "merge_files"], [5, 3, 1, "", "save_data"]], "graphnet.data.dataconverter.FileSet": [[5, 2, 1, "", "gcd_file"], [5, 2, 1, "", "i3_file"]], "graphnet.data.dataloader": [[6, 1, 1, "", "DataLoader"], [6, 5, 1, "", "collate_fn"], [6, 5, 1, "", "do_shuffle"]], "graphnet.data.dataloader.DataLoader": [[6, 3, 1, "", "from_dataset_config"]], "graphnet.data.dataset": [[8, 0, 0, "-", "dataset"], [9, 0, 0, "-", "parquet"], [11, 0, 0, "-", "sqlite"]], "graphnet.data.dataset.dataset": [[8, 6, 1, "", "ColumnMissingException"], [8, 1, 1, "", "Dataset"], [8, 1, 1, "", "EnsembleDataset"], [8, 5, 1, "", "load_module"], [8, 5, 1, "", "parse_graph_definition"]], "graphnet.data.dataset.dataset.Dataset": [[8, 3, 1, "", "add_label"], [8, 3, 1, "", "concatenate"], [8, 3, 1, "", "from_config"], [8, 4, 1, "", "path"], [8, 3, 1, "", "query_table"], [8, 4, 1, "", "truth_table"]], "graphnet.data.dataset.parquet": [[10, 0, 0, "-", "parquet_dataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[10, 1, 1, "", "ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset": [[10, 3, 1, "", "query_table"]], "graphnet.data.dataset.sqlite": [[12, 0, 0, "-", "sqlite_dataset"], [13, 0, 0, "-", "sqlite_dataset_perturbed"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[12, 1, 1, "", "SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset": [[12, 3, 1, "", "query_table"]], "graphnet.data.dataset.sqlite.sqlite_dataset_perturbed": [[13, 1, 1, "", "SQLiteDatasetPerturbed"]], "graphnet.data.extractors": [[15, 0, 0, "-", "i3extractor"], [16, 0, 0, "-", "i3featureextractor"], [17, 0, 0, "-", "i3genericextractor"], [18, 0, 0, "-", "i3hybridrecoextractor"], [19, 0, 0, "-", "i3ntmuonlabelsextractor"], [20, 0, 0, "-", "i3particleextractor"], [21, 0, 0, "-", "i3pisaextractor"], [22, 0, 0, "-", "i3quesoextractor"], [23, 0, 0, "-", "i3retroextractor"], [24, 0, 0, "-", "i3splinempeextractor"], [25, 0, 0, "-", "i3truthextractor"], [26, 0, 0, "-", "i3tumextractor"], [27, 0, 0, "-", "utilities"]], "graphnet.data.extractors.i3extractor": [[15, 1, 1, "", "I3Extractor"], [15, 1, 1, "", "I3ExtractorCollection"]], "graphnet.data.extractors.i3extractor.I3Extractor": [[15, 4, 1, "", "name"], [15, 3, 1, "", "set_files"]], "graphnet.data.extractors.i3extractor.I3ExtractorCollection": [[15, 3, 1, "", "set_files"]], "graphnet.data.extractors.i3featureextractor": [[16, 1, 1, "", "I3FeatureExtractor"], [16, 1, 1, "", "I3FeatureExtractorIceCube86"], [16, 1, 1, "", "I3FeatureExtractorIceCubeDeepCore"], [16, 1, 1, "", "I3FeatureExtractorIceCubeUpgrade"], [16, 1, 1, "", "I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.i3genericextractor": [[17, 1, 1, "", "I3GenericExtractor"]], "graphnet.data.extractors.i3hybridrecoextractor": [[18, 1, 1, "", "I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.i3ntmuonlabelsextractor": [[19, 1, 1, "", "I3NTMuonLabelExtractor"]], "graphnet.data.extractors.i3particleextractor": [[20, 1, 1, "", "I3ParticleExtractor"]], "graphnet.data.extractors.i3pisaextractor": [[21, 1, 1, "", "I3PISAExtractor"]], "graphnet.data.extractors.i3quesoextractor": [[22, 1, 1, "", "I3QUESOExtractor"]], "graphnet.data.extractors.i3retroextractor": [[23, 1, 1, "", "I3RetroExtractor"]], "graphnet.data.extractors.i3splinempeextractor": [[24, 1, 1, "", "I3SplineMPEICExtractor"]], "graphnet.data.extractors.i3truthextractor": [[25, 1, 1, "", "I3TruthExtractor"]], "graphnet.data.extractors.i3tumextractor": [[26, 1, 1, "", "I3TUMExtractor"]], "graphnet.data.extractors.utilities": [[28, 0, 0, "-", "collections"], [29, 0, 0, "-", "frames"], [30, 0, 0, "-", "types"]], "graphnet.data.extractors.utilities.collections": [[28, 5, 1, "", "flatten_nested_dictionary"], [28, 5, 1, "", "serialise"], [28, 5, 1, "", "transpose_list_of_dicts"]], "graphnet.data.extractors.utilities.frames": [[29, 5, 1, "", "frame_is_montecarlo"], [29, 5, 1, "", "frame_is_noise"], [29, 5, 1, "", "get_om_keys_and_pulseseries"]], "graphnet.data.extractors.utilities.types": [[30, 5, 1, "", "break_cyclic_recursion"], [30, 5, 1, "", "cast_object_to_pure_python"], [30, 5, 1, "", "cast_pulse_series_to_pure_python"], [30, 5, 1, "", "get_member_variables"], [30, 5, 1, "", "is_boost_class"], [30, 5, 1, "", "is_boost_enum"], [30, 5, 1, "", "is_icecube_class"], [30, 5, 1, "", "is_method"], [30, 5, 1, "", "is_type"]], "graphnet.data.parquet": [[32, 0, 0, "-", "parquet_dataconverter"]], "graphnet.data.parquet.parquet_dataconverter": [[32, 1, 1, "", "ParquetDataConverter"]], "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter": [[32, 2, 1, "", "file_suffix"], [32, 3, 1, "", "merge_files"], [32, 3, 1, "", "save_data"]], "graphnet.data.pipeline": [[33, 1, 1, "", "InSQLitePipeline"]], "graphnet.data.sqlite": [[35, 0, 0, "-", "sqlite_dataconverter"], [36, 0, 0, "-", "sqlite_utilities"]], "graphnet.data.sqlite.sqlite_dataconverter": [[35, 1, 1, "", "SQLiteDataConverter"], [35, 5, 1, "", "construct_dataframe"], [35, 5, 1, "", "is_mc_tree"], [35, 5, 1, "", "is_pulse_map"]], "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter": [[35, 3, 1, "", "any_pulsemap_is_non_empty"], [35, 2, 1, "", "file_suffix"], [35, 3, 1, "", "merge_files"], [35, 3, 1, "", "save_data"]], "graphnet.data.sqlite.sqlite_utilities": [[36, 5, 1, "", "attach_index"], [36, 5, 1, "", "create_table"], [36, 5, 1, "", "create_table_and_save_to_sql"], [36, 5, 1, "", "database_exists"], [36, 5, 1, "", "database_table_exists"], [36, 5, 1, "", "run_sql_code"], [36, 5, 1, "", "save_to_sql"]], "graphnet.data.utilities": [[38, 0, 0, "-", "parquet_to_sqlite"], [39, 0, 0, "-", "random"], [40, 0, 0, "-", "string_selection_resolver"]], "graphnet.data.utilities.parquet_to_sqlite": [[38, 1, 1, "", "ParquetToSQLiteConverter"]], "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter": [[38, 3, 1, "", "run"]], "graphnet.data.utilities.random": [[39, 5, 1, "", "pairwise_shuffle"]], "graphnet.data.utilities.string_selection_resolver": [[40, 1, 1, "", "StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver": [[40, 3, 1, "", "resolve"]], "graphnet.deployment.i3modules": [[44, 0, 0, "-", "graphnet_module"]], "graphnet.deployment.i3modules.graphnet_module": [[44, 1, 1, "", "GraphNeTI3Module"], [44, 1, 1, "", "I3InferenceModule"], [44, 1, 1, "", "I3PulseCleanerModule"]], "graphnet.models": [[46, 0, 0, "-", "coarsening"], [47, 0, 0, "-", "components"], [50, 0, 0, "-", "detector"], [54, 0, 0, "-", "gnn"], [60, 0, 0, "-", "graphs"], [67, 0, 0, "-", "model"], [68, 0, 0, "-", "standard_model"], [69, 0, 0, "-", "task"], [73, 0, 0, "-", "utils"]], "graphnet.models.coarsening": [[46, 1, 1, "", "AttributeCoarsening"], [46, 1, 1, "", "Coarsening"], [46, 1, 1, "", "CustomDOMCoarsening"], [46, 1, 1, "", "DOMAndTimeWindowCoarsening"], [46, 1, 1, "", "DOMCoarsening"], [46, 5, 1, "", "unbatch_edge_index"]], "graphnet.models.coarsening.Coarsening": [[46, 3, 1, "", "forward"], [46, 2, 1, "", "reduce_options"]], "graphnet.models.components": [[48, 0, 0, "-", "layers"], [49, 0, 0, "-", "pool"]], "graphnet.models.components.layers": [[48, 1, 1, "", "DynEdgeConv"], [48, 1, 1, "", "DynTrans"], [48, 1, 1, "", "EdgeConvTito"]], "graphnet.models.components.layers.DynEdgeConv": [[48, 3, 1, "", "forward"]], "graphnet.models.components.layers.DynTrans": [[48, 3, 1, "", "forward"]], "graphnet.models.components.layers.EdgeConvTito": [[48, 3, 1, "", "forward"], [48, 3, 1, "", "message"], [48, 3, 1, "", "reset_parameters"]], "graphnet.models.components.pool": [[49, 5, 1, "", "group_by"], [49, 5, 1, "", "group_pulses_to_dom"], [49, 5, 1, "", "group_pulses_to_pmt"], [49, 5, 1, "", "min_pool"], [49, 5, 1, "", "min_pool_x"], [49, 5, 1, "", "std_pool"], [49, 5, 1, "", "std_pool_x"], [49, 5, 1, "", "sum_pool"], [49, 5, 1, "", "sum_pool_and_distribute"], [49, 5, 1, "", "sum_pool_x"]], "graphnet.models.detector": [[51, 0, 0, "-", "detector"], [52, 0, 0, "-", "icecube"], [53, 0, 0, "-", "prometheus"]], "graphnet.models.detector.detector": [[51, 1, 1, "", "Detector"]], "graphnet.models.detector.detector.Detector": [[51, 3, 1, "", "feature_map"], [51, 3, 1, "", "forward"]], "graphnet.models.detector.icecube": [[52, 1, 1, "", "IceCube86"], [52, 1, 1, "", "IceCubeDeepCore"], [52, 1, 1, "", "IceCubeKaggle"], [52, 1, 1, "", "IceCubeUpgrade"]], "graphnet.models.detector.icecube.IceCube86": [[52, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeDeepCore": [[52, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeKaggle": [[52, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeUpgrade": [[52, 3, 1, "", "feature_map"]], "graphnet.models.detector.prometheus": [[53, 1, 1, "", "Prometheus"]], "graphnet.models.detector.prometheus.Prometheus": [[53, 3, 1, "", "feature_map"]], "graphnet.models.gnn": [[55, 0, 0, "-", "convnet"], [56, 0, 0, "-", "dynedge"], [57, 0, 0, "-", "dynedge_jinst"], [58, 0, 0, "-", "dynedge_kaggle_tito"], [59, 0, 0, "-", "gnn"]], "graphnet.models.gnn.convnet": [[55, 1, 1, "", "ConvNet"]], "graphnet.models.gnn.convnet.ConvNet": [[55, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge": [[56, 1, 1, "", "DynEdge"]], "graphnet.models.gnn.dynedge.DynEdge": [[56, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge_jinst": [[57, 1, 1, "", "DynEdgeJINST"]], "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST": [[57, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[58, 1, 1, "", "DynEdgeTITO"]], "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO": [[58, 3, 1, "", "forward"]], "graphnet.models.gnn.gnn": [[59, 1, 1, "", "GNN"]], "graphnet.models.gnn.gnn.GNN": [[59, 3, 1, "", "forward"], [59, 4, 1, "", "nb_inputs"], [59, 4, 1, "", "nb_outputs"]], "graphnet.models.graphs": [[61, 0, 0, "-", "edges"], [63, 0, 0, "-", "graph_definition"], [64, 0, 0, "-", "graphs"], [65, 0, 0, "-", "nodes"]], "graphnet.models.graphs.edges": [[62, 0, 0, "-", "edges"]], "graphnet.models.graphs.edges.edges": [[62, 1, 1, "", "EdgeDefinition"], [62, 1, 1, "", "EuclideanEdges"], [62, 1, 1, "", "KNNEdges"], [62, 1, 1, "", "RadialEdges"]], "graphnet.models.graphs.edges.edges.EdgeDefinition": [[62, 3, 1, "", "forward"]], "graphnet.models.graphs.graph_definition": [[63, 1, 1, "", "GraphDefinition"]], "graphnet.models.graphs.graph_definition.GraphDefinition": [[63, 3, 1, "", "forward"]], "graphnet.models.graphs.graphs": [[64, 1, 1, "", "KNNGraph"]], "graphnet.models.graphs.nodes": [[66, 0, 0, "-", "nodes"]], "graphnet.models.graphs.nodes.nodes": [[66, 1, 1, "", "NodeDefinition"], [66, 1, 1, "", "NodesAsPulses"]], "graphnet.models.graphs.nodes.nodes.NodeDefinition": [[66, 3, 1, "", "forward"], [66, 4, 1, "", "nb_outputs"], [66, 3, 1, "", "set_number_of_inputs"]], "graphnet.models.model": [[67, 1, 1, "", "Model"]], "graphnet.models.model.Model": [[67, 3, 1, "", "fit"], [67, 3, 1, "", "forward"], [67, 3, 1, "", "from_config"], [67, 3, 1, "", "load"], [67, 3, 1, "", "load_state_dict"], [67, 3, 1, "", "predict"], [67, 3, 1, "", "predict_as_dataframe"], [67, 3, 1, "", "save"], [67, 3, 1, "", "save_state_dict"]], "graphnet.models.standard_model": [[68, 1, 1, "", "StandardModel"]], "graphnet.models.standard_model.StandardModel": [[68, 3, 1, "", "compute_loss"], [68, 3, 1, "", "configure_optimizers"], [68, 3, 1, "", "forward"], [68, 3, 1, "", "inference"], [68, 3, 1, "", "predict"], [68, 3, 1, "", "predict_as_dataframe"], [68, 4, 1, "", "prediction_labels"], [68, 3, 1, "", "shared_step"], [68, 4, 1, "", "target_labels"], [68, 3, 1, "", "train"], [68, 3, 1, "", "training_step"], [68, 3, 1, "", "validation_step"]], "graphnet.models.task": [[70, 0, 0, "-", "classification"], [71, 0, 0, "-", "reconstruction"], [72, 0, 0, "-", "task"]], "graphnet.models.task.classification": [[70, 1, 1, "", "BinaryClassificationTask"], [70, 1, 1, "", "BinaryClassificationTaskLogits"], [70, 1, 1, "", "MulticlassClassificationTask"]], "graphnet.models.task.classification.BinaryClassificationTask": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.classification.BinaryClassificationTaskLogits": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction": [[71, 1, 1, "", "AzimuthReconstruction"], [71, 1, 1, "", "AzimuthReconstructionWithKappa"], [71, 1, 1, "", "DirectionReconstructionWithKappa"], [71, 1, 1, "", "EnergyReconstruction"], [71, 1, 1, "", "EnergyReconstructionWithPower"], [71, 1, 1, "", "EnergyReconstructionWithUncertainty"], [71, 1, 1, "", "InelasticityReconstruction"], [71, 1, 1, "", "PositionReconstruction"], [71, 1, 1, "", "TimeReconstruction"], [71, 1, 1, "", "VertexReconstruction"], [71, 1, 1, "", "ZenithReconstruction"], [71, 1, 1, "", "ZenithReconstructionWithKappa"]], "graphnet.models.task.reconstruction.AzimuthReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithPower": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.InelasticityReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.PositionReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.TimeReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.VertexReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstruction": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa": [[71, 2, 1, "", "default_prediction_labels"], [71, 2, 1, "", "default_target_labels"], [71, 2, 1, "", "nb_inputs"]], "graphnet.models.task.task": [[72, 1, 1, "", "IdentityTask"], [72, 1, 1, "", "Task"]], "graphnet.models.task.task.IdentityTask": [[72, 4, 1, "", "default_prediction_labels"], [72, 4, 1, "", "default_target_labels"], [72, 4, 1, "", "nb_inputs"]], "graphnet.models.task.task.Task": [[72, 3, 1, "", "compute_loss"], [72, 4, 1, "", "default_prediction_labels"], [72, 4, 1, "", "default_target_labels"], [72, 3, 1, "", "forward"], [72, 3, 1, "", "inference"], [72, 4, 1, "", "nb_inputs"], [72, 3, 1, "", "train_eval"]], "graphnet.models.utils": [[73, 5, 1, "", "calculate_distance_matrix"], [73, 5, 1, "", "calculate_xyzt_homophily"], [73, 5, 1, "", "knn_graph_batch"]], "graphnet.pisa": [[75, 0, 0, "-", "fitting"], [76, 0, 0, "-", "plotting"]], "graphnet.pisa.fitting": [[75, 1, 1, "", "ContourFitter"], [75, 1, 1, "", "WeightFitter"], [75, 5, 1, "", "config_updater"]], "graphnet.pisa.fitting.ContourFitter": [[75, 3, 1, "", "fit_1d_contour"], [75, 3, 1, "", "fit_2d_contour"]], "graphnet.pisa.fitting.WeightFitter": [[75, 3, 1, "", "fit_weights"]], "graphnet.pisa.plotting": [[76, 5, 1, "", "plot_1D_contour"], [76, 5, 1, "", "plot_2D_contour"], [76, 5, 1, "", "read_entry"]], "graphnet.training": [[78, 0, 0, "-", "callbacks"], [79, 0, 0, "-", "labels"], [80, 0, 0, "-", "loss_functions"], [81, 0, 0, "-", "utils"], [82, 0, 0, "-", "weight_fitting"]], "graphnet.training.callbacks": [[78, 1, 1, "", "PiecewiseLinearLR"], [78, 1, 1, "", "ProgressBar"]], "graphnet.training.callbacks.PiecewiseLinearLR": [[78, 3, 1, "", "get_lr"]], "graphnet.training.callbacks.ProgressBar": [[78, 3, 1, "", "get_metrics"], [78, 3, 1, "", "init_predict_tqdm"], [78, 3, 1, "", "init_test_tqdm"], [78, 3, 1, "", "init_train_tqdm"], [78, 3, 1, "", "init_validation_tqdm"], [78, 3, 1, "", "on_train_epoch_end"], [78, 3, 1, "", "on_train_epoch_start"]], "graphnet.training.labels": [[79, 1, 1, "", "Direction"], [79, 1, 1, "", "Label"]], "graphnet.training.labels.Label": [[79, 4, 1, "", "key"]], "graphnet.training.loss_functions": [[80, 1, 1, "", "BinaryCrossEntropyLoss"], [80, 1, 1, "", "CrossEntropyLoss"], [80, 1, 1, "", "EuclideanDistanceLoss"], [80, 1, 1, "", "LogCMK"], [80, 1, 1, "", "LogCoshLoss"], [80, 1, 1, "", "LossFunction"], [80, 1, 1, "", "MSELoss"], [80, 1, 1, "", "RMSELoss"], [80, 1, 1, "", "VonMisesFisher2DLoss"], [80, 1, 1, "", "VonMisesFisher3DLoss"], [80, 1, 1, "", "VonMisesFisherLoss"]], "graphnet.training.loss_functions.LogCMK": [[80, 3, 1, "", "backward"], [80, 3, 1, "", "forward"]], "graphnet.training.loss_functions.LossFunction": [[80, 3, 1, "", "forward"]], "graphnet.training.loss_functions.VonMisesFisherLoss": [[80, 3, 1, "", "log_cmk"], [80, 3, 1, "", "log_cmk_approx"], [80, 3, 1, "", "log_cmk_exact"]], "graphnet.training.utils": [[81, 5, 1, "", "collate_fn"], [81, 5, 1, "", "get_predictions"], [81, 5, 1, "", "make_dataloader"], [81, 5, 1, "", "make_train_validation_dataloader"], [81, 5, 1, "", "save_results"]], "graphnet.training.weight_fitting": [[82, 1, 1, "", "BjoernLow"], [82, 1, 1, "", "Uniform"], [82, 1, 1, "", "WeightFitter"]], "graphnet.training.weight_fitting.WeightFitter": [[82, 3, 1, "", "fit"]], "graphnet.utilities": [[84, 0, 0, "-", "argparse"], [85, 0, 0, "-", "config"], [92, 0, 0, "-", "decorators"], [93, 0, 0, "-", "filesys"], [94, 0, 0, "-", "imports"], [95, 0, 0, "-", "logging"], [96, 0, 0, "-", "maths"]], "graphnet.utilities.argparse": [[84, 1, 1, "", "ArgumentParser"], [84, 1, 1, "", "Options"]], "graphnet.utilities.argparse.ArgumentParser": [[84, 2, 1, "", "standard_arguments"], [84, 3, 1, "", "with_standard_arguments"]], "graphnet.utilities.argparse.Options": [[84, 3, 1, "", "contains"], [84, 3, 1, "", "pop_default"]], "graphnet.utilities.config": [[86, 0, 0, "-", "base_config"], [87, 0, 0, "-", "configurable"], [88, 0, 0, "-", "dataset_config"], [89, 0, 0, "-", "model_config"], [90, 0, 0, "-", "parsing"], [91, 0, 0, "-", "training_config"]], "graphnet.utilities.config.base_config": [[86, 1, 1, "", "BaseConfig"], [86, 5, 1, "", "get_all_argument_values"]], "graphnet.utilities.config.base_config.BaseConfig": [[86, 3, 1, "", "as_dict"], [86, 3, 1, "", "dump"], [86, 3, 1, "", "load"], [86, 2, 1, "", "model_config"], [86, 2, 1, "", "model_fields"]], "graphnet.utilities.config.configurable": [[87, 1, 1, "", "Configurable"]], "graphnet.utilities.config.configurable.Configurable": [[87, 4, 1, "", "config"], [87, 3, 1, "", "from_config"], [87, 3, 1, "", "save_config"]], "graphnet.utilities.config.dataset_config": [[88, 1, 1, "", "DatasetConfig"], [88, 5, 1, "", "save_dataset_config"]], "graphnet.utilities.config.dataset_config.DatasetConfig": [[88, 3, 1, "", "as_dict"], [88, 2, 1, "", "features"], [88, 2, 1, "", "graph_definition"], [88, 2, 1, "", "index_column"], [88, 2, 1, "", "loss_weight_column"], [88, 2, 1, "", "loss_weight_default_value"], [88, 2, 1, "", "loss_weight_table"], [88, 2, 1, "", "model_config"], [88, 2, 1, "", "model_fields"], [88, 2, 1, "", "node_truth"], [88, 2, 1, "", "node_truth_table"], [88, 2, 1, "", "path"], [88, 2, 1, "", "pulsemaps"], [88, 2, 1, "", "seed"], [88, 2, 1, "", "selection"], [88, 2, 1, "", "string_selection"], [88, 2, 1, "", "truth"], [88, 2, 1, "", "truth_table"]], "graphnet.utilities.config.model_config": [[89, 1, 1, "", "ModelConfig"], [89, 5, 1, "", "save_model_config"]], "graphnet.utilities.config.model_config.ModelConfig": [[89, 2, 1, "", "arguments"], [89, 3, 1, "", "as_dict"], [89, 2, 1, "", "class_name"], [89, 2, 1, "", "model_config"], [89, 2, 1, "", "model_fields"]], "graphnet.utilities.config.parsing": [[90, 5, 1, "", "get_all_grapnet_classes"], [90, 5, 1, "", "get_graphnet_classes"], [90, 5, 1, "", "is_graphnet_class"], [90, 5, 1, "", "is_graphnet_module"], [90, 5, 1, "", "list_all_submodules"], [90, 5, 1, "", "traverse_and_apply"]], "graphnet.utilities.config.training_config": [[91, 1, 1, "", "TrainingConfig"]], "graphnet.utilities.config.training_config.TrainingConfig": [[91, 2, 1, "", "dataloader"], [91, 2, 1, "", "early_stopping_patience"], [91, 2, 1, "", "fit"], [91, 2, 1, "", "model_config"], [91, 2, 1, "", "model_fields"], [91, 2, 1, "", "target"]], "graphnet.utilities.filesys": [[93, 5, 1, "", "find_i3_files"], [93, 5, 1, "", "has_extension"], [93, 5, 1, "", "is_gcd_file"], [93, 5, 1, "", "is_i3_file"]], "graphnet.utilities.imports": [[94, 5, 1, "", "has_icecube_package"], [94, 5, 1, "", "has_pisa_package"], [94, 5, 1, "", "has_torch_package"], [94, 5, 1, "", "requires_icecube"]], "graphnet.utilities.logging": [[95, 1, 1, "", "Logger"], [95, 1, 1, "", "RepeatFilter"]], "graphnet.utilities.logging.Logger": [[95, 3, 1, "", "critical"], [95, 3, 1, "", "debug"], [95, 3, 1, "", "error"], [95, 4, 1, "", "file_handlers"], [95, 4, 1, "", "handlers"], [95, 3, 1, "", "info"], [95, 3, 1, "", "setLevel"], [95, 4, 1, "", "stream_handlers"], [95, 3, 1, "", "warning"], [95, 3, 1, "", "warning_once"]], "graphnet.utilities.logging.RepeatFilter": [[95, 3, 1, "", "filter"], [95, 2, 1, "", "nb_repeats_allowed"]], "graphnet.utilities.maths": [[96, 5, 1, "", "eps_like"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "exception", "Python exception"]}, "titleterms": {"about": [0, 99], "impact": [0, 99], "usag": [0, 99], "acknowledg": [0, 99], "api": 1, "constant": [2, 4], "data": 3, "dataconvert": 5, "dataload": 6, "dataset": [7, 8], "parquet": [9, 31], "parquet_dataset": 10, "sqlite": [11, 34], "sqlite_dataset": 12, "sqlite_dataset_perturb": 13, "extractor": 14, "i3extractor": 15, "i3featureextractor": 16, "i3genericextractor": 17, "i3hybridrecoextractor": 18, "i3ntmuonlabelsextractor": 19, "i3particleextractor": 20, "i3pisaextractor": 21, "i3quesoextractor": 22, "i3retroextractor": 23, "i3splinempeextractor": 24, "i3truthextractor": 25, "i3tumextractor": 26, "util": [27, 37, 73, 81, 83], "collect": 28, "frame": 29, "type": 30, "parquet_dataconvert": 32, "pipelin": 33, "sqlite_dataconvert": 35, "sqlite_util": 36, "parquet_to_sqlit": 38, "random": 39, "string_selection_resolv": 40, "deploy": [41, 43], "i3modul": 42, "graphnet_modul": 44, "model": [45, 67], "coarsen": 46, "compon": 47, "layer": 48, "pool": 49, "detector": [50, 51], "icecub": 52, "prometheu": 53, "gnn": [54, 59], "convnet": 55, "dynedg": 56, "dynedge_jinst": 57, "dynedge_kaggle_tito": 58, "graph": [60, 64], "edg": [61, 62], "graph_definit": 63, "node": [65, 66], "standard_model": 68, "task": [69, 72], "classif": 70, "reconstruct": 71, "pisa": 74, "fit": 75, "plot": 76, "train": 77, "callback": 78, "label": 79, "loss_funct": 80, "weight_fit": 82, "argpars": 84, "config": 85, "base_config": 86, "configur": 87, "dataset_config": 88, "model_config": 89, "pars": 90, "training_config": 91, "decor": 92, "filesi": 93, "import": 94, "log": 95, "math": 96, "src": 97, "contribut": 98, "github": 98, "issu": 98, "pull": 98, "request": 98, "convent": 98, "code": 98, "qualiti": 98, "instal": 100, "icetrai": 100, "stand": 100, "alon": 100, "run": 100, "docker": 100}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"About": [[0, "about"], [99, "about"]], "Impact": [[0, "impact"], [99, "impact"]], "Usage": [[0, "usage"], [99, "usage"]], "Acknowledgements": [[0, "acknowledgements"], [99, "acknowledgements"]], "API": [[1, "module-graphnet"]], "constants": [[2, "module-graphnet.constants"], [4, "module-graphnet.data.constants"]], "data": [[3, "module-graphnet.data"]], "dataconverter": [[5, "module-graphnet.data.dataconverter"]], "dataloader": [[6, "module-graphnet.data.dataloader"]], "dataset": [[7, "module-graphnet.data.dataset"], [8, "module-graphnet.data.dataset.dataset"]], "parquet": [[9, "module-graphnet.data.dataset.parquet"], [31, "module-graphnet.data.parquet"]], "parquet_dataset": [[10, "module-graphnet.data.dataset.parquet.parquet_dataset"]], "sqlite": [[11, "module-graphnet.data.dataset.sqlite"], [34, "module-graphnet.data.sqlite"]], "sqlite_dataset": [[12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"]], "sqlite_dataset_perturbed": [[13, "module-graphnet.data.dataset.sqlite.sqlite_dataset_perturbed"]], "extractors": [[14, "module-graphnet.data.extractors"]], "i3extractor": [[15, "module-graphnet.data.extractors.i3extractor"]], "i3featureextractor": [[16, "module-graphnet.data.extractors.i3featureextractor"]], "i3genericextractor": [[17, "module-graphnet.data.extractors.i3genericextractor"]], "i3hybridrecoextractor": [[18, "module-graphnet.data.extractors.i3hybridrecoextractor"]], "i3ntmuonlabelsextractor": [[19, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"]], "i3particleextractor": [[20, "module-graphnet.data.extractors.i3particleextractor"]], "i3pisaextractor": [[21, "module-graphnet.data.extractors.i3pisaextractor"]], "i3quesoextractor": [[22, "module-graphnet.data.extractors.i3quesoextractor"]], "i3retroextractor": [[23, "module-graphnet.data.extractors.i3retroextractor"]], "i3splinempeextractor": [[24, "module-graphnet.data.extractors.i3splinempeextractor"]], "i3truthextractor": [[25, "module-graphnet.data.extractors.i3truthextractor"]], "i3tumextractor": [[26, "module-graphnet.data.extractors.i3tumextractor"]], "utilities": [[27, "module-graphnet.data.extractors.utilities"], [37, "module-graphnet.data.utilities"], [83, "module-graphnet.utilities"]], "collections": [[28, "module-graphnet.data.extractors.utilities.collections"]], "frames": [[29, "module-graphnet.data.extractors.utilities.frames"]], "types": [[30, "module-graphnet.data.extractors.utilities.types"]], "parquet_dataconverter": [[32, "module-graphnet.data.parquet.parquet_dataconverter"]], "pipeline": [[33, "module-graphnet.data.pipeline"]], "sqlite_dataconverter": [[35, "module-graphnet.data.sqlite.sqlite_dataconverter"]], "sqlite_utilities": [[36, "module-graphnet.data.sqlite.sqlite_utilities"]], "parquet_to_sqlite": [[38, "module-graphnet.data.utilities.parquet_to_sqlite"]], "random": [[39, "module-graphnet.data.utilities.random"]], "string_selection_resolver": [[40, "module-graphnet.data.utilities.string_selection_resolver"]], "deployment": [[41, "module-graphnet.deployment"]], "i3modules": [[42, "i3modules"]], "deployer": [[43, "deployer"]], "graphnet_module": [[44, "module-graphnet.deployment.i3modules.graphnet_module"]], "models": [[45, "module-graphnet.models"]], "coarsening": [[46, "module-graphnet.models.coarsening"]], "components": [[47, "module-graphnet.models.components"]], "layers": [[48, "module-graphnet.models.components.layers"]], "pool": [[49, "module-graphnet.models.components.pool"]], "detector": [[50, "module-graphnet.models.detector"], [51, "module-graphnet.models.detector.detector"]], "icecube": [[52, "module-graphnet.models.detector.icecube"]], "prometheus": [[53, "module-graphnet.models.detector.prometheus"]], "gnn": [[54, "module-graphnet.models.gnn"], [59, "module-graphnet.models.gnn.gnn"]], "convnet": [[55, "module-graphnet.models.gnn.convnet"]], "dynedge": [[56, "module-graphnet.models.gnn.dynedge"]], "dynedge_jinst": [[57, "module-graphnet.models.gnn.dynedge_jinst"]], "dynedge_kaggle_tito": [[58, "module-graphnet.models.gnn.dynedge_kaggle_tito"]], "graphs": [[60, "module-graphnet.models.graphs"], [64, "module-graphnet.models.graphs.graphs"]], "edges": [[61, "module-graphnet.models.graphs.edges"], [62, "module-graphnet.models.graphs.edges.edges"]], "graph_definition": [[63, "module-graphnet.models.graphs.graph_definition"]], "nodes": [[65, "module-graphnet.models.graphs.nodes"], [66, "module-graphnet.models.graphs.nodes.nodes"]], "model": [[67, "module-graphnet.models.model"]], "standard_model": [[68, "module-graphnet.models.standard_model"]], "task": [[69, "module-graphnet.models.task"], [72, "module-graphnet.models.task.task"]], "classification": [[70, "module-graphnet.models.task.classification"]], "reconstruction": [[71, "module-graphnet.models.task.reconstruction"]], "utils": [[73, "module-graphnet.models.utils"], [81, "module-graphnet.training.utils"]], "pisa": [[74, "module-graphnet.pisa"]], "fitting": [[75, "module-graphnet.pisa.fitting"]], "plotting": [[76, "module-graphnet.pisa.plotting"]], "training": [[77, "module-graphnet.training"]], "callbacks": [[78, "module-graphnet.training.callbacks"]], "labels": [[79, "module-graphnet.training.labels"]], "loss_functions": [[80, "module-graphnet.training.loss_functions"]], "weight_fitting": [[82, "module-graphnet.training.weight_fitting"]], "argparse": [[84, "module-graphnet.utilities.argparse"]], "config": [[85, "module-graphnet.utilities.config"]], "base_config": [[86, "module-graphnet.utilities.config.base_config"]], "configurable": [[87, "module-graphnet.utilities.config.configurable"]], "dataset_config": [[88, "module-graphnet.utilities.config.dataset_config"]], "model_config": [[89, "module-graphnet.utilities.config.model_config"]], "parsing": [[90, "module-graphnet.utilities.config.parsing"]], "training_config": [[91, "module-graphnet.utilities.config.training_config"]], "decorators": [[92, "module-graphnet.utilities.decorators"]], "filesys": [[93, "module-graphnet.utilities.filesys"]], "imports": [[94, "module-graphnet.utilities.imports"]], "logging": [[95, "module-graphnet.utilities.logging"]], "maths": [[96, "module-graphnet.utilities.maths"]], "src": [[97, "src"]], "Contribute": [[98, "contribute"]], "GitHub issues": [[98, "github-issues"]], "Pull requests": [[98, "pull-requests"]], "Conventions": [[98, "conventions"]], "Code quality": [[98, "code-quality"]], "Install": [[100, "install"]], "Installing with IceTray": [[100, "installing-with-icetray"]], "Installing stand-alone": [[100, "installing-stand-alone"]], "Running in Docker": [[100, "running-in-docker"]]}, "indexentries": {"graphnet": [[1, "module-graphnet"]], "module": [[1, "module-graphnet"], [2, "module-graphnet.constants"], [3, "module-graphnet.data"], [4, "module-graphnet.data.constants"], [5, "module-graphnet.data.dataconverter"], [6, "module-graphnet.data.dataloader"], [7, "module-graphnet.data.dataset"], [8, "module-graphnet.data.dataset.dataset"], [9, "module-graphnet.data.dataset.parquet"], [10, "module-graphnet.data.dataset.parquet.parquet_dataset"], [11, "module-graphnet.data.dataset.sqlite"], [12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"], [13, "module-graphnet.data.dataset.sqlite.sqlite_dataset_perturbed"], [14, "module-graphnet.data.extractors"], [15, "module-graphnet.data.extractors.i3extractor"], [16, "module-graphnet.data.extractors.i3featureextractor"], [17, "module-graphnet.data.extractors.i3genericextractor"], [18, "module-graphnet.data.extractors.i3hybridrecoextractor"], [19, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"], [20, "module-graphnet.data.extractors.i3particleextractor"], [21, "module-graphnet.data.extractors.i3pisaextractor"], [22, "module-graphnet.data.extractors.i3quesoextractor"], [23, "module-graphnet.data.extractors.i3retroextractor"], [24, "module-graphnet.data.extractors.i3splinempeextractor"], [25, "module-graphnet.data.extractors.i3truthextractor"], [26, "module-graphnet.data.extractors.i3tumextractor"], [27, "module-graphnet.data.extractors.utilities"], [28, "module-graphnet.data.extractors.utilities.collections"], [29, "module-graphnet.data.extractors.utilities.frames"], [30, "module-graphnet.data.extractors.utilities.types"], [31, "module-graphnet.data.parquet"], [32, "module-graphnet.data.parquet.parquet_dataconverter"], [33, "module-graphnet.data.pipeline"], [34, "module-graphnet.data.sqlite"], [35, "module-graphnet.data.sqlite.sqlite_dataconverter"], [36, "module-graphnet.data.sqlite.sqlite_utilities"], [37, "module-graphnet.data.utilities"], [38, "module-graphnet.data.utilities.parquet_to_sqlite"], [39, "module-graphnet.data.utilities.random"], [40, "module-graphnet.data.utilities.string_selection_resolver"], [41, "module-graphnet.deployment"], [44, "module-graphnet.deployment.i3modules.graphnet_module"], [45, "module-graphnet.models"], [46, "module-graphnet.models.coarsening"], [47, "module-graphnet.models.components"], [48, "module-graphnet.models.components.layers"], [49, "module-graphnet.models.components.pool"], [50, "module-graphnet.models.detector"], [51, "module-graphnet.models.detector.detector"], [52, "module-graphnet.models.detector.icecube"], [53, "module-graphnet.models.detector.prometheus"], [54, "module-graphnet.models.gnn"], [55, "module-graphnet.models.gnn.convnet"], [56, "module-graphnet.models.gnn.dynedge"], [57, "module-graphnet.models.gnn.dynedge_jinst"], [58, "module-graphnet.models.gnn.dynedge_kaggle_tito"], [59, "module-graphnet.models.gnn.gnn"], [60, "module-graphnet.models.graphs"], [61, "module-graphnet.models.graphs.edges"], [62, "module-graphnet.models.graphs.edges.edges"], [63, "module-graphnet.models.graphs.graph_definition"], [64, "module-graphnet.models.graphs.graphs"], [65, "module-graphnet.models.graphs.nodes"], [66, "module-graphnet.models.graphs.nodes.nodes"], [67, "module-graphnet.models.model"], [68, "module-graphnet.models.standard_model"], [69, "module-graphnet.models.task"], [70, "module-graphnet.models.task.classification"], [71, "module-graphnet.models.task.reconstruction"], [72, "module-graphnet.models.task.task"], [73, "module-graphnet.models.utils"], [74, "module-graphnet.pisa"], [75, "module-graphnet.pisa.fitting"], [76, "module-graphnet.pisa.plotting"], [77, "module-graphnet.training"], [78, "module-graphnet.training.callbacks"], [79, "module-graphnet.training.labels"], [80, "module-graphnet.training.loss_functions"], [81, "module-graphnet.training.utils"], [82, "module-graphnet.training.weight_fitting"], [83, "module-graphnet.utilities"], [84, "module-graphnet.utilities.argparse"], [85, "module-graphnet.utilities.config"], [86, "module-graphnet.utilities.config.base_config"], [87, "module-graphnet.utilities.config.configurable"], [88, "module-graphnet.utilities.config.dataset_config"], [89, "module-graphnet.utilities.config.model_config"], [90, "module-graphnet.utilities.config.parsing"], [91, "module-graphnet.utilities.config.training_config"], [92, "module-graphnet.utilities.decorators"], [93, "module-graphnet.utilities.filesys"], [94, "module-graphnet.utilities.imports"], [95, "module-graphnet.utilities.logging"], [96, "module-graphnet.utilities.maths"]], "graphnet.constants": [[2, "module-graphnet.constants"]], "graphnet.data": [[3, "module-graphnet.data"]], "deepcore (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.DEEPCORE"]], "deepcore (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.DEEPCORE"]], "features (class in graphnet.data.constants)": [[4, "graphnet.data.constants.FEATURES"]], "icecube86 (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.ICECUBE86"]], "icecube86 (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.ICECUBE86"]], "kaggle (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.KAGGLE"]], "kaggle (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.KAGGLE"]], "prometheus (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.PROMETHEUS"]], "prometheus (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.PROMETHEUS"]], "truth (class in graphnet.data.constants)": [[4, "graphnet.data.constants.TRUTH"]], "upgrade (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.UPGRADE"]], "upgrade (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.UPGRADE"]], "graphnet.data.constants": [[4, "module-graphnet.data.constants"]], "dataconverter (class in graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.DataConverter"]], "fileset (class in graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.FileSet"]], "cache_output_files() (in module graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.cache_output_files"]], "execute() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.execute"]], "file_suffix (graphnet.data.dataconverter.dataconverter property)": [[5, "graphnet.data.dataconverter.DataConverter.file_suffix"]], "gcd_file (graphnet.data.dataconverter.fileset attribute)": [[5, "graphnet.data.dataconverter.FileSet.gcd_file"]], "get_map_function() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.get_map_function"]], "graphnet.data.dataconverter": [[5, "module-graphnet.data.dataconverter"]], "i3_file (graphnet.data.dataconverter.fileset attribute)": [[5, "graphnet.data.dataconverter.FileSet.i3_file"]], "init_global_index() (in module graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.init_global_index"]], "merge_files() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.merge_files"]], "save_data() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.save_data"]], "dataloader (class in graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.DataLoader"]], "collate_fn() (in module graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.collate_fn"]], "do_shuffle() (in module graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.do_shuffle"]], "from_dataset_config() (graphnet.data.dataloader.dataloader class method)": [[6, "graphnet.data.dataloader.DataLoader.from_dataset_config"]], "graphnet.data.dataloader": [[6, "module-graphnet.data.dataloader"]], "graphnet.data.dataset": [[7, "module-graphnet.data.dataset"]], "columnmissingexception": [[8, "graphnet.data.dataset.dataset.ColumnMissingException"]], "dataset (class in graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.Dataset"]], "ensembledataset (class in graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.EnsembleDataset"]], "add_label() (graphnet.data.dataset.dataset.dataset method)": [[8, "graphnet.data.dataset.dataset.Dataset.add_label"]], "concatenate() (graphnet.data.dataset.dataset.dataset class method)": [[8, "graphnet.data.dataset.dataset.Dataset.concatenate"]], "from_config() (graphnet.data.dataset.dataset.dataset class method)": [[8, "graphnet.data.dataset.dataset.Dataset.from_config"]], "graphnet.data.dataset.dataset": [[8, "module-graphnet.data.dataset.dataset"]], "load_module() (in module graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.load_module"]], "parse_graph_definition() (in module graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.parse_graph_definition"]], "path (graphnet.data.dataset.dataset.dataset property)": [[8, "graphnet.data.dataset.dataset.Dataset.path"]], "query_table() (graphnet.data.dataset.dataset.dataset method)": [[8, "graphnet.data.dataset.dataset.Dataset.query_table"]], "truth_table (graphnet.data.dataset.dataset.dataset property)": [[8, "graphnet.data.dataset.dataset.Dataset.truth_table"]], "graphnet.data.dataset.parquet": [[9, "module-graphnet.data.dataset.parquet"]], "parquetdataset (class in graphnet.data.dataset.parquet.parquet_dataset)": [[10, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[10, "module-graphnet.data.dataset.parquet.parquet_dataset"]], "query_table() (graphnet.data.dataset.parquet.parquet_dataset.parquetdataset method)": [[10, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset.query_table"]], "graphnet.data.dataset.sqlite": [[11, "module-graphnet.data.dataset.sqlite"]], "sqlitedataset (class in graphnet.data.dataset.sqlite.sqlite_dataset)": [[12, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"]], "query_table() (graphnet.data.dataset.sqlite.sqlite_dataset.sqlitedataset method)": [[12, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset.query_table"]], "sqlitedatasetperturbed (class in graphnet.data.dataset.sqlite.sqlite_dataset_perturbed)": [[13, "graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.SQLiteDatasetPerturbed"]], "graphnet.data.dataset.sqlite.sqlite_dataset_perturbed": [[13, "module-graphnet.data.dataset.sqlite.sqlite_dataset_perturbed"]], "graphnet.data.extractors": [[14, "module-graphnet.data.extractors"]], "i3extractor (class in graphnet.data.extractors.i3extractor)": [[15, "graphnet.data.extractors.i3extractor.I3Extractor"]], "i3extractorcollection (class in graphnet.data.extractors.i3extractor)": [[15, "graphnet.data.extractors.i3extractor.I3ExtractorCollection"]], "graphnet.data.extractors.i3extractor": [[15, "module-graphnet.data.extractors.i3extractor"]], "name (graphnet.data.extractors.i3extractor.i3extractor property)": [[15, "graphnet.data.extractors.i3extractor.I3Extractor.name"]], "set_files() (graphnet.data.extractors.i3extractor.i3extractor method)": [[15, "graphnet.data.extractors.i3extractor.I3Extractor.set_files"]], "set_files() (graphnet.data.extractors.i3extractor.i3extractorcollection method)": [[15, "graphnet.data.extractors.i3extractor.I3ExtractorCollection.set_files"]], "i3featureextractor (class in graphnet.data.extractors.i3featureextractor)": [[16, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractor"]], "i3featureextractoricecube86 (class in graphnet.data.extractors.i3featureextractor)": [[16, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCube86"]], "i3featureextractoricecubedeepcore (class in graphnet.data.extractors.i3featureextractor)": [[16, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCubeDeepCore"]], "i3featureextractoricecubeupgrade (class in graphnet.data.extractors.i3featureextractor)": [[16, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCubeUpgrade"]], "i3pulsenoisetruthflagicecubeupgrade (class in graphnet.data.extractors.i3featureextractor)": [[16, "graphnet.data.extractors.i3featureextractor.I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.i3featureextractor": [[16, "module-graphnet.data.extractors.i3featureextractor"]], "i3genericextractor (class in graphnet.data.extractors.i3genericextractor)": [[17, "graphnet.data.extractors.i3genericextractor.I3GenericExtractor"]], "graphnet.data.extractors.i3genericextractor": [[17, "module-graphnet.data.extractors.i3genericextractor"]], "i3galacticplanehybridrecoextractor (class in graphnet.data.extractors.i3hybridrecoextractor)": [[18, "graphnet.data.extractors.i3hybridrecoextractor.I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.i3hybridrecoextractor": [[18, "module-graphnet.data.extractors.i3hybridrecoextractor"]], "i3ntmuonlabelextractor (class in graphnet.data.extractors.i3ntmuonlabelsextractor)": [[19, "graphnet.data.extractors.i3ntmuonlabelsextractor.I3NTMuonLabelExtractor"]], "graphnet.data.extractors.i3ntmuonlabelsextractor": [[19, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"]], "i3particleextractor (class in graphnet.data.extractors.i3particleextractor)": [[20, "graphnet.data.extractors.i3particleextractor.I3ParticleExtractor"]], "graphnet.data.extractors.i3particleextractor": [[20, "module-graphnet.data.extractors.i3particleextractor"]], "i3pisaextractor (class in graphnet.data.extractors.i3pisaextractor)": [[21, "graphnet.data.extractors.i3pisaextractor.I3PISAExtractor"]], "graphnet.data.extractors.i3pisaextractor": [[21, "module-graphnet.data.extractors.i3pisaextractor"]], "i3quesoextractor (class in graphnet.data.extractors.i3quesoextractor)": [[22, "graphnet.data.extractors.i3quesoextractor.I3QUESOExtractor"]], "graphnet.data.extractors.i3quesoextractor": [[22, "module-graphnet.data.extractors.i3quesoextractor"]], "i3retroextractor (class in graphnet.data.extractors.i3retroextractor)": [[23, "graphnet.data.extractors.i3retroextractor.I3RetroExtractor"]], "graphnet.data.extractors.i3retroextractor": [[23, "module-graphnet.data.extractors.i3retroextractor"]], "i3splinempeicextractor (class in graphnet.data.extractors.i3splinempeextractor)": [[24, "graphnet.data.extractors.i3splinempeextractor.I3SplineMPEICExtractor"]], "graphnet.data.extractors.i3splinempeextractor": [[24, "module-graphnet.data.extractors.i3splinempeextractor"]], "i3truthextractor (class in graphnet.data.extractors.i3truthextractor)": [[25, "graphnet.data.extractors.i3truthextractor.I3TruthExtractor"]], "graphnet.data.extractors.i3truthextractor": [[25, "module-graphnet.data.extractors.i3truthextractor"]], "i3tumextractor (class in graphnet.data.extractors.i3tumextractor)": [[26, "graphnet.data.extractors.i3tumextractor.I3TUMExtractor"]], "graphnet.data.extractors.i3tumextractor": [[26, "module-graphnet.data.extractors.i3tumextractor"]], "graphnet.data.extractors.utilities": [[27, "module-graphnet.data.extractors.utilities"]], "flatten_nested_dictionary() (in module graphnet.data.extractors.utilities.collections)": [[28, "graphnet.data.extractors.utilities.collections.flatten_nested_dictionary"]], "graphnet.data.extractors.utilities.collections": [[28, "module-graphnet.data.extractors.utilities.collections"]], "serialise() (in module graphnet.data.extractors.utilities.collections)": [[28, "graphnet.data.extractors.utilities.collections.serialise"]], "transpose_list_of_dicts() (in module graphnet.data.extractors.utilities.collections)": [[28, "graphnet.data.extractors.utilities.collections.transpose_list_of_dicts"]], "frame_is_montecarlo() (in module graphnet.data.extractors.utilities.frames)": [[29, "graphnet.data.extractors.utilities.frames.frame_is_montecarlo"]], "frame_is_noise() (in module graphnet.data.extractors.utilities.frames)": [[29, "graphnet.data.extractors.utilities.frames.frame_is_noise"]], "get_om_keys_and_pulseseries() (in module graphnet.data.extractors.utilities.frames)": [[29, "graphnet.data.extractors.utilities.frames.get_om_keys_and_pulseseries"]], "graphnet.data.extractors.utilities.frames": [[29, "module-graphnet.data.extractors.utilities.frames"]], "break_cyclic_recursion() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.break_cyclic_recursion"]], "cast_object_to_pure_python() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.cast_object_to_pure_python"]], "cast_pulse_series_to_pure_python() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.cast_pulse_series_to_pure_python"]], "get_member_variables() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.get_member_variables"]], "graphnet.data.extractors.utilities.types": [[30, "module-graphnet.data.extractors.utilities.types"]], "is_boost_class() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.is_boost_class"]], "is_boost_enum() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.is_boost_enum"]], "is_icecube_class() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.is_icecube_class"]], "is_method() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.is_method"]], "is_type() (in module graphnet.data.extractors.utilities.types)": [[30, "graphnet.data.extractors.utilities.types.is_type"]], "graphnet.data.parquet": [[31, "module-graphnet.data.parquet"]], "parquetdataconverter (class in graphnet.data.parquet.parquet_dataconverter)": [[32, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter"]], "file_suffix (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter attribute)": [[32, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.file_suffix"]], "graphnet.data.parquet.parquet_dataconverter": [[32, "module-graphnet.data.parquet.parquet_dataconverter"]], "merge_files() (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter method)": [[32, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.merge_files"]], "save_data() (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter method)": [[32, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.save_data"]], "insqlitepipeline (class in graphnet.data.pipeline)": [[33, "graphnet.data.pipeline.InSQLitePipeline"]], "graphnet.data.pipeline": [[33, "module-graphnet.data.pipeline"]], "graphnet.data.sqlite": [[34, "module-graphnet.data.sqlite"]], "sqlitedataconverter (class in graphnet.data.sqlite.sqlite_dataconverter)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter"]], "any_pulsemap_is_non_empty() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.any_pulsemap_is_non_empty"]], "construct_dataframe() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.construct_dataframe"]], "file_suffix (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter attribute)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.file_suffix"]], "graphnet.data.sqlite.sqlite_dataconverter": [[35, "module-graphnet.data.sqlite.sqlite_dataconverter"]], "is_mc_tree() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.is_mc_tree"]], "is_pulse_map() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.is_pulse_map"]], "merge_files() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.merge_files"]], "save_data() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[35, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.save_data"]], "attach_index() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.attach_index"]], "create_table() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.create_table"]], "create_table_and_save_to_sql() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.create_table_and_save_to_sql"]], "database_exists() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.database_exists"]], "database_table_exists() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.database_table_exists"]], "graphnet.data.sqlite.sqlite_utilities": [[36, "module-graphnet.data.sqlite.sqlite_utilities"]], "run_sql_code() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.run_sql_code"]], "save_to_sql() (in module graphnet.data.sqlite.sqlite_utilities)": [[36, "graphnet.data.sqlite.sqlite_utilities.save_to_sql"]], "graphnet.data.utilities": [[37, "module-graphnet.data.utilities"]], "parquettosqliteconverter (class in graphnet.data.utilities.parquet_to_sqlite)": [[38, "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter"]], "graphnet.data.utilities.parquet_to_sqlite": [[38, "module-graphnet.data.utilities.parquet_to_sqlite"]], "run() (graphnet.data.utilities.parquet_to_sqlite.parquettosqliteconverter method)": [[38, "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter.run"]], "graphnet.data.utilities.random": [[39, "module-graphnet.data.utilities.random"]], "pairwise_shuffle() (in module graphnet.data.utilities.random)": [[39, "graphnet.data.utilities.random.pairwise_shuffle"]], "stringselectionresolver (class in graphnet.data.utilities.string_selection_resolver)": [[40, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver": [[40, "module-graphnet.data.utilities.string_selection_resolver"]], "resolve() (graphnet.data.utilities.string_selection_resolver.stringselectionresolver method)": [[40, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver.resolve"]], "graphnet.deployment": [[41, "module-graphnet.deployment"]], "graphneti3module (class in graphnet.deployment.i3modules.graphnet_module)": [[44, "graphnet.deployment.i3modules.graphnet_module.GraphNeTI3Module"]], "i3inferencemodule (class in graphnet.deployment.i3modules.graphnet_module)": [[44, "graphnet.deployment.i3modules.graphnet_module.I3InferenceModule"]], "i3pulsecleanermodule (class in graphnet.deployment.i3modules.graphnet_module)": [[44, "graphnet.deployment.i3modules.graphnet_module.I3PulseCleanerModule"]], "graphnet.deployment.i3modules.graphnet_module": [[44, "module-graphnet.deployment.i3modules.graphnet_module"]], "graphnet.models": [[45, "module-graphnet.models"]], "attributecoarsening (class in graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.AttributeCoarsening"]], "coarsening (class in graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.Coarsening"]], "customdomcoarsening (class in graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.CustomDOMCoarsening"]], "domandtimewindowcoarsening (class in graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.DOMAndTimeWindowCoarsening"]], "domcoarsening (class in graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.DOMCoarsening"]], "forward() (graphnet.models.coarsening.coarsening method)": [[46, "graphnet.models.coarsening.Coarsening.forward"]], "graphnet.models.coarsening": [[46, "module-graphnet.models.coarsening"]], "reduce_options (graphnet.models.coarsening.coarsening attribute)": [[46, "graphnet.models.coarsening.Coarsening.reduce_options"]], "unbatch_edge_index() (in module graphnet.models.coarsening)": [[46, "graphnet.models.coarsening.unbatch_edge_index"]], "graphnet.models.components": [[47, "module-graphnet.models.components"]], "dynedgeconv (class in graphnet.models.components.layers)": [[48, "graphnet.models.components.layers.DynEdgeConv"]], "dyntrans (class in graphnet.models.components.layers)": [[48, "graphnet.models.components.layers.DynTrans"]], "edgeconvtito (class in graphnet.models.components.layers)": [[48, "graphnet.models.components.layers.EdgeConvTito"]], "forward() (graphnet.models.components.layers.dynedgeconv method)": [[48, "graphnet.models.components.layers.DynEdgeConv.forward"]], "forward() (graphnet.models.components.layers.dyntrans method)": [[48, "graphnet.models.components.layers.DynTrans.forward"]], "forward() (graphnet.models.components.layers.edgeconvtito method)": [[48, "graphnet.models.components.layers.EdgeConvTito.forward"]], "graphnet.models.components.layers": [[48, "module-graphnet.models.components.layers"]], "message() (graphnet.models.components.layers.edgeconvtito method)": [[48, "graphnet.models.components.layers.EdgeConvTito.message"]], "reset_parameters() (graphnet.models.components.layers.edgeconvtito method)": [[48, "graphnet.models.components.layers.EdgeConvTito.reset_parameters"]], "graphnet.models.components.pool": [[49, "module-graphnet.models.components.pool"]], "group_by() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.group_by"]], "group_pulses_to_dom() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.group_pulses_to_dom"]], "group_pulses_to_pmt() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.group_pulses_to_pmt"]], "min_pool() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.min_pool"]], "min_pool_x() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.min_pool_x"]], "std_pool() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.std_pool"]], "std_pool_x() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.std_pool_x"]], "sum_pool() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.sum_pool"]], "sum_pool_and_distribute() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.sum_pool_and_distribute"]], "sum_pool_x() (in module graphnet.models.components.pool)": [[49, "graphnet.models.components.pool.sum_pool_x"]], "graphnet.models.detector": [[50, "module-graphnet.models.detector"]], "detector (class in graphnet.models.detector.detector)": [[51, "graphnet.models.detector.detector.Detector"]], "feature_map() (graphnet.models.detector.detector.detector method)": [[51, "graphnet.models.detector.detector.Detector.feature_map"]], "forward() (graphnet.models.detector.detector.detector method)": [[51, "graphnet.models.detector.detector.Detector.forward"]], "graphnet.models.detector.detector": [[51, "module-graphnet.models.detector.detector"]], "icecube86 (class in graphnet.models.detector.icecube)": [[52, "graphnet.models.detector.icecube.IceCube86"]], "icecubedeepcore (class in graphnet.models.detector.icecube)": [[52, "graphnet.models.detector.icecube.IceCubeDeepCore"]], "icecubekaggle (class in graphnet.models.detector.icecube)": [[52, "graphnet.models.detector.icecube.IceCubeKaggle"]], "icecubeupgrade (class in graphnet.models.detector.icecube)": [[52, "graphnet.models.detector.icecube.IceCubeUpgrade"]], "feature_map() (graphnet.models.detector.icecube.icecube86 method)": [[52, "graphnet.models.detector.icecube.IceCube86.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubedeepcore method)": [[52, "graphnet.models.detector.icecube.IceCubeDeepCore.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubekaggle method)": [[52, "graphnet.models.detector.icecube.IceCubeKaggle.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubeupgrade method)": [[52, "graphnet.models.detector.icecube.IceCubeUpgrade.feature_map"]], "graphnet.models.detector.icecube": [[52, "module-graphnet.models.detector.icecube"]], "prometheus (class in graphnet.models.detector.prometheus)": [[53, "graphnet.models.detector.prometheus.Prometheus"]], "feature_map() (graphnet.models.detector.prometheus.prometheus method)": [[53, "graphnet.models.detector.prometheus.Prometheus.feature_map"]], "graphnet.models.detector.prometheus": [[53, "module-graphnet.models.detector.prometheus"]], "graphnet.models.gnn": [[54, "module-graphnet.models.gnn"]], "convnet (class in graphnet.models.gnn.convnet)": [[55, "graphnet.models.gnn.convnet.ConvNet"]], "forward() (graphnet.models.gnn.convnet.convnet method)": [[55, "graphnet.models.gnn.convnet.ConvNet.forward"]], "graphnet.models.gnn.convnet": [[55, "module-graphnet.models.gnn.convnet"]], "dynedge (class in graphnet.models.gnn.dynedge)": [[56, "graphnet.models.gnn.dynedge.DynEdge"]], "forward() (graphnet.models.gnn.dynedge.dynedge method)": [[56, "graphnet.models.gnn.dynedge.DynEdge.forward"]], "graphnet.models.gnn.dynedge": [[56, "module-graphnet.models.gnn.dynedge"]], "dynedgejinst (class in graphnet.models.gnn.dynedge_jinst)": [[57, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST"]], "forward() (graphnet.models.gnn.dynedge_jinst.dynedgejinst method)": [[57, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST.forward"]], "graphnet.models.gnn.dynedge_jinst": [[57, "module-graphnet.models.gnn.dynedge_jinst"]], "dynedgetito (class in graphnet.models.gnn.dynedge_kaggle_tito)": [[58, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO"]], "forward() (graphnet.models.gnn.dynedge_kaggle_tito.dynedgetito method)": [[58, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO.forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[58, "module-graphnet.models.gnn.dynedge_kaggle_tito"]], "gnn (class in graphnet.models.gnn.gnn)": [[59, "graphnet.models.gnn.gnn.GNN"]], "forward() (graphnet.models.gnn.gnn.gnn method)": [[59, "graphnet.models.gnn.gnn.GNN.forward"]], "graphnet.models.gnn.gnn": [[59, "module-graphnet.models.gnn.gnn"]], "nb_inputs (graphnet.models.gnn.gnn.gnn property)": [[59, "graphnet.models.gnn.gnn.GNN.nb_inputs"]], "nb_outputs (graphnet.models.gnn.gnn.gnn property)": [[59, "graphnet.models.gnn.gnn.GNN.nb_outputs"]], "graphnet.models.graphs": [[60, "module-graphnet.models.graphs"]], "graphnet.models.graphs.edges": [[61, "module-graphnet.models.graphs.edges"]], "edgedefinition (class in graphnet.models.graphs.edges.edges)": [[62, "graphnet.models.graphs.edges.edges.EdgeDefinition"]], "euclideanedges (class in graphnet.models.graphs.edges.edges)": [[62, "graphnet.models.graphs.edges.edges.EuclideanEdges"]], "knnedges (class in graphnet.models.graphs.edges.edges)": [[62, "graphnet.models.graphs.edges.edges.KNNEdges"]], "radialedges (class in graphnet.models.graphs.edges.edges)": [[62, "graphnet.models.graphs.edges.edges.RadialEdges"]], "forward() (graphnet.models.graphs.edges.edges.edgedefinition method)": [[62, "graphnet.models.graphs.edges.edges.EdgeDefinition.forward"]], "graphnet.models.graphs.edges.edges": [[62, "module-graphnet.models.graphs.edges.edges"]], "graphdefinition (class in graphnet.models.graphs.graph_definition)": [[63, "graphnet.models.graphs.graph_definition.GraphDefinition"]], "forward() (graphnet.models.graphs.graph_definition.graphdefinition method)": [[63, "graphnet.models.graphs.graph_definition.GraphDefinition.forward"]], "graphnet.models.graphs.graph_definition": [[63, "module-graphnet.models.graphs.graph_definition"]], "knngraph (class in graphnet.models.graphs.graphs)": [[64, "graphnet.models.graphs.graphs.KNNGraph"]], "graphnet.models.graphs.graphs": [[64, "module-graphnet.models.graphs.graphs"]], "graphnet.models.graphs.nodes": [[65, "module-graphnet.models.graphs.nodes"]], "nodedefinition (class in graphnet.models.graphs.nodes.nodes)": [[66, "graphnet.models.graphs.nodes.nodes.NodeDefinition"]], "nodesaspulses (class in graphnet.models.graphs.nodes.nodes)": [[66, "graphnet.models.graphs.nodes.nodes.NodesAsPulses"]], "forward() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[66, "graphnet.models.graphs.nodes.nodes.NodeDefinition.forward"]], "graphnet.models.graphs.nodes.nodes": [[66, "module-graphnet.models.graphs.nodes.nodes"]], "nb_outputs (graphnet.models.graphs.nodes.nodes.nodedefinition property)": [[66, "graphnet.models.graphs.nodes.nodes.NodeDefinition.nb_outputs"]], "set_number_of_inputs() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[66, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_number_of_inputs"]], "model (class in graphnet.models.model)": [[67, "graphnet.models.model.Model"]], "fit() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.fit"]], "forward() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.forward"]], "from_config() (graphnet.models.model.model class method)": [[67, "graphnet.models.model.Model.from_config"]], "graphnet.models.model": [[67, "module-graphnet.models.model"]], "load() (graphnet.models.model.model class method)": [[67, "graphnet.models.model.Model.load"]], "load_state_dict() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.load_state_dict"]], "predict() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.predict"]], "predict_as_dataframe() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.predict_as_dataframe"]], "save() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.save"]], "save_state_dict() (graphnet.models.model.model method)": [[67, "graphnet.models.model.Model.save_state_dict"]], "standardmodel (class in graphnet.models.standard_model)": [[68, "graphnet.models.standard_model.StandardModel"]], "compute_loss() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.compute_loss"]], "configure_optimizers() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.configure_optimizers"]], "forward() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.forward"]], "graphnet.models.standard_model": [[68, "module-graphnet.models.standard_model"]], "inference() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.inference"]], "predict() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.predict"]], "predict_as_dataframe() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.predict_as_dataframe"]], "prediction_labels (graphnet.models.standard_model.standardmodel property)": [[68, "graphnet.models.standard_model.StandardModel.prediction_labels"]], "shared_step() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.shared_step"]], "target_labels (graphnet.models.standard_model.standardmodel property)": [[68, "graphnet.models.standard_model.StandardModel.target_labels"]], "train() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.train"]], "training_step() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.training_step"]], "validation_step() (graphnet.models.standard_model.standardmodel method)": [[68, "graphnet.models.standard_model.StandardModel.validation_step"]], "graphnet.models.task": [[69, "module-graphnet.models.task"]], "binaryclassificationtask (class in graphnet.models.task.classification)": [[70, "graphnet.models.task.classification.BinaryClassificationTask"]], "binaryclassificationtasklogits (class in graphnet.models.task.classification)": [[70, "graphnet.models.task.classification.BinaryClassificationTaskLogits"]], "multiclassclassificationtask (class in graphnet.models.task.classification)": [[70, "graphnet.models.task.classification.MulticlassClassificationTask"]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTask.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_prediction_labels"]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTask.default_target_labels"]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_target_labels"]], "graphnet.models.task.classification": [[70, "module-graphnet.models.task.classification"]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtask attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTask.nb_inputs"]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[70, "graphnet.models.task.classification.BinaryClassificationTaskLogits.nb_inputs"]], "azimuthreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstruction"]], "azimuthreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa"]], "directionreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa"]], "energyreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.EnergyReconstruction"]], "energyreconstructionwithpower (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower"]], "energyreconstructionwithuncertainty (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty"]], "inelasticityreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.InelasticityReconstruction"]], "positionreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.PositionReconstruction"]], "timereconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.TimeReconstruction"]], "vertexreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.VertexReconstruction"]], "zenithreconstruction (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.ZenithReconstruction"]], "zenithreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[71, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa"]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.PositionReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[71, "graphnet.models.task.reconstruction.TimeReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.VertexReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_prediction_labels"]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.PositionReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[71, "graphnet.models.task.reconstruction.TimeReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.VertexReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_target_labels"]], "graphnet.models.task.reconstruction": [[71, "module-graphnet.models.task.reconstruction"]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[71, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.InelasticityReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.PositionReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.timereconstruction attribute)": [[71, "graphnet.models.task.reconstruction.TimeReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.VertexReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[71, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.nb_inputs"]], "identitytask (class in graphnet.models.task.task)": [[72, "graphnet.models.task.task.IdentityTask"]], "task (class in graphnet.models.task.task)": [[72, "graphnet.models.task.task.Task"]], "compute_loss() (graphnet.models.task.task.task method)": [[72, "graphnet.models.task.task.Task.compute_loss"]], "default_prediction_labels (graphnet.models.task.task.identitytask property)": [[72, "graphnet.models.task.task.IdentityTask.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.task.task property)": [[72, "graphnet.models.task.task.Task.default_prediction_labels"]], "default_target_labels (graphnet.models.task.task.identitytask property)": [[72, "graphnet.models.task.task.IdentityTask.default_target_labels"]], "default_target_labels (graphnet.models.task.task.task property)": [[72, "graphnet.models.task.task.Task.default_target_labels"]], "forward() (graphnet.models.task.task.task method)": [[72, "graphnet.models.task.task.Task.forward"]], "graphnet.models.task.task": [[72, "module-graphnet.models.task.task"]], "inference() (graphnet.models.task.task.task method)": [[72, "graphnet.models.task.task.Task.inference"]], "nb_inputs (graphnet.models.task.task.identitytask property)": [[72, "graphnet.models.task.task.IdentityTask.nb_inputs"]], "nb_inputs (graphnet.models.task.task.task property)": [[72, "graphnet.models.task.task.Task.nb_inputs"]], "train_eval() (graphnet.models.task.task.task method)": [[72, "graphnet.models.task.task.Task.train_eval"]], "calculate_distance_matrix() (in module graphnet.models.utils)": [[73, "graphnet.models.utils.calculate_distance_matrix"]], "calculate_xyzt_homophily() (in module graphnet.models.utils)": [[73, "graphnet.models.utils.calculate_xyzt_homophily"]], "graphnet.models.utils": [[73, "module-graphnet.models.utils"]], "knn_graph_batch() (in module graphnet.models.utils)": [[73, "graphnet.models.utils.knn_graph_batch"]], "graphnet.pisa": [[74, "module-graphnet.pisa"]], "contourfitter (class in graphnet.pisa.fitting)": [[75, "graphnet.pisa.fitting.ContourFitter"]], "weightfitter (class in graphnet.pisa.fitting)": [[75, "graphnet.pisa.fitting.WeightFitter"]], "config_updater() (in module graphnet.pisa.fitting)": [[75, "graphnet.pisa.fitting.config_updater"]], "fit_1d_contour() (graphnet.pisa.fitting.contourfitter method)": [[75, "graphnet.pisa.fitting.ContourFitter.fit_1d_contour"]], "fit_2d_contour() (graphnet.pisa.fitting.contourfitter method)": [[75, "graphnet.pisa.fitting.ContourFitter.fit_2d_contour"]], "fit_weights() (graphnet.pisa.fitting.weightfitter method)": [[75, "graphnet.pisa.fitting.WeightFitter.fit_weights"]], "graphnet.pisa.fitting": [[75, "module-graphnet.pisa.fitting"]], "graphnet.pisa.plotting": [[76, "module-graphnet.pisa.plotting"]], "plot_1d_contour() (in module graphnet.pisa.plotting)": [[76, "graphnet.pisa.plotting.plot_1D_contour"]], "plot_2d_contour() (in module graphnet.pisa.plotting)": [[76, "graphnet.pisa.plotting.plot_2D_contour"]], "read_entry() (in module graphnet.pisa.plotting)": [[76, "graphnet.pisa.plotting.read_entry"]], "graphnet.training": [[77, "module-graphnet.training"]], "piecewiselinearlr (class in graphnet.training.callbacks)": [[78, "graphnet.training.callbacks.PiecewiseLinearLR"]], "progressbar (class in graphnet.training.callbacks)": [[78, "graphnet.training.callbacks.ProgressBar"]], "get_lr() (graphnet.training.callbacks.piecewiselinearlr method)": [[78, "graphnet.training.callbacks.PiecewiseLinearLR.get_lr"]], "get_metrics() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.get_metrics"]], "graphnet.training.callbacks": [[78, "module-graphnet.training.callbacks"]], "init_predict_tqdm() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.init_predict_tqdm"]], "init_test_tqdm() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.init_test_tqdm"]], "init_train_tqdm() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.init_train_tqdm"]], "init_validation_tqdm() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.init_validation_tqdm"]], "on_train_epoch_end() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.on_train_epoch_end"]], "on_train_epoch_start() (graphnet.training.callbacks.progressbar method)": [[78, "graphnet.training.callbacks.ProgressBar.on_train_epoch_start"]], "direction (class in graphnet.training.labels)": [[79, "graphnet.training.labels.Direction"]], "label (class in graphnet.training.labels)": [[79, "graphnet.training.labels.Label"]], "graphnet.training.labels": [[79, "module-graphnet.training.labels"]], "key (graphnet.training.labels.label property)": [[79, "graphnet.training.labels.Label.key"]], "binarycrossentropyloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.BinaryCrossEntropyLoss"]], "crossentropyloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.CrossEntropyLoss"]], "euclideandistanceloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.EuclideanDistanceLoss"]], "logcmk (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.LogCMK"]], "logcoshloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.LogCoshLoss"]], "lossfunction (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.LossFunction"]], "mseloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.MSELoss"]], "rmseloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.RMSELoss"]], "vonmisesfisher2dloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.VonMisesFisher2DLoss"]], "vonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.VonMisesFisher3DLoss"]], "vonmisesfisherloss (class in graphnet.training.loss_functions)": [[80, "graphnet.training.loss_functions.VonMisesFisherLoss"]], "backward() (graphnet.training.loss_functions.logcmk static method)": [[80, "graphnet.training.loss_functions.LogCMK.backward"]], "forward() (graphnet.training.loss_functions.logcmk static method)": [[80, "graphnet.training.loss_functions.LogCMK.forward"]], "forward() (graphnet.training.loss_functions.lossfunction method)": [[80, "graphnet.training.loss_functions.LossFunction.forward"]], "graphnet.training.loss_functions": [[80, "module-graphnet.training.loss_functions"]], "log_cmk() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[80, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk"]], "log_cmk_approx() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[80, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_approx"]], "log_cmk_exact() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[80, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_exact"]], "collate_fn() (in module graphnet.training.utils)": [[81, "graphnet.training.utils.collate_fn"]], "get_predictions() (in module graphnet.training.utils)": [[81, "graphnet.training.utils.get_predictions"]], "graphnet.training.utils": [[81, "module-graphnet.training.utils"]], "make_dataloader() (in module graphnet.training.utils)": [[81, "graphnet.training.utils.make_dataloader"]], "make_train_validation_dataloader() (in module graphnet.training.utils)": [[81, "graphnet.training.utils.make_train_validation_dataloader"]], "save_results() (in module graphnet.training.utils)": [[81, "graphnet.training.utils.save_results"]], "bjoernlow (class in graphnet.training.weight_fitting)": [[82, "graphnet.training.weight_fitting.BjoernLow"]], "uniform (class in graphnet.training.weight_fitting)": [[82, "graphnet.training.weight_fitting.Uniform"]], "weightfitter (class in graphnet.training.weight_fitting)": [[82, "graphnet.training.weight_fitting.WeightFitter"]], "fit() (graphnet.training.weight_fitting.weightfitter method)": [[82, "graphnet.training.weight_fitting.WeightFitter.fit"]], "graphnet.training.weight_fitting": [[82, "module-graphnet.training.weight_fitting"]], "graphnet.utilities": [[83, "module-graphnet.utilities"]], "argumentparser (class in graphnet.utilities.argparse)": [[84, "graphnet.utilities.argparse.ArgumentParser"]], "options (class in graphnet.utilities.argparse)": [[84, "graphnet.utilities.argparse.Options"]], "contains() (graphnet.utilities.argparse.options method)": [[84, "graphnet.utilities.argparse.Options.contains"]], "graphnet.utilities.argparse": [[84, "module-graphnet.utilities.argparse"]], "pop_default() (graphnet.utilities.argparse.options method)": [[84, "graphnet.utilities.argparse.Options.pop_default"]], "standard_arguments (graphnet.utilities.argparse.argumentparser attribute)": [[84, "graphnet.utilities.argparse.ArgumentParser.standard_arguments"]], "with_standard_arguments() (graphnet.utilities.argparse.argumentparser method)": [[84, "graphnet.utilities.argparse.ArgumentParser.with_standard_arguments"]], "graphnet.utilities.config": [[85, "module-graphnet.utilities.config"]], "baseconfig (class in graphnet.utilities.config.base_config)": [[86, "graphnet.utilities.config.base_config.BaseConfig"]], "as_dict() (graphnet.utilities.config.base_config.baseconfig method)": [[86, "graphnet.utilities.config.base_config.BaseConfig.as_dict"]], "dump() (graphnet.utilities.config.base_config.baseconfig method)": [[86, "graphnet.utilities.config.base_config.BaseConfig.dump"]], "get_all_argument_values() (in module graphnet.utilities.config.base_config)": [[86, "graphnet.utilities.config.base_config.get_all_argument_values"]], "graphnet.utilities.config.base_config": [[86, "module-graphnet.utilities.config.base_config"]], "load() (graphnet.utilities.config.base_config.baseconfig class method)": [[86, "graphnet.utilities.config.base_config.BaseConfig.load"]], "model_config (graphnet.utilities.config.base_config.baseconfig attribute)": [[86, "graphnet.utilities.config.base_config.BaseConfig.model_config"]], "model_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[86, "graphnet.utilities.config.base_config.BaseConfig.model_fields"]], "configurable (class in graphnet.utilities.config.configurable)": [[87, "graphnet.utilities.config.configurable.Configurable"]], "config (graphnet.utilities.config.configurable.configurable property)": [[87, "graphnet.utilities.config.configurable.Configurable.config"]], "from_config() (graphnet.utilities.config.configurable.configurable class method)": [[87, "graphnet.utilities.config.configurable.Configurable.from_config"]], "graphnet.utilities.config.configurable": [[87, "module-graphnet.utilities.config.configurable"]], "save_config() (graphnet.utilities.config.configurable.configurable method)": [[87, "graphnet.utilities.config.configurable.Configurable.save_config"]], "datasetconfig (class in graphnet.utilities.config.dataset_config)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig"]], "as_dict() (graphnet.utilities.config.dataset_config.datasetconfig method)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.as_dict"]], "features (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.features"]], "graph_definition (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.graph_definition"]], "graphnet.utilities.config.dataset_config": [[88, "module-graphnet.utilities.config.dataset_config"]], "index_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.index_column"]], "loss_weight_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_column"]], "loss_weight_default_value (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_default_value"]], "loss_weight_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_table"]], "model_config (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.model_config"]], "model_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.model_fields"]], "node_truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth"]], "node_truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth_table"]], "path (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.path"]], "pulsemaps (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.pulsemaps"]], "save_dataset_config() (in module graphnet.utilities.config.dataset_config)": [[88, "graphnet.utilities.config.dataset_config.save_dataset_config"]], "seed (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.seed"]], "selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.selection"]], "string_selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.string_selection"]], "truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.truth"]], "truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[88, "graphnet.utilities.config.dataset_config.DatasetConfig.truth_table"]], "modelconfig (class in graphnet.utilities.config.model_config)": [[89, "graphnet.utilities.config.model_config.ModelConfig"]], "arguments (graphnet.utilities.config.model_config.modelconfig attribute)": [[89, "graphnet.utilities.config.model_config.ModelConfig.arguments"]], "as_dict() (graphnet.utilities.config.model_config.modelconfig method)": [[89, "graphnet.utilities.config.model_config.ModelConfig.as_dict"]], "class_name (graphnet.utilities.config.model_config.modelconfig attribute)": [[89, "graphnet.utilities.config.model_config.ModelConfig.class_name"]], "graphnet.utilities.config.model_config": [[89, "module-graphnet.utilities.config.model_config"]], "model_config (graphnet.utilities.config.model_config.modelconfig attribute)": [[89, "graphnet.utilities.config.model_config.ModelConfig.model_config"]], "model_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[89, "graphnet.utilities.config.model_config.ModelConfig.model_fields"]], "save_model_config() (in module graphnet.utilities.config.model_config)": [[89, "graphnet.utilities.config.model_config.save_model_config"]], "get_all_grapnet_classes() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.get_all_grapnet_classes"]], "get_graphnet_classes() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.get_graphnet_classes"]], "graphnet.utilities.config.parsing": [[90, "module-graphnet.utilities.config.parsing"]], "is_graphnet_class() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.is_graphnet_class"]], "is_graphnet_module() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.is_graphnet_module"]], "list_all_submodules() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.list_all_submodules"]], "traverse_and_apply() (in module graphnet.utilities.config.parsing)": [[90, "graphnet.utilities.config.parsing.traverse_and_apply"]], "trainingconfig (class in graphnet.utilities.config.training_config)": [[91, "graphnet.utilities.config.training_config.TrainingConfig"]], "dataloader (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.dataloader"]], "early_stopping_patience (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.early_stopping_patience"]], "fit (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.fit"]], "graphnet.utilities.config.training_config": [[91, "module-graphnet.utilities.config.training_config"]], "model_config (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.model_config"]], "model_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.model_fields"]], "target (graphnet.utilities.config.training_config.trainingconfig attribute)": [[91, "graphnet.utilities.config.training_config.TrainingConfig.target"]], "graphnet.utilities.decorators": [[92, "module-graphnet.utilities.decorators"]], "find_i3_files() (in module graphnet.utilities.filesys)": [[93, "graphnet.utilities.filesys.find_i3_files"]], "graphnet.utilities.filesys": [[93, "module-graphnet.utilities.filesys"]], "has_extension() (in module graphnet.utilities.filesys)": [[93, "graphnet.utilities.filesys.has_extension"]], "is_gcd_file() (in module graphnet.utilities.filesys)": [[93, "graphnet.utilities.filesys.is_gcd_file"]], "is_i3_file() (in module graphnet.utilities.filesys)": [[93, "graphnet.utilities.filesys.is_i3_file"]], "graphnet.utilities.imports": [[94, "module-graphnet.utilities.imports"]], "has_icecube_package() (in module graphnet.utilities.imports)": [[94, "graphnet.utilities.imports.has_icecube_package"]], "has_pisa_package() (in module graphnet.utilities.imports)": [[94, "graphnet.utilities.imports.has_pisa_package"]], "has_torch_package() (in module graphnet.utilities.imports)": [[94, "graphnet.utilities.imports.has_torch_package"]], "requires_icecube() (in module graphnet.utilities.imports)": [[94, "graphnet.utilities.imports.requires_icecube"]], "logger (class in graphnet.utilities.logging)": [[95, "graphnet.utilities.logging.Logger"]], "repeatfilter (class in graphnet.utilities.logging)": [[95, "graphnet.utilities.logging.RepeatFilter"]], "critical() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.critical"]], "debug() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.debug"]], "error() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.error"]], "file_handlers (graphnet.utilities.logging.logger property)": [[95, "graphnet.utilities.logging.Logger.file_handlers"]], "filter() (graphnet.utilities.logging.repeatfilter method)": [[95, "graphnet.utilities.logging.RepeatFilter.filter"]], "graphnet.utilities.logging": [[95, "module-graphnet.utilities.logging"]], "handlers (graphnet.utilities.logging.logger property)": [[95, "graphnet.utilities.logging.Logger.handlers"]], "info() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.info"]], "nb_repeats_allowed (graphnet.utilities.logging.repeatfilter attribute)": [[95, "graphnet.utilities.logging.RepeatFilter.nb_repeats_allowed"]], "setlevel() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.setLevel"]], "stream_handlers (graphnet.utilities.logging.logger property)": [[95, "graphnet.utilities.logging.Logger.stream_handlers"]], "warning() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.warning"]], "warning_once() (graphnet.utilities.logging.logger method)": [[95, "graphnet.utilities.logging.Logger.warning_once"]], "eps_like() (in module graphnet.utilities.maths)": [[96, "graphnet.utilities.maths.eps_like"]], "graphnet.utilities.maths": [[96, "module-graphnet.utilities.maths"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["about", "api/graphnet", "api/graphnet.constants", "api/graphnet.data", "api/graphnet.data.constants", "api/graphnet.data.dataconverter", "api/graphnet.data.dataloader", "api/graphnet.data.dataset", "api/graphnet.data.dataset.dataset", "api/graphnet.data.dataset.parquet", "api/graphnet.data.dataset.parquet.parquet_dataset", "api/graphnet.data.dataset.sqlite", "api/graphnet.data.dataset.sqlite.sqlite_dataset", "api/graphnet.data.extractors", "api/graphnet.data.extractors.i3extractor", "api/graphnet.data.extractors.i3featureextractor", "api/graphnet.data.extractors.i3genericextractor", "api/graphnet.data.extractors.i3hybridrecoextractor", "api/graphnet.data.extractors.i3ntmuonlabelsextractor", "api/graphnet.data.extractors.i3particleextractor", "api/graphnet.data.extractors.i3pisaextractor", "api/graphnet.data.extractors.i3quesoextractor", "api/graphnet.data.extractors.i3retroextractor", "api/graphnet.data.extractors.i3splinempeextractor", "api/graphnet.data.extractors.i3truthextractor", "api/graphnet.data.extractors.i3tumextractor", "api/graphnet.data.extractors.utilities", "api/graphnet.data.extractors.utilities.collections", "api/graphnet.data.extractors.utilities.frames", "api/graphnet.data.extractors.utilities.types", "api/graphnet.data.parquet", "api/graphnet.data.parquet.parquet_dataconverter", "api/graphnet.data.pipeline", "api/graphnet.data.sqlite", "api/graphnet.data.sqlite.sqlite_dataconverter", "api/graphnet.data.sqlite.sqlite_utilities", "api/graphnet.data.utilities", "api/graphnet.data.utilities.parquet_to_sqlite", "api/graphnet.data.utilities.random", "api/graphnet.data.utilities.string_selection_resolver", "api/graphnet.deployment", "api/graphnet.deployment.i3modules", "api/graphnet.deployment.i3modules.deployer", "api/graphnet.deployment.i3modules.graphnet_module", "api/graphnet.models", "api/graphnet.models.coarsening", "api/graphnet.models.components", "api/graphnet.models.components.layers", "api/graphnet.models.components.pool", "api/graphnet.models.detector", "api/graphnet.models.detector.detector", "api/graphnet.models.detector.icecube", "api/graphnet.models.detector.prometheus", "api/graphnet.models.gnn", "api/graphnet.models.gnn.convnet", "api/graphnet.models.gnn.dynedge", "api/graphnet.models.gnn.dynedge_jinst", "api/graphnet.models.gnn.dynedge_kaggle_tito", "api/graphnet.models.gnn.gnn", "api/graphnet.models.graphs", "api/graphnet.models.graphs.edges", "api/graphnet.models.graphs.edges.edges", "api/graphnet.models.graphs.graph_definition", "api/graphnet.models.graphs.graphs", "api/graphnet.models.graphs.nodes", "api/graphnet.models.graphs.nodes.nodes", "api/graphnet.models.model", "api/graphnet.models.standard_model", "api/graphnet.models.task", "api/graphnet.models.task.classification", "api/graphnet.models.task.reconstruction", "api/graphnet.models.task.task", "api/graphnet.models.utils", "api/graphnet.pisa", "api/graphnet.pisa.fitting", "api/graphnet.pisa.plotting", "api/graphnet.training", "api/graphnet.training.callbacks", "api/graphnet.training.labels", "api/graphnet.training.loss_functions", "api/graphnet.training.utils", "api/graphnet.training.weight_fitting", "api/graphnet.utilities", "api/graphnet.utilities.argparse", "api/graphnet.utilities.config", "api/graphnet.utilities.config.base_config", "api/graphnet.utilities.config.configurable", "api/graphnet.utilities.config.dataset_config", "api/graphnet.utilities.config.model_config", "api/graphnet.utilities.config.parsing", "api/graphnet.utilities.config.training_config", "api/graphnet.utilities.decorators", "api/graphnet.utilities.filesys", "api/graphnet.utilities.imports", "api/graphnet.utilities.logging", "api/graphnet.utilities.maths", "api/modules", "contribute", "index", "install"], "filenames": ["about.md", "api/graphnet.rst", "api/graphnet.constants.rst", "api/graphnet.data.rst", "api/graphnet.data.constants.rst", "api/graphnet.data.dataconverter.rst", "api/graphnet.data.dataloader.rst", "api/graphnet.data.dataset.rst", "api/graphnet.data.dataset.dataset.rst", "api/graphnet.data.dataset.parquet.rst", "api/graphnet.data.dataset.parquet.parquet_dataset.rst", "api/graphnet.data.dataset.sqlite.rst", "api/graphnet.data.dataset.sqlite.sqlite_dataset.rst", "api/graphnet.data.extractors.rst", "api/graphnet.data.extractors.i3extractor.rst", "api/graphnet.data.extractors.i3featureextractor.rst", "api/graphnet.data.extractors.i3genericextractor.rst", "api/graphnet.data.extractors.i3hybridrecoextractor.rst", "api/graphnet.data.extractors.i3ntmuonlabelsextractor.rst", "api/graphnet.data.extractors.i3particleextractor.rst", "api/graphnet.data.extractors.i3pisaextractor.rst", "api/graphnet.data.extractors.i3quesoextractor.rst", "api/graphnet.data.extractors.i3retroextractor.rst", "api/graphnet.data.extractors.i3splinempeextractor.rst", "api/graphnet.data.extractors.i3truthextractor.rst", "api/graphnet.data.extractors.i3tumextractor.rst", "api/graphnet.data.extractors.utilities.rst", "api/graphnet.data.extractors.utilities.collections.rst", "api/graphnet.data.extractors.utilities.frames.rst", "api/graphnet.data.extractors.utilities.types.rst", "api/graphnet.data.parquet.rst", "api/graphnet.data.parquet.parquet_dataconverter.rst", "api/graphnet.data.pipeline.rst", "api/graphnet.data.sqlite.rst", "api/graphnet.data.sqlite.sqlite_dataconverter.rst", "api/graphnet.data.sqlite.sqlite_utilities.rst", "api/graphnet.data.utilities.rst", "api/graphnet.data.utilities.parquet_to_sqlite.rst", "api/graphnet.data.utilities.random.rst", "api/graphnet.data.utilities.string_selection_resolver.rst", "api/graphnet.deployment.rst", "api/graphnet.deployment.i3modules.rst", "api/graphnet.deployment.i3modules.deployer.rst", "api/graphnet.deployment.i3modules.graphnet_module.rst", "api/graphnet.models.rst", "api/graphnet.models.coarsening.rst", "api/graphnet.models.components.rst", "api/graphnet.models.components.layers.rst", "api/graphnet.models.components.pool.rst", "api/graphnet.models.detector.rst", "api/graphnet.models.detector.detector.rst", "api/graphnet.models.detector.icecube.rst", "api/graphnet.models.detector.prometheus.rst", "api/graphnet.models.gnn.rst", "api/graphnet.models.gnn.convnet.rst", "api/graphnet.models.gnn.dynedge.rst", "api/graphnet.models.gnn.dynedge_jinst.rst", "api/graphnet.models.gnn.dynedge_kaggle_tito.rst", "api/graphnet.models.gnn.gnn.rst", "api/graphnet.models.graphs.rst", "api/graphnet.models.graphs.edges.rst", "api/graphnet.models.graphs.edges.edges.rst", "api/graphnet.models.graphs.graph_definition.rst", "api/graphnet.models.graphs.graphs.rst", "api/graphnet.models.graphs.nodes.rst", "api/graphnet.models.graphs.nodes.nodes.rst", "api/graphnet.models.model.rst", "api/graphnet.models.standard_model.rst", "api/graphnet.models.task.rst", "api/graphnet.models.task.classification.rst", "api/graphnet.models.task.reconstruction.rst", "api/graphnet.models.task.task.rst", "api/graphnet.models.utils.rst", "api/graphnet.pisa.rst", "api/graphnet.pisa.fitting.rst", "api/graphnet.pisa.plotting.rst", "api/graphnet.training.rst", "api/graphnet.training.callbacks.rst", "api/graphnet.training.labels.rst", "api/graphnet.training.loss_functions.rst", "api/graphnet.training.utils.rst", "api/graphnet.training.weight_fitting.rst", "api/graphnet.utilities.rst", "api/graphnet.utilities.argparse.rst", "api/graphnet.utilities.config.rst", "api/graphnet.utilities.config.base_config.rst", "api/graphnet.utilities.config.configurable.rst", "api/graphnet.utilities.config.dataset_config.rst", "api/graphnet.utilities.config.model_config.rst", "api/graphnet.utilities.config.parsing.rst", "api/graphnet.utilities.config.training_config.rst", "api/graphnet.utilities.decorators.rst", "api/graphnet.utilities.filesys.rst", "api/graphnet.utilities.imports.rst", "api/graphnet.utilities.logging.rst", "api/graphnet.utilities.maths.rst", "api/modules.rst", "contribute.md", "index.rst", "install.md"], "titles": ["About", "API", "constants", "data", "constants", "dataconverter", "dataloader", "dataset", "dataset", "parquet", "parquet_dataset", "sqlite", "sqlite_dataset", "extractors", "i3extractor", "i3featureextractor", "i3genericextractor", "i3hybridrecoextractor", "i3ntmuonlabelsextractor", "i3particleextractor", "i3pisaextractor", "i3quesoextractor", "i3retroextractor", "i3splinempeextractor", "i3truthextractor", "i3tumextractor", "utilities", "collections", "frames", "types", "parquet", "parquet_dataconverter", "pipeline", "sqlite", "sqlite_dataconverter", "sqlite_utilities", "utilities", "parquet_to_sqlite", "random", "string_selection_resolver", "deployment", "i3modules", "deployer", "graphnet_module", "models", "coarsening", "components", "layers", "pool", "detector", "detector", "icecube", "prometheus", "gnn", "convnet", "dynedge", "dynedge_jinst", "dynedge_kaggle_tito", "gnn", "graphs", "edges", "edges", "graph_definition", "graphs", "nodes", "nodes", "model", "standard_model", "task", "classification", "reconstruction", "task", "utils", "pisa", "fitting", "plotting", "training", "callbacks", "labels", "loss_functions", "utils", "weight_fitting", "utilities", "argparse", "config", "base_config", "configurable", "dataset_config", "model_config", "parsing", "training_config", "decorators", "filesys", "imports", "logging", "maths", "src", "Contribute", "About", "Install"], "terms": {"graphnet": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99], "i": [0, 1, 8, 10, 12, 14, 16, 27, 28, 29, 34, 35, 38, 39, 43, 45, 48, 54, 55, 61, 65, 69, 70, 71, 72, 75, 77, 78, 79, 81, 83, 88, 89, 92, 93, 94, 97, 98, 99], "an": [0, 5, 29, 31, 32, 34, 39, 43, 62, 79, 92, 94, 97, 98, 99], "open": [0, 97, 98], "sourc": [0, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 43, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98], "python": [0, 1, 5, 13, 14, 16, 27, 29, 97, 98, 99], "framework": [0, 98], "aim": [0, 1, 97, 98], "provid": [0, 1, 8, 10, 12, 43, 44, 79, 97, 98, 99], "high": [0, 98], "qualiti": [0, 98], "user": [0, 44, 77, 98, 99], "friendli": [0, 98], "end": [0, 1, 5, 31, 34, 98], "function": [0, 5, 6, 8, 29, 35, 38, 43, 45, 48, 51, 52, 62, 66, 69, 70, 71, 72, 74, 75, 79, 80, 82, 87, 88, 89, 92, 93, 95, 98], "perform": [0, 45, 47, 48, 53, 55, 57, 67, 69, 70, 71, 98], "reconstruct": [0, 1, 15, 17, 18, 22, 23, 25, 32, 40, 44, 57, 68, 71, 98], "task": [0, 1, 44, 67, 69, 70, 79, 97, 98], "neutrino": [0, 1, 47, 57, 74, 98], "telescop": [0, 1, 98], "us": [0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 19, 24, 26, 27, 31, 32, 34, 35, 36, 37, 39, 40, 43, 44, 47, 48, 50, 55, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 72, 74, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 93, 94, 97, 98, 99], "graph": [0, 1, 6, 8, 10, 12, 43, 44, 47, 48, 50, 60, 61, 62, 64, 65, 72, 78, 80, 97, 98], "neural": [0, 1, 98], "network": [0, 1, 54, 98], "gnn": [0, 1, 32, 44, 54, 55, 56, 57, 62, 67, 98, 99], "make": [0, 5, 81, 87, 88, 97, 98, 99], "fast": [0, 98, 99], "easi": [0, 98], "train": [0, 1, 7, 39, 40, 43, 62, 67, 77, 78, 79, 80, 81, 83, 87, 88, 90, 96, 98, 99], "complex": [0, 44, 98], "model": [0, 1, 40, 43, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 75, 76, 77, 79, 80, 83, 85, 87, 88, 90, 96, 98, 99], "can": [0, 1, 8, 10, 12, 14, 16, 19, 37, 43, 48, 62, 74, 75, 81, 83, 85, 87, 88, 97, 98, 99], "event": [0, 1, 8, 10, 12, 21, 35, 37, 39, 43, 48, 62, 69, 70, 71, 72, 74, 79, 81, 87, 98], "state": [0, 98], "art": [0, 98], "arbitrari": [0, 98], "detector": [0, 1, 24, 44, 51, 52, 62, 63, 65, 67, 98], "configur": [0, 1, 8, 44, 66, 67, 74, 82, 84, 85, 87, 88, 90, 94, 98], "infer": [0, 1, 32, 40, 43, 67, 69, 70, 71, 98, 99], "time": [0, 4, 35, 45, 48, 70, 94, 98, 99], "ar": [0, 1, 4, 5, 8, 10, 12, 16, 29, 31, 34, 37, 39, 43, 48, 55, 57, 59, 60, 61, 62, 63, 64, 69, 74, 79, 81, 87, 88, 97, 98, 99], "order": [0, 27, 45, 72, 98], "magnitud": [0, 98], "faster": [0, 98], "than": [0, 6, 69, 70, 71, 80, 94, 98], "tradit": [0, 98], "techniqu": [0, 98], "common": [0, 1, 79, 85, 87, 88, 90, 91, 93, 98], "ml": [0, 1, 98], "develop": [0, 1, 97, 98, 99], "physicist": [0, 1, 98], "wish": [0, 97, 98], "tool": [0, 1, 98], "research": [0, 98], "By": [0, 37, 69, 70, 71, 98], "unit": [0, 5, 93, 97, 98], "both": [0, 16, 69, 70, 71, 75, 98], "group": [0, 5, 31, 34, 48, 98], "increas": [0, 77, 98], "longev": [0, 98], "usabl": [0, 98], "individu": [0, 5, 8, 10, 12, 48, 55, 72, 98], "code": [0, 24, 35, 62, 87, 88, 98], "contribut": [0, 98, 99], "from": [0, 1, 6, 8, 10, 12, 13, 14, 16, 18, 19, 21, 27, 28, 29, 32, 34, 37, 43, 48, 57, 61, 62, 65, 66, 69, 70, 71, 72, 75, 77, 78, 79, 85, 86, 87, 88, 90, 94, 97, 98, 99], "build": [0, 1, 44, 50, 61, 65, 66, 85, 87, 88, 98], "gener": [0, 5, 8, 10, 12, 16, 43, 59, 60, 62, 63, 64, 69, 79, 98], "reusabl": [0, 98], "softwar": [0, 79, 98], "packag": [0, 1, 38, 89, 92, 93, 97, 98, 99], "base": [0, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 32, 34, 37, 39, 43, 45, 47, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 77, 78, 79, 81, 83, 85, 86, 87, 88, 90, 93, 94, 98], "engin": [0, 98], "best": [0, 97, 98], "practic": [0, 97, 98], "lower": [0, 75, 98], "technic": [0, 98], "threshold": [0, 43, 98], "most": [0, 1, 39, 98, 99], "scientif": [0, 1, 98], "problem": [0, 61, 97, 98], "The": [0, 5, 8, 10, 12, 27, 29, 32, 34, 35, 43, 45, 47, 48, 55, 57, 61, 62, 69, 70, 71, 72, 74, 75, 77, 78, 79, 98], "improv": [0, 1, 83, 98], "classif": [0, 1, 44, 68, 71, 79, 98], "yield": [0, 55, 74, 79, 98], "veri": [0, 39, 98], "accur": [0, 98], "e": [0, 1, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 31, 32, 34, 35, 39, 43, 45, 47, 48, 50, 51, 52, 54, 58, 61, 62, 65, 66, 67, 69, 70, 71, 72, 77, 78, 79, 81, 85, 94, 97, 98, 99], "g": [0, 1, 5, 8, 10, 12, 24, 27, 29, 31, 32, 34, 35, 39, 43, 48, 62, 69, 70, 71, 72, 81, 94, 97, 98, 99], "low": [0, 98], "energi": [0, 4, 32, 69, 70, 71, 81, 98], "observ": [0, 98], "icecub": [0, 1, 15, 28, 29, 44, 47, 49, 57, 93, 98, 99], "here": [0, 97, 98, 99], "implement": [0, 1, 5, 14, 30, 31, 33, 34, 47, 54, 55, 56, 57, 61, 79, 97, 98], "wa": [0, 98], "appli": [0, 8, 10, 12, 14, 48, 54, 55, 56, 57, 58, 67, 89, 98], "oscil": [0, 73, 98], "lead": [0, 98], "signific": [0, 98], "angular": [0, 98], "rang": [0, 69, 70, 71, 98], "relev": [0, 1, 29, 38, 92, 97, 98], "studi": [0, 98], "furthermor": [0, 98], "shown": [0, 98], "could": [0, 97, 98], "muon": [0, 18, 98], "v": [0, 98], "therebi": [0, 1, 87, 88, 98], "effici": [0, 98], "puriti": [0, 98], "sampl": [0, 39, 62, 63, 98], "analysi": [0, 32, 98, 99], "similarli": [0, 29, 98], "ha": [0, 5, 29, 31, 34, 35, 43, 54, 79, 92, 98, 99], "great": [0, 98], "point": [0, 23, 78, 79, 98], "analys": [0, 40, 73, 98], "final": [0, 48, 77, 87, 98], "millisecond": [0, 98], "allow": [0, 40, 44, 48, 77, 85, 90, 98, 99], "whole": [0, 98], "new": [0, 1, 34, 47, 85, 90, 97, 98], "type": [0, 5, 6, 8, 10, 12, 13, 14, 26, 27, 28, 31, 34, 35, 37, 38, 39, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95, 97, 98], "cosmic": [0, 98], "alert": [0, 98], "which": [0, 8, 10, 12, 14, 15, 24, 28, 32, 39, 43, 45, 48, 55, 62, 63, 66, 69, 74, 79, 83, 98, 99], "were": [0, 98], "previous": [0, 98], "unfeas": [0, 98], "possibl": [0, 27, 97, 98], "identifi": [0, 5, 8, 10, 12, 24, 87, 88, 98], "10": [0, 32, 83, 98], "tev": [0, 98], "monitor": [0, 98], "rate": [0, 77, 98], "direct": [0, 57, 69, 70, 71, 76, 78, 98], "real": [0, 98], "thi": [0, 3, 5, 8, 10, 12, 14, 16, 29, 31, 34, 35, 38, 43, 44, 48, 55, 62, 63, 65, 67, 69, 70, 71, 72, 74, 75, 77, 79, 81, 85, 87, 88, 90, 94, 97, 98, 99], "enabl": [0, 3, 98], "first": [0, 77, 85, 90, 97, 98], "ever": [0, 98], "despit": [0, 98], "larg": [0, 79, 98], "background": [0, 98], "origin": [0, 74, 98], "compris": [0, 98], "number": [0, 5, 8, 10, 12, 31, 32, 34, 39, 47, 48, 54, 55, 56, 57, 58, 61, 63, 65, 69, 70, 71, 77, 83, 98], "modul": [0, 3, 8, 29, 32, 40, 43, 44, 47, 49, 53, 59, 60, 62, 63, 64, 66, 68, 73, 76, 82, 84, 87, 88, 89, 90, 93, 98], "necessari": [0, 27, 97, 98], "workflow": [0, 98], "ingest": [0, 1, 3, 49, 98], "raw": [0, 65, 98], "data": [0, 1, 4, 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 45, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 61, 62, 63, 66, 67, 69, 70, 71, 72, 78, 80, 83, 85, 87, 90, 93, 96, 98, 99], "domain": [0, 1, 3, 40, 98], "specif": [0, 1, 3, 5, 8, 10, 12, 15, 29, 30, 31, 33, 34, 35, 40, 45, 48, 49, 50, 51, 52, 53, 58, 61, 62, 65, 67, 68, 69, 70, 71, 79, 97, 98, 99], "format": [0, 1, 3, 5, 8, 27, 31, 34, 75, 87, 97, 98, 99], "deploi": [0, 1, 40, 43, 98], "chain": [0, 1, 40, 44, 67, 98, 99], "illustr": [0, 97, 98], "figur": [0, 75, 98], "level": [0, 8, 10, 12, 24, 35, 45, 48, 94, 98, 99], "overview": [0, 98], "typic": [0, 27, 98], "convert": [0, 1, 3, 5, 27, 31, 34, 37, 98, 99], "industri": [0, 3, 98], "standard": [0, 3, 4, 5, 31, 34, 39, 51, 52, 62, 63, 65, 67, 83, 97, 98], "intermedi": [0, 1, 3, 5, 8, 31, 34, 54, 98, 99], "file": [0, 1, 3, 5, 8, 10, 12, 14, 27, 31, 34, 37, 38, 43, 62, 66, 74, 77, 79, 83, 84, 85, 86, 87, 88, 92, 94, 98, 99], "read": [0, 3, 8, 10, 12, 27, 50, 55, 67, 68, 98, 99], "simpl": [0, 44, 98], "physic": [0, 1, 14, 28, 29, 40, 43, 44, 68, 69, 70, 71, 98], "orient": [0, 44, 98], "compon": [0, 1, 44, 47, 48, 67, 98], "manag": [0, 14, 76, 98], "experi": [0, 1, 76, 98], "log": [0, 1, 70, 76, 77, 79, 82, 98, 99], "deploy": [0, 1, 41, 43, 62, 96, 98], "modular": [0, 44, 98], "subclass": [0, 44, 98], "torch": [0, 8, 10, 12, 44, 47, 62, 63, 66, 93, 98, 99], "nn": [0, 44, 47, 61, 63, 98], "mean": [0, 5, 8, 10, 12, 31, 34, 44, 55, 57, 79, 88, 98], "onli": [0, 1, 8, 10, 12, 44, 48, 69, 70, 71, 74, 81, 88, 93, 98, 99], "need": [0, 27, 44, 66, 79, 98, 99], "import": [0, 1, 35, 44, 82, 98], "few": [0, 44, 97, 98], "exist": [0, 8, 10, 12, 32, 34, 35, 44, 78, 87, 98], "purpos": [0, 44, 79, 98], "built": [0, 44, 98], "them": [0, 1, 27, 44, 55, 69, 70, 71, 74, 98, 99], "togeth": [0, 44, 61, 67, 98], "form": [0, 44, 69, 85, 90, 98], "complet": [0, 44, 67, 98], "extend": [0, 1, 98], "suit": [0, 98], "through": [0, 79, 98], "layer": [0, 44, 46, 48, 54, 55, 56, 57, 69, 70, 71, 98], "connect": [0, 61, 62, 65, 79, 98], "etc": [0, 79, 94, 98], "optimis": [0, 1, 98], "differ": [0, 8, 10, 12, 14, 63, 67, 97, 98, 99], "track": [0, 14, 18, 70, 97, 98], "These": [0, 62, 97, 98], "prepar": [0, 79, 98], "satisfi": [0, 98], "o": [0, 69, 70, 71, 98], "load": [0, 6, 8, 38, 66, 85, 87, 98], "requir": [0, 20, 35, 69, 79, 87, 88, 90, 98, 99], "when": [0, 5, 8, 10, 12, 27, 31, 34, 35, 43, 47, 55, 57, 78, 94, 97, 98, 99], "batch": [0, 6, 32, 45, 47, 48, 67, 72, 80, 83, 98], "do": [0, 43, 79, 87, 88, 97, 98, 99], "predict": [0, 19, 23, 25, 32, 43, 54, 66, 67, 69, 70, 71, 79, 80, 98], "either": [0, 8, 10, 12, 79, 98, 99], "contain": [0, 5, 8, 10, 12, 27, 28, 31, 32, 34, 43, 55, 59, 60, 62, 63, 64, 66, 69, 70, 71, 79, 81, 83, 98, 99], "imag": [0, 1, 97, 98, 99], "portabl": [0, 98], "depend": [0, 98, 99], "free": [0, 79, 98], "split": [0, 45, 98], "up": [0, 5, 31, 34, 43, 97, 98, 99], "interfac": [0, 73, 87, 88, 98, 99], "block": [0, 1, 98], "pre": [0, 50, 62, 78, 97, 98], "directli": [0, 14, 98], "while": [0, 16, 77, 98], "continu": [0, 79, 98], "expand": [0, 98], "": [0, 5, 6, 8, 10, 12, 14, 27, 34, 37, 54, 55, 67, 69, 70, 71, 72, 77, 81, 83, 87, 88, 94, 95, 98, 99], "capabl": [0, 98], "project": [0, 97, 98], "receiv": [0, 98], "fund": [0, 98], "european": [0, 98], "union": [0, 6, 8, 10, 12, 16, 27, 29, 43, 45, 47, 48, 55, 62, 63, 66, 67, 69, 70, 71, 87, 90, 92, 98], "horizon": [0, 98], "2020": [0, 98], "innov": [0, 98], "programm": [0, 98], "under": [0, 98], "mari": [0, 98], "sk\u0142odowska": [0, 98], "curi": [0, 98], "grant": [0, 79, 98], "agreement": [0, 97, 98], "No": [0, 98], "890778": [0, 98], "work": [0, 4, 28, 97, 98, 99], "rasmu": [0, 56, 98], "\u00f8rs\u00f8e": [0, 98], "partli": [0, 98], "punch4nfdi": [0, 98], "consortium": [0, 98], "support": [0, 29, 97, 98, 99], "dfg": [0, 98], "nfdi": [0, 98], "39": [0, 98, 99], "1": [0, 5, 8, 27, 31, 34, 39, 45, 48, 55, 57, 61, 63, 69, 70, 71, 72, 77, 79, 81, 87, 98, 99], "germani": [0, 98], "conveni": [1, 97, 99], "collabor": 1, "solv": [1, 97], "It": [1, 27, 35, 43, 97], "leverag": 1, "advanc": [1, 48], "machin": [1, 99], "learn": [1, 43, 77, 99], "without": [1, 61, 65, 74, 79, 99], "have": [1, 5, 16, 31, 34, 35, 39, 48, 62, 69, 70, 71, 97, 99], "expert": 1, "themselv": [1, 87, 88], "acceler": 1, "area": 1, "phyic": 1, "design": 1, "principl": 1, "all": [1, 5, 8, 10, 12, 14, 16, 31, 34, 35, 43, 47, 48, 50, 55, 58, 62, 66, 71, 79, 85, 86, 87, 88, 89, 90, 94, 97, 99], "streamlin": 1, "process": [1, 5, 14, 43, 50, 55, 97, 99], "transform": [1, 48, 69, 70, 71, 81], "extens": [1, 92], "basic": 1, "across": [1, 2, 8, 10, 12, 29, 36, 48, 67, 79, 82, 83, 84, 94], "variou": 1, "easili": 1, "architectur": [1, 54, 55, 56, 57, 67], "main": [1, 53, 62, 67, 97, 99], "featur": [1, 3, 4, 5, 8, 10, 12, 15, 32, 43, 47, 48, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 69, 72, 80, 87, 97], "i3": [1, 5, 14, 28, 29, 31, 34, 38, 43, 92, 99], "more": [1, 8, 35, 38, 85, 87, 88, 90, 94], "index": [1, 5, 8, 10, 12, 29, 35, 48, 77], "sqlite": [1, 3, 7, 12, 32, 34, 35, 37, 99], "suitabl": 1, "plug": 1, "plai": 1, "abstract": [1, 5, 8, 50, 58, 62, 66, 71, 86], "awai": 1, "detail": [1, 99], "expos": 1, "physicst": 1, "what": [1, 62, 97], "i3modul": [1, 40, 43], "includ": [1, 66, 67, 74, 79, 85, 97], "docker": 1, "run": [1, 37], "containeris": 1, "fashion": 1, "subpackag": [1, 3, 7, 13, 40, 44, 59, 82], "dataset": [1, 3, 6, 9, 10, 11, 12, 18, 39, 62, 83, 87], "extractor": [1, 3, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34, 43], "parquet": [1, 3, 7, 10, 31, 37, 99], "util": [1, 3, 13, 27, 28, 29, 35, 37, 38, 39, 44, 76, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96], "constant": [1, 3, 96], "dataconvert": [1, 3, 31, 34], "dataload": [1, 3, 32, 62, 66, 67, 80, 90], "pipelin": [1, 3], "coarsen": [1, 44, 48], "standard_model": [1, 44], "pisa": [1, 20, 32, 74, 75, 93, 96, 99], "fit": [1, 66, 73, 75, 79, 81, 90], "plot": [1, 73], "callback": [1, 66, 76], "label": [1, 8, 18, 21, 54, 62, 67, 71, 75, 76, 80], "loss_funct": [1, 69, 70, 71, 76], "weight_fit": [1, 76], "config": [1, 6, 39, 74, 79, 82, 83, 85, 86, 87, 88, 89, 90], "argpars": [1, 82], "decor": [1, 5, 82, 93], "filesi": [1, 82], "math": [1, 82], "submodul": [1, 3, 7, 9, 11, 13, 26, 30, 33, 36, 41, 44, 46, 49, 53, 59, 60, 64, 68, 73, 76, 82, 84, 89], "global": [2, 4, 55, 57, 66], "i3extractor": [3, 5, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34], "i3featureextractor": [3, 4, 13, 34, 43], "i3genericextractor": [3, 13, 34], "i3hybridrecoextractor": [3, 13], "i3ntmuonlabelsextractor": [3, 13], "i3particleextractor": [3, 13], "i3pisaextractor": [3, 13], "i3quesoextractor": [3, 13], "i3retroextractor": [3, 13], "i3splinempeextractor": [3, 13], "i3truthextractor": [3, 4, 13], "i3tumextractor": [3, 13], "parquet_dataconvert": [3, 30], "sqlite_dataconvert": [3, 33], "sqlite_util": [3, 33], "parquet_to_sqlit": [3, 36], "random": [3, 8, 10, 12, 36, 39, 87], "string_selection_resolv": [3, 36], "truth": [3, 4, 8, 10, 12, 15, 24, 32, 35, 62, 80, 81, 87], "fileset": [3, 5], "init_global_index": [3, 5], "cache_output_fil": [3, 5], "collate_fn": [3, 6, 76, 80], "do_shuffl": [3, 6], "insqlitepipelin": [3, 32], "class": [4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 32, 33, 34, 37, 39, 43, 45, 47, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 77, 78, 79, 81, 83, 85, 86, 87, 88, 89, 90, 94, 97], "object": [4, 5, 8, 10, 12, 14, 16, 27, 29, 43, 45, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 74, 79, 83, 94], "namespac": [4, 66, 87, 88], "name": [4, 5, 6, 8, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31, 32, 34, 35, 37, 43, 62, 63, 65, 69, 70, 71, 74, 78, 81, 83, 85, 87, 88, 89, 90, 94, 97, 99], "icecube86": [4, 49, 51], "dom_x": [4, 43], "dom_i": [4, 43], "dom_z": [4, 43], "dom_tim": 4, "charg": [4, 43, 79], "rde": 4, "pmt_area": 4, "deepcor": [4, 15, 51], "upgrad": [4, 15, 51, 99], "string": [4, 5, 8, 10, 12, 27, 31, 34, 39, 48, 85], "pmt_number": 4, "dom_numb": 4, "pmt_dir_x": 4, "pmt_dir_i": 4, "pmt_dir_z": 4, "dom_typ": 4, "prometheu": [4, 44, 49], "sensor_pos_x": 4, "sensor_pos_i": 4, "sensor_pos_z": 4, "t": [4, 29, 35, 75, 77, 79, 99], "kaggl": [4, 47, 51, 57], "x": [4, 5, 24, 31, 34, 47, 48, 65, 66, 71, 72, 75, 79, 81], "y": [4, 24, 72, 75, 99], "z": [4, 5, 24, 31, 34, 72, 99], "auxiliari": 4, "energy_track": 4, "position_x": 4, "position_i": 4, "position_z": 4, "azimuth": [4, 70, 78], "zenith": [4, 70, 78], "pid": [4, 39, 87], "elast": 4, "sim_typ": 4, "interaction_typ": 4, "interaction_tim": [4, 70], "inelast": [4, 70], "stopped_muon": 4, "injection_energi": 4, "injection_typ": 4, "injection_interaction_typ": 4, "injection_zenith": 4, "injection_azimuth": 4, "injection_bjorkenx": 4, "injection_bjorkeni": 4, "injection_position_x": 4, "injection_position_i": 4, "injection_position_z": 4, "injection_column_depth": 4, "primary_lepton_1_typ": 4, "primary_hadron_1_typ": 4, "primary_lepton_1_position_x": 4, "primary_lepton_1_position_i": 4, "primary_lepton_1_position_z": 4, "primary_hadron_1_position_x": 4, "primary_hadron_1_position_i": 4, "primary_hadron_1_position_z": 4, "primary_lepton_1_direction_theta": 4, "primary_lepton_1_direction_phi": 4, "primary_hadron_1_direction_theta": 4, "primary_hadron_1_direction_phi": 4, "primary_lepton_1_energi": 4, "primary_hadron_1_energi": 4, "total_energi": 4, "i3_fil": [5, 14], "str": [5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 43, 47, 48, 50, 51, 52, 55, 57, 62, 63, 65, 66, 67, 69, 70, 71, 74, 78, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 94], "gcd_file": [5, 14, 43], "paramet": [5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 43, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95], "output_fil": [5, 31, 34], "global_index": 5, "avail": [5, 16, 32, 93], "pool": [5, 44, 45, 46, 55, 57], "worker": [5, 31, 32, 34, 38, 83, 94], "return": [5, 6, 8, 10, 12, 14, 27, 28, 29, 31, 34, 35, 37, 38, 39, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 75, 77, 78, 79, 80, 81, 83, 85, 86, 87, 88, 89, 92, 93, 94, 95], "none": [5, 6, 8, 10, 12, 14, 16, 24, 28, 29, 31, 32, 34, 35, 37, 39, 43, 47, 48, 55, 57, 62, 63, 65, 66, 67, 69, 70, 71, 74, 77, 79, 80, 81, 83, 85, 86, 87, 89, 92, 94], "synchron": 5, "list": [5, 6, 8, 10, 12, 14, 16, 24, 27, 29, 31, 32, 34, 35, 37, 38, 39, 43, 45, 47, 48, 50, 55, 57, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 75, 77, 80, 81, 87, 89, 90, 92, 94], "process_method": 5, "cach": 5, "output": [5, 31, 34, 37, 54, 55, 56, 58, 65, 66, 67, 74, 81, 87, 88, 99], "typevar": 5, "f": [5, 48], "bound": [5, 75], "callabl": [5, 6, 8, 29, 47, 48, 50, 51, 52, 62, 69, 70, 71, 80, 81, 85, 87, 88, 89, 93], "ani": [5, 6, 8, 10, 12, 27, 28, 29, 31, 34, 43, 45, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 75, 79, 81, 83, 85, 86, 87, 88, 89, 90, 94, 99], "outdir": [5, 31, 32, 34, 37, 74], "gcd_rescu": [5, 31, 34, 92], "nb_files_to_batch": [5, 31, 34], "sequential_batch_pattern": [5, 31, 34], "input_file_batch_pattern": [5, 31, 34], "index_column": [5, 8, 10, 12, 31, 34, 35, 39, 74, 80, 81, 87], "icetray_verbos": [5, 31, 34], "abc": [5, 8, 14, 32, 66, 78, 81, 86, 87, 88], "logger": [5, 8, 14, 32, 37, 39, 61, 66, 78, 81, 82, 94, 99], "construct": [5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 37, 39, 45, 46, 47, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 71, 74, 77, 78, 79, 80, 81, 83, 86, 87, 88, 94], "regular": [5, 29, 31, 34], "express": [5, 31, 34, 66, 79], "accord": [5, 31, 34, 45, 48, 61, 62, 63], "match": [5, 31, 34, 81, 92, 95], "certain": [5, 31, 34, 37, 74], "pattern": [5, 31, 34], "wildcard": [5, 31, 34], "same": [5, 29, 31, 34, 35, 45, 48, 69, 72, 77, 89, 94], "input": [5, 8, 10, 12, 31, 32, 34, 43, 51, 54, 55, 56, 57, 58, 62, 65, 69, 71, 72, 85, 90], "replac": [5, 31, 34, 85, 87, 88, 90], "period": [5, 31, 34], "special": [5, 16, 31, 34, 43, 72], "interpret": [5, 31, 34, 69], "liter": [5, 31, 34], "charact": [5, 31, 34], "regex": [5, 31, 34], "For": [5, 29, 31, 34, 77], "instanc": [5, 8, 14, 24, 29, 31, 34, 43, 62, 66, 74, 78, 80, 86, 88, 99], "A": [5, 8, 31, 32, 34, 43, 48, 63, 72, 74, 79, 81, 99], "_": [5, 31, 34], "0": [5, 8, 10, 12, 31, 34, 39, 43, 45, 48, 54, 55, 57, 61, 63, 72, 74, 75, 79, 87], "9": [5, 31, 34], "5": [5, 8, 10, 12, 31, 34, 39, 83, 99], "zst": [5, 31, 34], "find": [5, 31, 34, 92], "whose": [5, 31, 34, 43], "one": [5, 8, 31, 34, 35, 43, 48, 66, 87, 88, 92, 97, 99], "capit": [5, 31, 34], "letter": [5, 31, 34], "follow": [5, 31, 34, 55, 67, 79, 81, 97, 99], "underscor": [5, 31, 34], "five": [5, 31, 34], "upgrade_genie_step4_141020_a_000000": [5, 31, 34], "upgrade_genie_step4_141020_a_000001": [5, 31, 34], "upgrade_genie_step4_141020_a_000008": [5, 31, 34], "upgrade_genie_step4_141020_a_000009": [5, 31, 34], "would": [5, 31, 34, 97], "upgrade_genie_step4_141020_a_00000x": [5, 31, 34], "suffix": [5, 31, 34], "upgrade_genie_step4_141020_a_000010": [5, 31, 34], "separ": [5, 27, 31, 34, 77, 99], "upgrade_genie_step4_141020_a_00001x": [5, 31, 34], "int": [5, 6, 8, 10, 12, 18, 21, 31, 32, 34, 39, 47, 48, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 77, 79, 80, 81, 83, 87, 90, 94], "properti": [5, 8, 14, 19, 29, 48, 58, 65, 67, 71, 78, 86, 94], "file_suffix": [5, 31, 34], "execut": [5, 35], "method": [5, 8, 10, 12, 14, 26, 27, 28, 29, 31, 34, 43, 47, 48, 70, 79, 81], "set": [5, 16, 69, 70, 71, 97], "inherit": [5, 14, 29, 50, 65, 79, 94], "path": [5, 8, 10, 12, 35, 38, 43, 62, 66, 74, 75, 83, 85, 86, 87, 92, 99], "correspond": [5, 8, 10, 12, 27, 29, 34, 38, 55, 62, 81, 92, 99], "gcd": [5, 14, 28, 38, 43, 92], "save_data": [5, 31, 34], "save": [5, 14, 27, 31, 34, 35, 66, 74, 79, 80, 81, 85, 86, 87, 88, 99], "ordereddict": [5, 31, 34], "extract": [5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 34, 37, 38, 43, 69, 70, 71], "merge_fil": [5, 31, 34], "input_fil": [5, 31, 34], "merg": [5, 31, 34, 79, 99], "result": [5, 31, 34, 48, 77, 79, 80, 89, 99], "option": [5, 8, 10, 12, 24, 31, 32, 34, 43, 47, 48, 55, 57, 62, 63, 66, 69, 70, 71, 74, 75, 81, 82, 83, 85, 87, 92, 99], "default": [5, 8, 10, 12, 16, 24, 27, 31, 32, 34, 35, 37, 43, 47, 48, 54, 55, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 74, 75, 77, 78, 79, 81, 83, 85, 87, 92], "current": [5, 31, 34, 39, 77, 97, 99], "rais": [5, 8, 16, 31, 66, 85, 90], "notimplementederror": [5, 31], "If": [5, 8, 16, 31, 32, 34, 66, 69, 70, 71, 74, 77, 81, 97, 99], "been": [5, 31, 43, 79, 97], "backend": [5, 9, 11, 31, 34], "question": 5, "get_map_funct": 5, "nb_file": 5, "map": [5, 8, 10, 12, 15, 16, 34, 35, 43, 51, 52, 62, 63, 85, 87, 88, 90], "pure": [5, 13, 14, 16, 29], "multiprocess": [5, 99], "tupl": [5, 8, 10, 12, 28, 29, 47, 55, 57, 69, 70, 71, 72, 74, 75, 80, 83], "remov": [6, 80, 83], "less": [6, 80], "two": [6, 55, 74, 77, 79, 80], "dom": [6, 8, 10, 12, 45, 48, 80], "hit": [6, 80], "should": [6, 8, 10, 12, 14, 27, 39, 47, 48, 62, 63, 79, 80, 85, 87, 88, 90, 97, 99], "occur": [6, 80], "product": [6, 80], "selection_nam": 6, "check": [6, 28, 29, 34, 35, 83, 92, 93, 97, 99], "whether": [6, 28, 29, 34, 35, 55, 66, 79, 89, 92, 93], "shuffl": [6, 38, 80], "select": [6, 8, 10, 12, 21, 39, 80, 81, 87, 97], "bool": [6, 28, 29, 34, 35, 39, 43, 55, 66, 67, 74, 77, 79, 80, 81, 83, 89, 92, 93, 94], "batch_siz": [6, 32, 72, 80], "num_work": [6, 80], "persistent_work": [6, 80], "prefetch_factor": 6, "kwarg": [6, 8, 10, 12, 45, 47, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 79, 81, 85, 87, 88, 94], "t_co": 6, "classmethod": [6, 8, 66, 79, 85, 86], "from_dataset_config": 6, "datasetconfig": [6, 8, 39, 84, 87], "dict": [6, 8, 16, 27, 29, 32, 34, 50, 51, 52, 62, 63, 66, 67, 74, 75, 77, 80, 83, 85, 87, 88, 89, 90], "parquet_dataset": [7, 9], "sqlite_dataset": [7, 11], "columnmissingexcept": [7, 8], "load_modul": [7, 8, 66], "parse_graph_definit": [7, 8], "ensembledataset": [7, 8, 87], "except": 8, "indic": [8, 39, 48, 77, 83, 97], "miss": 8, "column": [8, 10, 12, 35, 43, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 81], "class_nam": [8, 88, 94], "cfg": 8, "graphdefinit": [8, 10, 12, 43, 59, 60, 62, 63, 64, 80, 97], "arg": [8, 10, 12, 45, 50, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 67, 69, 70, 71, 79, 83, 85, 90, 94], "pulsemap": [8, 10, 12, 15, 34, 43, 80, 87], "puls": [8, 10, 12, 15, 16, 28, 29, 34, 35, 43, 45, 48, 65, 72], "seri": [8, 10, 12, 15, 16, 28, 29, 35, 43], "node": [8, 10, 12, 44, 45, 48, 54, 55, 57, 59, 60, 61, 62, 63, 69, 70, 71, 72], "multipl": [8, 10, 12, 14, 77, 87, 94], "store": [8, 10, 12, 14, 32, 35, 74, 78], "ad": [8, 10, 12, 15, 55, 62, 74], "attribut": [8, 10, 12, 45, 69, 70, 71], "node_truth": [8, 10, 12, 80, 87], "event_no": [8, 10, 12, 35, 39, 81, 87], "uniqu": [8, 10, 12, 35, 37, 87], "indici": [8, 10, 12, 28, 39, 79], "tabl": [8, 10, 12, 14, 32, 34, 35, 62, 74, 81], "truth_tabl": [8, 10, 12, 74, 80, 81, 87], "inform": [8, 10, 12, 14, 16, 24, 75], "node_truth_t": [8, 10, 12, 80, 87], "string_select": [8, 10, 12, 80, 87], "subset": [8, 10, 12, 47, 55, 57], "given": [8, 10, 12, 34, 48, 61, 69, 70, 71, 81, 83], "queri": [8, 10, 12, 35, 39], "pass": [8, 10, 12, 47, 54, 55, 56, 57, 58, 62, 66, 67, 69, 70, 71, 79, 81, 97], "dtype": [8, 10, 12, 62, 63, 95], "float32": [8, 10, 12, 62, 63], "tensor": [8, 10, 12, 45, 47, 48, 50, 54, 55, 56, 57, 58, 65, 66, 67, 69, 70, 71, 72, 79, 95], "loss_weight_t": [8, 10, 12, 80, 87], "per": [8, 10, 12, 16, 35, 48, 69, 70, 71, 79, 81], "loss": [8, 10, 12, 62, 67, 69, 70, 71, 77, 79, 83], "weight": [8, 10, 12, 43, 62, 69, 70, 71, 74, 79, 81, 88, 99], "loss_weight_column": [8, 10, 12, 62, 80, 87], "also": [8, 10, 12, 39, 87], "assign": [8, 10, 12, 37, 45, 48, 97], "loss_weight_default_valu": [8, 10, 12, 62, 87], "float": [8, 10, 12, 43, 54, 61, 62, 63, 66, 74, 75, 77, 79, 80, 87], "note": [8, 10, 12, 75, 88], "valu": [8, 10, 12, 24, 27, 34, 35, 48, 62, 63, 75, 78, 79, 83, 85], "specifi": [8, 10, 12, 39, 45, 69, 70, 71, 75, 77, 99], "case": [8, 10, 12, 16, 43, 48, 69, 70, 71, 99], "That": [8, 10, 12, 55, 70, 78], "ignor": [8, 10, 12, 29], "seed": [8, 10, 12, 39, 62, 63, 80, 87], "resolv": [8, 10, 12, 39], "10000": [8, 10, 12, 39], "20": [8, 10, 12, 39, 94], "graph_definit": [8, 10, 12, 43, 44, 59, 80, 87], "defin": [8, 10, 12, 39, 43, 48, 59, 60, 61, 62, 64, 85, 87, 88, 90], "represent": [8, 10, 12, 29, 48, 63], "from_config": [8, 66, 86, 87, 88], "concaten": [8, 27, 55], "query_t": [8, 10, 12], "sequential_index": [8, 10, 12], "some": [8, 10, 12, 62], "out": [8, 55, 67, 68, 79, 94, 97, 99], "sequenti": 8, "len": 8, "self": [8, 62, 74, 85, 90], "_may_": 8, "_indic": 8, "entir": [8, 66], "impos": 8, "befor": [8, 55, 69, 70, 71, 77], "scalar": [8, 72, 79], "length": [8, 29, 77], "element": [8, 27, 29, 67, 72, 89], "present": [8, 83, 92, 93], "add_label": 8, "fn": [8, 29, 85, 89], "kei": [8, 16, 27, 28, 29, 34, 35, 48, 78, 87, 88], "add": [8, 55, 83, 97, 99], "custom": [8, 62, 77], "concatdataset": 8, "singl": [8, 14, 48, 55, 78, 87, 88], "collect": [8, 13, 14, 26, 79, 95], "iter": 8, "parquetdataset": [9, 10], "pytorch": [10, 12, 77, 99], "sqlitedataset": [11, 12], "databas": [12, 32, 34, 35, 37, 74, 81, 99], "i3fram": [13, 14, 16, 28, 29, 43], "frame": [13, 14, 16, 26, 29, 34, 43], "i3extractorcollect": [13, 14], "i3featureextractoricecube86": [13, 15], "i3featureextractoricecubedeepcor": [13, 15], "i3featureextractoricecubeupgrad": [13, 15], "i3pulsenoisetruthflagicecubeupgrad": [13, 15], "i3galacticplanehybridrecoextractor": [13, 17], "i3ntmuonlabelextractor": [13, 18], "i3splinempeicextractor": [13, 23], "__call__": 14, "icetrai": [14, 28, 29, 43, 93], "keep": 14, "proven": 14, "set_fil": 14, "refer": [14, 87], "being": [14, 43, 69, 70, 71], "get": [14, 28, 77, 80, 99], "treat": 14, "86": [15, 51], "nois": [15, 28, 43], "flag": [15, 43], "exclude_kei": 16, "dynam": [16, 47, 55, 56, 57], "pars": [16, 75, 82, 83, 84, 85, 90], "call": [16, 29, 34, 48, 74, 81, 94], "tri": [16, 29], "automat": [16, 79, 97], "cast": [16, 29], "done": [16, 48, 94, 97], "recurs": [16, 29, 89, 92], "each": [16, 27, 29, 35, 37, 38, 45, 48, 51, 52, 55, 57, 61, 62, 63, 65, 66, 69, 70, 71, 72, 74, 75, 77, 92], "look": [16, 99], "member": [16, 29, 87, 88, 94], "variabl": [16, 29, 55, 72, 81, 94], "signatur": [16, 29], "similar": [16, 29, 99], "handl": [16, 79, 83, 94], "hand": 16, "mc": [16, 34, 35], "tree": [16, 34], "trigger": 16, "exclud": [16, 37, 99], "valueerror": [16, 66], "hybrid": 17, "galatict": 17, "plane": [17, 79], "tum": [18, 25], "dnn": [18, 25], "padding_valu": [18, 21], "northeren": 18, "i3particl": 19, "other": [19, 35, 61, 79, 97], "algorithm": 19, "comparison": [19, 79], "quantiti": [20, 69, 70, 71, 72], "queso": 21, "retro": [22, 32], "splinemp": 23, "border": 24, "mctree": [24, 28], "ndarrai": [24, 62, 81], "arrai": [24, 27], "boundari": 24, "volum": 24, "coordin": [24, 72], "particl": [24, 35, 78], "start": [24, 97, 99], "stop": [24, 83], "within": [24, 45, 47, 48, 55, 61], "hard": 24, "i3mctre": 24, "flatten_nested_dictionari": [26, 27], "serialis": [26, 27], "transpose_list_of_dict": [26, 27], "frame_is_montecarlo": [26, 28], "frame_is_nois": [26, 28], "get_om_keys_and_pulseseri": [26, 28], "is_boost_enum": [26, 29], "is_boost_class": [26, 29], "is_icecube_class": [26, 29], "is_typ": [26, 29], "is_method": [26, 29], "break_cyclic_recurs": [26, 29], "get_member_vari": [26, 29], "cast_object_to_pure_python": [26, 29], "cast_pulse_series_to_pure_python": [26, 29], "manipul": [27, 59, 60, 64], "obj": [27, 29, 89], "parent_kei": 27, "flatten": 27, "nest": 27, "dictionari": [27, 28, 29, 32, 34, 62, 63, 74, 75, 85, 87, 88, 90], "non": [27, 29, 34, 35, 79], "exampl": [27, 39, 45, 48, 79, 87, 88, 99], "d": [27, 62, 65, 97], "b": [27, 45, 48], "c": [27, 48, 79, 99], "2": [27, 48, 55, 57, 61, 63, 70, 72, 74, 75, 79, 87, 99], "a__b": 27, "applic": 27, "combin": [27, 87], "parent": 27, "__": [27, 29], "nester": 27, "json": [27, 87], "therefor": 27, "we": [27, 29, 39, 97, 99], "outer": 27, "abl": [27, 99], "de": 27, "transpos": 27, "mont": 28, "carlo": 28, "simul": [28, 43], "pulseseri": 28, "calibr": [28, 29], "gcd_dict": [28, 29], "p": [28, 34, 79], "om": [28, 29], "dataclass": 28, "i3calibr": 28, "indicesfor": 28, "boost": 29, "enum": 29, "ensur": [29, 38, 79, 94, 97, 99], "isn": 29, "return_discard": 29, "valid": [29, 39, 67, 69, 70, 71, 79, 83, 85, 90], "mangl": 29, "take": [29, 34, 48, 97], "mainli": 29, "cannot": [29, 85, 90], "trivial": [29, 71], "doe": [29, 88], "try": 29, "equival": 29, "its": 29, "like": [29, 48, 72, 79, 95, 97], "otherwis": [29, 79], "itself": [29, 69, 70, 71], "deem": 29, "wai": [29, 39, 97, 99], "optic": 29, "found": [29, 79], "parquetdataconvert": [30, 31], "module_dict": 32, "devic": 32, "retro_table_nam": 32, "n_worker": [32, 74], "pipeline_nam": 32, "creat": [32, 34, 35, 62, 85, 86, 90, 97, 99], "initialis": [32, 88], "gnn_module_for_energy_regress": 32, "modulelist": 32, "comput": [32, 67, 69, 70, 71, 72, 79], "directori": [32, 37, 74, 92], "100": [32, 99], "size": [32, 47, 48, 55, 56, 57, 83], "alreadi": [32, 35, 99], "error": [32, 79, 94, 97], "prompt": 32, "avoid": [32, 94, 97], "overwrit": [32, 77], "sqlitedataconvert": [33, 34, 99], "construct_datafram": [33, 34], "is_pulse_map": [33, 34], "is_mc_tre": [33, 34], "database_exist": [33, 35], "database_table_exist": [33, 35], "run_sql_cod": [33, 35], "save_to_sql": [33, 35], "attach_index": [33, 35], "create_t": [33, 35], "create_table_and_save_to_sql": [33, 35], "db": [34, 80], "max_table_s": 34, "maximum": [34, 48, 69, 70, 71, 83], "row": [34, 35], "exce": 34, "limit": [34, 79], "any_pulsemap_is_non_empti": 34, "data_dict": 34, "empti": [34, 43], "retriev": 34, "splitinicepuls": 34, "least": [34, 97, 99], "true": [34, 35, 43, 74, 77, 79, 81, 87, 88, 90], "becaus": [34, 38], "instead": [34, 79, 85, 90], "alwai": 34, "panda": [34, 39, 81], "datafram": [34, 35, 39, 66, 67, 74, 80, 81], "table_nam": [34, 35], "database_path": [35, 74, 81], "df": 35, "must": [35, 45, 77, 81, 97], "attach": 35, "default_typ": 35, "null": 35, "integer_primary_kei": 35, "NOT": [35, 79], "integ": [35, 55, 56, 79], "primari": 35, "Such": 35, "appropri": [35, 69, 70, 71], "expect": [35, 39, 43, 65], "doesn": 35, "parquettosqliteconvert": [36, 37], "pairwise_shuffl": [36, 38], "stringselectionresolv": [36, 39], "parquet_path": 37, "mc_truth_tabl": 37, "excluded_field": 37, "id": 37, "everi": [37, 99], "field": [37, 75, 78, 85, 87, 88, 90], "One": [37, 75], "choos": 37, "argument": [37, 81, 83, 85, 87, 88, 90], "exclude_field": 37, "database_nam": 37, "convers": [37, 99], "rng": 38, "relat": [38, 92], "i3_list": [38, 92], "gcd_list": [38, 92], "correpond": 38, "handi": 38, "even": 38, "files_list": 38, "gcd_shuffl": 38, "i3_shuffl": 38, "use_cach": 39, "flexibl": 39, "below": [39, 75, 81, 97, 99], "show": [39, 77], "involv": 39, "cover": 39, "yml": [39, 83, 87, 88], "test": [39, 69, 70, 71, 80, 87, 93, 97], "50000": [39, 87], "ab": [39, 79, 87], "12": [39, 87], "14": [39, 87], "16": [39, 87], "13": [39, 99], "compat": 39, "syntax": [39, 79], "mai": [39, 65, 99], "fix": 39, "randomli": [39, 62, 63, 88], "graphnet_modul": [40, 41], "graphneti3modul": [41, 43], "i3inferencemodul": [41, 43], "i3pulsecleanermodul": [41, 43], "pulsemap_extractor": 43, "produc": [43, 78, 81], "write": [43, 99], "constructor": 43, "knngraph": [43, 59, 63], "associ": [43, 62, 70, 79], "model_config": [43, 82, 84, 85, 87, 90], "state_dict": [43, 66], "model_nam": [43, 74], "prediction_column": [43, 66, 67, 80], "pulsmap": 43, "modelconfig": [43, 66, 84, 87, 88], "summar": 43, "Will": [43, 61], "help": [43, 83, 97], "entri": [43, 55, 75, 83], "dynedg": [43, 44, 53, 56, 57], "energy_reco": 43, "discard_empty_ev": 43, "clean": [43, 97, 99], "assum": [43, 50, 71, 72], "7": [43, 48, 74], "consid": [43, 99], "posit": [43, 48, 70], "signal": 43, "els": 43, "fals": [43, 55, 66, 74, 77, 79, 81, 87], "elimin": 43, "speed": 43, "especi": 43, "sinc": [43, 79], "further": 43, "calcul": [43, 61, 63, 67, 72, 78, 79], "convnet": [44, 53], "dynedge_jinst": [44, 53], "dynedge_kaggle_tito": [44, 53], "edg": [44, 47, 48, 55, 56, 57, 59, 62, 63, 64, 65, 72], "unbatch_edge_index": [44, 45], "attributecoarsen": [44, 45], "domcoarsen": [44, 45], "customdomcoarsen": [44, 45], "domandtimewindowcoarsen": [44, 45], "standardmodel": [44, 67], "calculate_xyzt_homophili": [44, 72], "calculate_distance_matrix": [44, 72], "knn_graph_batch": [44, 72], "oper": [45, 47, 53, 55], "cluster": [45, 47, 48, 55, 57], "local": [45, 83], "edge_index": [45, 47, 72], "vector": [45, 48, 79], "longtensor": [45, 48, 72], "mathbf": [45, 48], "ldot": [45, 48], "n": [45, 48, 79], "reduce_opt": 45, "avg": 45, "avg_pool": 45, "avg_pool_x": 45, "max": [45, 47, 55, 57, 79, 83], "max_pool": [45, 48], "max_pool_x": [45, 48], "min": [45, 48, 55, 57], "min_pool": [45, 46, 48], "min_pool_x": [45, 46, 48], "sum": [45, 48, 55, 57, 67], "sum_pool": [45, 46, 48], "sum_pool_x": [45, 46, 48], "forward": [45, 47, 50, 54, 55, 56, 57, 58, 61, 62, 65, 66, 67, 71, 79], "simplecoarsen": 45, "addit": [45, 47, 66, 67, 79, 81], "window": 45, "time_window": 45, "dynedgeconv": [46, 47, 55], "edgeconvtito": [46, 47], "dyntran": [46, 47, 57], "sum_pool_and_distribut": [46, 48], "group_bi": [46, 48], "group_pulses_to_dom": [46, 48], "group_pulses_to_pmt": [46, 48], "std_pool_x": [46, 48], "std_pool": [46, 48], "aggr": 47, "nb_neighbor": 47, "features_subset": [47, 55, 57], "edgeconv": 47, "lightningmodul": [47, 66, 77, 94], "convolut": [47, 54, 55, 56, 57], "mlp": [47, 55], "aggreg": [47, 48], "8": [47, 48, 55, 63, 79, 97, 99], "neighbour": [47, 55, 57, 61, 63, 72], "after": [47, 55, 77, 83, 87], "sequenc": 47, "slice": [47, 55, 57], "sparsetensor": 47, "messagepass": 47, "tito": [47, 57], "solut": [47, 57, 97], "deep": [47, 57], "competit": [47, 51, 57], "reset_paramet": 47, "reset": 47, "learnabl": [47, 53, 54, 55, 56, 57, 58], "messag": [47, 77, 94], "x_i": 47, "x_j": 47, "layer_s": 47, "n_head": 47, "dyntrans1": 47, "head": 47, "multiheadattent": 47, "just": [48, 99], "negat": 48, "cluster_index": 48, "distribut": [48, 55, 70, 79, 81], "ident": [48, 71], "pmt": 48, "f1": 48, "f2": 48, "6": [48, 75], "groupbi": 48, "3": [48, 54, 57, 70, 72, 74, 75, 79, 97, 99], "matrix": [48, 61, 72, 79], "mathbb": 48, "r": [48, 61, 99], "n_1": 48, "n_b": 48, "obtain": [48, 79], "wise": 48, "dens": 48, "fc": 48, "known": 48, "std": 48, "repres": [48, 62, 63, 65, 85, 87, 88], "averag": [48, 79], "torch_geometr": 48, "version": [48, 69, 70, 71, 77, 97, 99], "standardis": 49, "icecubekaggl": [49, 51], "icecubedeepcor": [49, 51], "icecubeupgrad": [49, 51], "ins": 50, "feature_map": [50, 51, 52], "node_featur": [50, 62], "node_feature_nam": [50, 62, 63, 65], "adjac": 50, "dimens": [51, 52, 54, 55, 57, 79], "prototyp": 52, "dynedgejinst": [53, 56], "dynedgetito": [53, 57], "author": [54, 56, 79], "martin": 54, "minh": 54, "nb_input": [54, 55, 56, 57, 58, 69, 70, 71], "nb_output": [54, 56, 58, 65, 69, 71], "nb_intermedi": 54, "128": [54, 55, 83], "dropout_ratio": 54, "fraction": 54, "drop": 54, "nb_neighbour": 55, "k": [55, 57, 61, 63, 72, 79], "nearest": [55, 57, 61, 63, 72], "latent": [55, 57, 69], "metric": [55, 57, 77], "dynedge_layer_s": 55, "dimenion": [55, 57], "multi": 55, "perceptron": 55, "256": 55, "336": 55, "post_processing_layer_s": 55, "hidden": [55, 56, 69, 71], "skip": 55, "readout_layer_s": 55, "post": 55, "_and_": 55, "As": 55, "last": [55, 69, 71, 77], "global_pooling_schem": [55, 57], "scheme": [55, 57], "add_global_variables_after_pool": 55, "altern": [55, 79, 97], "exact": [56, 79], "2209": 56, "03042": 56, "oerso": 56, "layer_size_scal": 56, "4": [56, 57, 70, 75], "scale": [56, 62, 69, 70, 71, 79], "ic": 57, "univers": 57, "south": 57, "pole": 57, "dyntrans_layer_s": 57, "core": 58, "edgedefinit": [59, 60, 61, 62, 64], "how": [59, 60, 64], "drawn": [59, 60, 63, 64], "between": [59, 60, 61, 64, 67, 72, 77, 79, 87, 88], "knnedg": [60, 61], "radialedg": [60, 61], "euclideanedg": [60, 61], "_construct_edg": 61, "definit": [61, 62, 63, 65, 66, 97], "nb_nearest_neighbour": [61, 63], "space": [61, 81], "distanc": [61, 63, 72], "sphere": 61, "chosen": [61, 94], "radiu": 61, "centr": 61, "radial": 61, "center": 61, "euclidean": [61, 97], "see": [61, 62, 77, 97, 99], "http": [61, 62, 79, 97], "arxiv": [61, 79], "org": [61, 79, 99], "pdf": 61, "1809": 61, "06166": 61, "hold": 62, "alter": 62, "dure": [62, 69, 70, 71, 77], "geometri": 62, "node_definit": [62, 63], "edge_definit": 62, "nodedefinit": [62, 63, 64, 65], "nodesaspuls": [62, 63, 64, 65], "perturbation_dict": [62, 63], "deviat": [62, 63], "perturb": [62, 63], "truth_dict": 62, "custom_label_funct": 62, "loss_weight": [62, 69, 70, 71], "data_path": 62, "shape": [62, 65, 72, 79], "num_nod": 62, "github": [62, 79, 99], "com": [62, 79, 99], "team": [62, 97], "blob": [62, 79], "getting_start": 62, "md": 62, "where": [62, 63, 65, 78], "your": [63, 97, 99], "num_puls": 65, "overridden": 65, "set_number_of_input": 65, "measur": [65, 72], "cherenkov": 65, "radiat": 65, "train_dataload": 66, "val_dataload": 66, "max_epoch": 66, "gpu": [66, 67, 83, 99], "ckpt_path": 66, "log_every_n_step": 66, "gradient_clip_v": 66, "distribution_strategi": [66, 67], "trainer_kwarg": 66, "pytorch_lightn": [66, 94], "trainer": [66, 77, 80], "predict_as_datafram": [66, 67], "additional_attribut": [66, 67, 80], "save_state_dict": 66, "load_state_dict": 66, "karg": 66, "trust": 66, "enough": 66, "eval": [66, 99], "lambda": 66, "consequ": 66, "target_label": [67, 69, 70, 71], "target": [67, 69, 70, 71, 79, 90], "prediction_label": [67, 69, 70, 71], "configure_optim": 67, "optim": [67, 77], "shared_step": 67, "batch_idx": 67, "share": 67, "step": [67, 77], "training_step": 67, "train_batch": 67, "validation_step": 67, "val_batch": 67, "compute_loss": [67, 69, 70, 71], "pred": [67, 71], "verbos": [67, 77], "activ": [67, 71, 97, 99], "mode": [67, 71], "deactiv": [67, 71], "multiclassclassificationtask": [68, 69], "binaryclassificationtask": [68, 69], "binaryclassificationtasklogit": [68, 69], "azimuthreconstructionwithkappa": [68, 70], "azimuthreconstruct": [68, 70], "directionreconstructionwithkappa": [68, 70], "zenithreconstruct": [68, 70], "zenithreconstructionwithkappa": [68, 70], "energyreconstruct": [68, 70], "energyreconstructionwithpow": [68, 70], "energyreconstructionwithuncertainti": [68, 70], "vertexreconstruct": [68, 70], "positionreconstruct": [68, 70], "timereconstruct": [68, 70], "inelasticityreconstruct": [68, 70], "identitytask": [68, 69, 71], "classifi": 69, "untransform": 69, "logit": [69, 79], "affin": [69, 70, 71], "binari": [69, 79], "hidden_s": [69, 70, 71], "feed": [69, 70, 71], "lossfunct": [69, 70, 71, 76, 79], "auto": [69, 70, 71], "matic": [69, 70, 71], "_pred": [69, 70, 71], "transform_prediction_and_target": [69, 70, 71], "numer": [69, 70, 71], "stabl": [69, 70, 71], "transform_target": [69, 70, 71], "log10": [69, 70, 71, 81], "rather": [69, 70, 71, 94], "conjunct": [69, 70, 71], "transform_infer": [69, 70, 71], "invers": [69, 70, 71], "recov": [69, 70, 71], "transform_support": [69, 70, 71], "minimum": [69, 70, 71], "restrict": [69, 70, 71, 79], "invert": [69, 70, 71], "1e6": [69, 70, 71], "default_target_label": [69, 70, 71], "default_prediction_label": [69, 70, 71], "target_pr": 69, "angl": [70, 78], "kappa": [70, 79], "var": 70, "azimuth_pr": 70, "azimuth_kappa": 70, "3d": [70, 79], "vmf": 70, "dir_x_pr": 70, "dir_y_pr": 70, "dir_z_pr": 70, "direction_kappa": 70, "zenith_pr": 70, "zenith_kappa": 70, "energy_pr": 70, "uncertainti": 70, "energy_sigma": 70, "vertex": 70, "position_x_pr": 70, "position_y_pr": 70, "position_z_pr": 70, "interaction_time_pr": 70, "interact": 70, "hadron": 70, "inelasticity_pr": 70, "wrt": 71, "train_ev": 71, "xyzt": 72, "homophili": 72, "notic": [72, 79], "xyz_coord": 72, "pairwis": 72, "nb_dom": 72, "updat": [72, 74, 77], "config_updat": [73, 74], "weightfitt": [73, 74, 76, 81], "contourfitt": [73, 74], "read_entri": [73, 75], "plot_2d_contour": [73, 75], "plot_1d_contour": [73, 75], "contour": [74, 75], "config_path": 74, "new_config_path": 74, "dummy_sect": 74, "temp": 74, "dummi": 74, "section": 74, "header": 74, "configupdat": 74, "programat": 74, "statistical_fit": 74, "fit_weight": [74, 81], "config_outdir": 74, "weight_nam": [74, 81], "pisa_config_dict": 74, "add_to_databas": [74, 81], "flux": 74, "_database_path": 74, "statist": 74, "effect": [74, 77, 97], "account": 74, "systemat": 74, "hypersurfac": 74, "chang": [74, 79, 97], "assumpt": 74, "regard": 74, "pipeline_path": 74, "post_fix": 74, "include_retro": 74, "fit_1d_contour": 74, "run_nam": 74, "config_dict": 74, "grid_siz": 74, "theta23_minmax": 74, "36": 74, "54": 74, "dm31_minmax": 74, "1d": [74, 75], "fit_2d_contour": 74, "2d": [74, 75, 79], "content": 75, "contour_data": 75, "xlim": 75, "ylim": 75, "0023799999999999997": 75, "0025499999999999997": 75, "chi2_critical_valu": 75, "width": 75, "height": 75, "path_to_pisa_fit_result": 75, "name_of_my_model_in_fit": 75, "legend": 75, "color": 75, "linestyl": 75, "style": [75, 97], "line": [75, 77, 83], "upper": 75, "axi": 75, "605": 75, "critic": [75, 94], "chi2": 75, "90": 75, "cl": 75, "right": [75, 79], "176": 75, "inch": 75, "388": 75, "706": 75, "abov": [75, 79, 81, 99], "352": 75, "piecewiselinearlr": [76, 77], "progressbar": [76, 77], "mseloss": [76, 79], "rmseloss": [76, 79], "logcoshloss": [76, 79], "crossentropyloss": [76, 79], "binarycrossentropyloss": [76, 79], "logcmk": [76, 79], "vonmisesfisherloss": [76, 79], "vonmisesfisher2dloss": [76, 79], "euclideandistanceloss": [76, 79], "vonmisesfisher3dloss": [76, 79], "make_dataload": [76, 80], "make_train_validation_dataload": [76, 80], "get_predict": [76, 80], "save_result": [76, 80], "uniform": [76, 81], "bjoernlow": [76, 81], "mileston": 77, "factor": 77, "last_epoch": 77, "_lrschedul": 77, "interpol": 77, "linearli": 77, "denot": 77, "multipli": 77, "closest": 77, "vice": 77, "versa": 77, "wrap": [77, 87, 88], "epoch": [77, 83], "print": [77, 94], "stdout": 77, "get_lr": 77, "refresh_r": 77, "process_posit": 77, "tqdmprogressbar": 77, "progress": 77, "bar": 77, "customis": 77, "lightn": 77, "init_validation_tqdm": 77, "overrid": 77, "init_predict_tqdm": 77, "init_test_tqdm": 77, "init_train_tqdm": 77, "get_metr": 77, "on_train_epoch_start": 77, "previou": 77, "behaviour": 77, "on_train_epoch_end": 77, "don": [77, 99], "duplciat": 77, "runtim": [78, 99], "azimuth_kei": 78, "zenith_kei": 78, "access": [78, 99], "azimiuth": 78, "return_el": 79, "elementwis": 79, "term": 79, "squar": 79, "root": [79, 99], "cosh": 79, "act": 79, "small": 79, "cross": 79, "entropi": 79, "num_class": 79, "softmax": 79, "ed": 79, "probabl": 79, "mit": 79, "licens": 79, "copyright": 79, "2019": 79, "ryabinin": 79, "permiss": 79, "herebi": 79, "person": 79, "copi": 79, "document": 79, "deal": 79, "modifi": 79, "publish": 79, "sublicens": 79, "sell": 79, "permit": 79, "whom": 79, "furnish": 79, "so": [79, 99], "subject": 79, "condit": 79, "shall": 79, "substanti": 79, "portion": 79, "THE": 79, "AS": 79, "warranti": 79, "OF": 79, "kind": 79, "OR": 79, "impli": 79, "BUT": 79, "TO": 79, "merchant": 79, "FOR": 79, "particular": [79, 97], "AND": 79, "noninfring": 79, "IN": 79, "NO": 79, "holder": 79, "BE": 79, "liabl": 79, "claim": 79, "damag": 79, "liabil": 79, "action": 79, "contract": 79, "tort": 79, "aris": 79, "WITH": 79, "_____________________": 79, "mryab": 79, "vmf_loss": 79, "master": 79, "py": [79, 99], "bessel": 79, "exponenti": 79, "ditto": 79, "iv": 79, "1812": 79, "04616": 79, "spite": 79, "suggest": 79, "sec": 79, "paper": 79, "m": 79, "correct": 79, "static": [79, 97], "ctx": 79, "backward": 79, "grad_output": 79, "von": 79, "mise": 79, "fisher": 79, "log_cmk_exact": 79, "c_": 79, "exactli": [79, 94], "log_cmk_approx": 79, "approx": 79, "minu": 79, "sign": 79, "log_cmk": 79, "kappa_switch": 79, "diverg": 79, "700": 79, "float64": 79, "precis": 79, "unaccur": 79, "switch": 79, "three": 79, "database_indic": 80, "test_siz": 80, "node_level": 80, "tag": [80, 97, 99], "archiv": 80, "public": 81, "uniformweightfitt": 81, "bin": 81, "privat": 81, "_fit_weight": 81, "sql": 81, "desir": [81, 92], "np": 81, "happen": 81, "x_low": 81, "wherea": 81, "curv": 81, "base_config": [82, 84], "dataset_config": [82, 84], "training_config": [82, 84], "argumentpars": [82, 83], "is_gcd_fil": [82, 92], "is_i3_fil": [82, 92], "has_extens": [82, 92], "find_i3_fil": [82, 92], "has_icecube_packag": [82, 93], "has_torch_packag": [82, 93], "has_pisa_packag": [82, 93], "requires_icecub": [82, 93], "repeatfilt": [82, 94], "eps_lik": [82, 95], "consist": [83, 94, 97], "cli": 83, "pop_default": 83, "usag": 83, "descript": 83, "command": [83, 99], "standard_argu": 83, "home": [83, 99], "runner": 83, "lib": [83, 99], "python3": 83, "training_example_data_sqlit": 83, "earli": 83, "patienc": 83, "narg": 83, "50": 83, "example_energy_reconstruction_model": 83, "num": 83, "fetch": 83, "with_standard_argu": 83, "overwritten": [83, 85], "baseconfig": [84, 85, 86, 87, 88, 90], "get_all_argument_valu": [84, 85], "save_dataset_config": [84, 87], "datasetconfigsavermeta": [84, 87], "datasetconfigsaverabcmeta": [84, 87], "save_model_config": [84, 88], "modelconfigsavermeta": [84, 88], "modelconfigsaverabc": [84, 88], "traverse_and_appli": [84, 89], "list_all_submodul": [84, 89], "get_all_grapnet_class": [84, 89], "is_graphnet_modul": [84, 89], "is_graphnet_class": [84, 89], "get_graphnet_class": [84, 89], "trainingconfig": [84, 90], "basemodel": [85, 87, 88], "keyword": [85, 90], "validationerror": [85, 90], "pydantic_cor": [85, 90], "__init__": [85, 87, 88, 90, 99], "__pydantic_self__": [85, 90], "dump": [85, 87, 88], "yaml": [85, 86], "as_dict": [85, 87, 88], "classvar": [85, 87, 88, 90], "configdict": [85, 87, 88, 90], "conform": [85, 87, 88, 90], "pydant": [85, 87, 88, 90], "model_field": [85, 87, 88, 90], "fieldinfo": [85, 87, 88, 90], "metadata": [85, 87, 88, 90], "about": [85, 87, 88, 90], "__fields__": [85, 87, 88, 90], "v1": [85, 87, 88, 90, 99], "re": [86, 99], "save_config": 86, "dataconfig": 87, "transpar": [87, 88, 97], "reproduc": [87, 88], "In": [87, 88, 99], "session": [87, 88], "anoth": [87, 88], "you": [87, 88, 97, 99], "still": 87, "csv": 87, "train_select": 87, "test_select": 87, "unambigu": [87, 88], "annot": [87, 88, 90], "nonetyp": 87, "init_fn": [87, 88], "metaclass": [87, 88], "abcmeta": [87, 88], "datasetconfigsav": 87, "trainabl": 88, "hyperparamet": 88, "instanti": 88, "thu": 88, "modelconfigsav": 88, "fn_kwarg": 89, "structur": 89, "moduletyp": 89, "grapnet": 89, "lookup": 89, "early_stopping_pati": 90, "system": [92, 99], "filenam": 92, "dir": 92, "search": 92, "test_funct": 93, "filter": 94, "repeat": 94, "nb_repeats_allow": 94, "record": 94, "logrecord": 94, "log_fold": 94, "clear": 94, "intuit": 94, "composit": 94, "loggeradapt": 94, "clash": 94, "setlevel": 94, "deleg": 94, "msg": 94, "warn": 94, "info": [94, 99], "debug": 94, "warning_onc": 94, "onc": 94, "handler": 94, "file_handl": 94, "filehandl": 94, "stream_handl": 94, "streamhandl": 94, "assort": 95, "ep": 95, "api": 96, "To": [97, 99], "sure": [97, 99], "smooth": 97, "guidelin": 97, "guid": 97, "encourag": 97, "contributor": 97, "discuss": 97, "bug": 97, "anyth": 97, "place": 97, "describ": 97, "yourself": 97, "ownership": 97, "prioriti": 97, "situat": 97, "lot": 97, "effort": 97, "go": 97, "turn": 97, "outsid": 97, "scope": 97, "better": 97, "fork": 97, "repo": 97, "dedic": 97, "branch": [97, 99], "repositori": 97, "own": [97, 99], "accept": 97, "autom": 97, "review": 97, "pep8": 97, "docstr": 97, "googl": 97, "hint": 97, "adher": 97, "pep": 97, "pylint": 97, "flake8": 97, "black": 97, "well": 97, "recommend": [97, 99], "mypi": 97, "pydocstyl": 97, "docformatt": 97, "commit": 97, "hook": 97, "instal": 97, "come": 97, "pip": [97, 99], "Then": 97, "everytim": 97, "pep257": 97, "concept": 97, "ljvmiranda921": 97, "io": 97, "notebook": 97, "2018": 97, "06": 97, "21": 97, "precommit": 97, "environ": 99, "virtual": 99, "anaconda": 99, "prove": 99, "instruct": 99, "setup": 99, "want": 99, "part": 99, "achiev": 99, "bash": 99, "shell": 99, "cvmf": 99, "opensciencegrid": 99, "py3": 99, "v4": 99, "sh": 99, "rhel_7_x86_64": 99, "metaproject": 99, "env": 99, "alia": 99, "script": 99, "With": 99, "now": 99, "light": 99, "extra": 99, "geometr": 99, "won": 99, "later": 99, "torch_cpu": 99, "txt": 99, "cpu": 99, "torch_gpu": 99, "prefer": 99, "unix": 99, "git": 99, "clone": 99, "usernam": 99, "cd": 99, "conda": 99, "gcc_linux": 99, "64": 99, "gxx_linux": 99, "libgcc": 99, "cudatoolkit": 99, "11": 99, "forg": 99, "torch_maco": 99, "On": 99, "maco": 99, "box": 99, "compil": 99, "gcc": 99, "date": 99, "possibli": 99, "cuda": 99, "toolkit": 99, "recent": 99, "omit": 99, "newer": 99, "export": 99, "ld_library_path": 99, "anaconda3": 99, "miniconda3": 99, "bashrc": 99, "librari": 99, "intend": 99, "rm": 99, "asogaard": 99, "latest": 99, "dc423315742c": 99, "01_icetrai": 99, "01_convert_i3_fil": 99, "2023": 99, "01": 99, "24": 99, "41": 99, "27": 99, "graphnet_20230124": 99, "134127": 99, "46": 99, "convert_i3_fil": 99, "ic86": 99, "thread": 99, "00": 99, "79": 99, "42": 99, "26": 99, "413": 99, "88it": 99, "specialis": 99, "ones": 99, "push": 99, "vx": 99}, "objects": {"": [[1, 0, 0, "-", "graphnet"]], "graphnet": [[2, 0, 0, "-", "constants"], [3, 0, 0, "-", "data"], [40, 0, 0, "-", "deployment"], [44, 0, 0, "-", "models"], [73, 0, 0, "-", "pisa"], [76, 0, 0, "-", "training"], [82, 0, 0, "-", "utilities"]], "graphnet.data": [[4, 0, 0, "-", "constants"], [5, 0, 0, "-", "dataconverter"], [6, 0, 0, "-", "dataloader"], [7, 0, 0, "-", "dataset"], [13, 0, 0, "-", "extractors"], [30, 0, 0, "-", "parquet"], [32, 0, 0, "-", "pipeline"], [33, 0, 0, "-", "sqlite"], [36, 0, 0, "-", "utilities"]], "graphnet.data.constants": [[4, 1, 1, "", "FEATURES"], [4, 1, 1, "", "TRUTH"]], "graphnet.data.constants.FEATURES": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.constants.TRUTH": [[4, 2, 1, "", "DEEPCORE"], [4, 2, 1, "", "ICECUBE86"], [4, 2, 1, "", "KAGGLE"], [4, 2, 1, "", "PROMETHEUS"], [4, 2, 1, "", "UPGRADE"]], "graphnet.data.dataconverter": [[5, 1, 1, "", "DataConverter"], [5, 1, 1, "", "FileSet"], [5, 5, 1, "", "cache_output_files"], [5, 5, 1, "", "init_global_index"]], "graphnet.data.dataconverter.DataConverter": [[5, 3, 1, "", "execute"], [5, 4, 1, "", "file_suffix"], [5, 3, 1, "", "get_map_function"], [5, 3, 1, "", "merge_files"], [5, 3, 1, "", "save_data"]], "graphnet.data.dataconverter.FileSet": [[5, 2, 1, "", "gcd_file"], [5, 2, 1, "", "i3_file"]], "graphnet.data.dataloader": [[6, 1, 1, "", "DataLoader"], [6, 5, 1, "", "collate_fn"], [6, 5, 1, "", "do_shuffle"]], "graphnet.data.dataloader.DataLoader": [[6, 3, 1, "", "from_dataset_config"]], "graphnet.data.dataset": [[8, 0, 0, "-", "dataset"], [9, 0, 0, "-", "parquet"], [11, 0, 0, "-", "sqlite"]], "graphnet.data.dataset.dataset": [[8, 6, 1, "", "ColumnMissingException"], [8, 1, 1, "", "Dataset"], [8, 1, 1, "", "EnsembleDataset"], [8, 5, 1, "", "load_module"], [8, 5, 1, "", "parse_graph_definition"]], "graphnet.data.dataset.dataset.Dataset": [[8, 3, 1, "", "add_label"], [8, 3, 1, "", "concatenate"], [8, 3, 1, "", "from_config"], [8, 4, 1, "", "path"], [8, 3, 1, "", "query_table"], [8, 4, 1, "", "truth_table"]], "graphnet.data.dataset.parquet": [[10, 0, 0, "-", "parquet_dataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[10, 1, 1, "", "ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset": [[10, 3, 1, "", "query_table"]], "graphnet.data.dataset.sqlite": [[12, 0, 0, "-", "sqlite_dataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[12, 1, 1, "", "SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset": [[12, 3, 1, "", "query_table"]], "graphnet.data.extractors": [[14, 0, 0, "-", "i3extractor"], [15, 0, 0, "-", "i3featureextractor"], [16, 0, 0, "-", "i3genericextractor"], [17, 0, 0, "-", "i3hybridrecoextractor"], [18, 0, 0, "-", "i3ntmuonlabelsextractor"], [19, 0, 0, "-", "i3particleextractor"], [20, 0, 0, "-", "i3pisaextractor"], [21, 0, 0, "-", "i3quesoextractor"], [22, 0, 0, "-", "i3retroextractor"], [23, 0, 0, "-", "i3splinempeextractor"], [24, 0, 0, "-", "i3truthextractor"], [25, 0, 0, "-", "i3tumextractor"], [26, 0, 0, "-", "utilities"]], "graphnet.data.extractors.i3extractor": [[14, 1, 1, "", "I3Extractor"], [14, 1, 1, "", "I3ExtractorCollection"]], "graphnet.data.extractors.i3extractor.I3Extractor": [[14, 4, 1, "", "name"], [14, 3, 1, "", "set_files"]], "graphnet.data.extractors.i3extractor.I3ExtractorCollection": [[14, 3, 1, "", "set_files"]], "graphnet.data.extractors.i3featureextractor": [[15, 1, 1, "", "I3FeatureExtractor"], [15, 1, 1, "", "I3FeatureExtractorIceCube86"], [15, 1, 1, "", "I3FeatureExtractorIceCubeDeepCore"], [15, 1, 1, "", "I3FeatureExtractorIceCubeUpgrade"], [15, 1, 1, "", "I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.i3genericextractor": [[16, 1, 1, "", "I3GenericExtractor"]], "graphnet.data.extractors.i3hybridrecoextractor": [[17, 1, 1, "", "I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.i3ntmuonlabelsextractor": [[18, 1, 1, "", "I3NTMuonLabelExtractor"]], "graphnet.data.extractors.i3particleextractor": [[19, 1, 1, "", "I3ParticleExtractor"]], "graphnet.data.extractors.i3pisaextractor": [[20, 1, 1, "", "I3PISAExtractor"]], "graphnet.data.extractors.i3quesoextractor": [[21, 1, 1, "", "I3QUESOExtractor"]], "graphnet.data.extractors.i3retroextractor": [[22, 1, 1, "", "I3RetroExtractor"]], "graphnet.data.extractors.i3splinempeextractor": [[23, 1, 1, "", "I3SplineMPEICExtractor"]], "graphnet.data.extractors.i3truthextractor": [[24, 1, 1, "", "I3TruthExtractor"]], "graphnet.data.extractors.i3tumextractor": [[25, 1, 1, "", "I3TUMExtractor"]], "graphnet.data.extractors.utilities": [[27, 0, 0, "-", "collections"], [28, 0, 0, "-", "frames"], [29, 0, 0, "-", "types"]], "graphnet.data.extractors.utilities.collections": [[27, 5, 1, "", "flatten_nested_dictionary"], [27, 5, 1, "", "serialise"], [27, 5, 1, "", "transpose_list_of_dicts"]], "graphnet.data.extractors.utilities.frames": [[28, 5, 1, "", "frame_is_montecarlo"], [28, 5, 1, "", "frame_is_noise"], [28, 5, 1, "", "get_om_keys_and_pulseseries"]], "graphnet.data.extractors.utilities.types": [[29, 5, 1, "", "break_cyclic_recursion"], [29, 5, 1, "", "cast_object_to_pure_python"], [29, 5, 1, "", "cast_pulse_series_to_pure_python"], [29, 5, 1, "", "get_member_variables"], [29, 5, 1, "", "is_boost_class"], [29, 5, 1, "", "is_boost_enum"], [29, 5, 1, "", "is_icecube_class"], [29, 5, 1, "", "is_method"], [29, 5, 1, "", "is_type"]], "graphnet.data.parquet": [[31, 0, 0, "-", "parquet_dataconverter"]], "graphnet.data.parquet.parquet_dataconverter": [[31, 1, 1, "", "ParquetDataConverter"]], "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter": [[31, 2, 1, "", "file_suffix"], [31, 3, 1, "", "merge_files"], [31, 3, 1, "", "save_data"]], "graphnet.data.pipeline": [[32, 1, 1, "", "InSQLitePipeline"]], "graphnet.data.sqlite": [[34, 0, 0, "-", "sqlite_dataconverter"], [35, 0, 0, "-", "sqlite_utilities"]], "graphnet.data.sqlite.sqlite_dataconverter": [[34, 1, 1, "", "SQLiteDataConverter"], [34, 5, 1, "", "construct_dataframe"], [34, 5, 1, "", "is_mc_tree"], [34, 5, 1, "", "is_pulse_map"]], "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter": [[34, 3, 1, "", "any_pulsemap_is_non_empty"], [34, 2, 1, "", "file_suffix"], [34, 3, 1, "", "merge_files"], [34, 3, 1, "", "save_data"]], "graphnet.data.sqlite.sqlite_utilities": [[35, 5, 1, "", "attach_index"], [35, 5, 1, "", "create_table"], [35, 5, 1, "", "create_table_and_save_to_sql"], [35, 5, 1, "", "database_exists"], [35, 5, 1, "", "database_table_exists"], [35, 5, 1, "", "run_sql_code"], [35, 5, 1, "", "save_to_sql"]], "graphnet.data.utilities": [[37, 0, 0, "-", "parquet_to_sqlite"], [38, 0, 0, "-", "random"], [39, 0, 0, "-", "string_selection_resolver"]], "graphnet.data.utilities.parquet_to_sqlite": [[37, 1, 1, "", "ParquetToSQLiteConverter"]], "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter": [[37, 3, 1, "", "run"]], "graphnet.data.utilities.random": [[38, 5, 1, "", "pairwise_shuffle"]], "graphnet.data.utilities.string_selection_resolver": [[39, 1, 1, "", "StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver": [[39, 3, 1, "", "resolve"]], "graphnet.deployment.i3modules": [[43, 0, 0, "-", "graphnet_module"]], "graphnet.deployment.i3modules.graphnet_module": [[43, 1, 1, "", "GraphNeTI3Module"], [43, 1, 1, "", "I3InferenceModule"], [43, 1, 1, "", "I3PulseCleanerModule"]], "graphnet.models": [[45, 0, 0, "-", "coarsening"], [46, 0, 0, "-", "components"], [49, 0, 0, "-", "detector"], [53, 0, 0, "-", "gnn"], [59, 0, 0, "-", "graphs"], [66, 0, 0, "-", "model"], [67, 0, 0, "-", "standard_model"], [68, 0, 0, "-", "task"], [72, 0, 0, "-", "utils"]], "graphnet.models.coarsening": [[45, 1, 1, "", "AttributeCoarsening"], [45, 1, 1, "", "Coarsening"], [45, 1, 1, "", "CustomDOMCoarsening"], [45, 1, 1, "", "DOMAndTimeWindowCoarsening"], [45, 1, 1, "", "DOMCoarsening"], [45, 5, 1, "", "unbatch_edge_index"]], "graphnet.models.coarsening.Coarsening": [[45, 3, 1, "", "forward"], [45, 2, 1, "", "reduce_options"]], "graphnet.models.components": [[47, 0, 0, "-", "layers"], [48, 0, 0, "-", "pool"]], "graphnet.models.components.layers": [[47, 1, 1, "", "DynEdgeConv"], [47, 1, 1, "", "DynTrans"], [47, 1, 1, "", "EdgeConvTito"]], "graphnet.models.components.layers.DynEdgeConv": [[47, 3, 1, "", "forward"]], "graphnet.models.components.layers.DynTrans": [[47, 3, 1, "", "forward"]], "graphnet.models.components.layers.EdgeConvTito": [[47, 3, 1, "", "forward"], [47, 3, 1, "", "message"], [47, 3, 1, "", "reset_parameters"]], "graphnet.models.components.pool": [[48, 5, 1, "", "group_by"], [48, 5, 1, "", "group_pulses_to_dom"], [48, 5, 1, "", "group_pulses_to_pmt"], [48, 5, 1, "", "min_pool"], [48, 5, 1, "", "min_pool_x"], [48, 5, 1, "", "std_pool"], [48, 5, 1, "", "std_pool_x"], [48, 5, 1, "", "sum_pool"], [48, 5, 1, "", "sum_pool_and_distribute"], [48, 5, 1, "", "sum_pool_x"]], "graphnet.models.detector": [[50, 0, 0, "-", "detector"], [51, 0, 0, "-", "icecube"], [52, 0, 0, "-", "prometheus"]], "graphnet.models.detector.detector": [[50, 1, 1, "", "Detector"]], "graphnet.models.detector.detector.Detector": [[50, 3, 1, "", "feature_map"], [50, 3, 1, "", "forward"]], "graphnet.models.detector.icecube": [[51, 1, 1, "", "IceCube86"], [51, 1, 1, "", "IceCubeDeepCore"], [51, 1, 1, "", "IceCubeKaggle"], [51, 1, 1, "", "IceCubeUpgrade"]], "graphnet.models.detector.icecube.IceCube86": [[51, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeDeepCore": [[51, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeKaggle": [[51, 3, 1, "", "feature_map"]], "graphnet.models.detector.icecube.IceCubeUpgrade": [[51, 3, 1, "", "feature_map"]], "graphnet.models.detector.prometheus": [[52, 1, 1, "", "Prometheus"]], "graphnet.models.detector.prometheus.Prometheus": [[52, 3, 1, "", "feature_map"]], "graphnet.models.gnn": [[54, 0, 0, "-", "convnet"], [55, 0, 0, "-", "dynedge"], [56, 0, 0, "-", "dynedge_jinst"], [57, 0, 0, "-", "dynedge_kaggle_tito"], [58, 0, 0, "-", "gnn"]], "graphnet.models.gnn.convnet": [[54, 1, 1, "", "ConvNet"]], "graphnet.models.gnn.convnet.ConvNet": [[54, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge": [[55, 1, 1, "", "DynEdge"]], "graphnet.models.gnn.dynedge.DynEdge": [[55, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge_jinst": [[56, 1, 1, "", "DynEdgeJINST"]], "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST": [[56, 3, 1, "", "forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[57, 1, 1, "", "DynEdgeTITO"]], "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO": [[57, 3, 1, "", "forward"]], "graphnet.models.gnn.gnn": [[58, 1, 1, "", "GNN"]], "graphnet.models.gnn.gnn.GNN": [[58, 3, 1, "", "forward"], [58, 4, 1, "", "nb_inputs"], [58, 4, 1, "", "nb_outputs"]], "graphnet.models.graphs": [[60, 0, 0, "-", "edges"], [62, 0, 0, "-", "graph_definition"], [63, 0, 0, "-", "graphs"], [64, 0, 0, "-", "nodes"]], "graphnet.models.graphs.edges": [[61, 0, 0, "-", "edges"]], "graphnet.models.graphs.edges.edges": [[61, 1, 1, "", "EdgeDefinition"], [61, 1, 1, "", "EuclideanEdges"], [61, 1, 1, "", "KNNEdges"], [61, 1, 1, "", "RadialEdges"]], "graphnet.models.graphs.edges.edges.EdgeDefinition": [[61, 3, 1, "", "forward"]], "graphnet.models.graphs.graph_definition": [[62, 1, 1, "", "GraphDefinition"]], "graphnet.models.graphs.graph_definition.GraphDefinition": [[62, 3, 1, "", "forward"]], "graphnet.models.graphs.graphs": [[63, 1, 1, "", "KNNGraph"]], "graphnet.models.graphs.nodes": [[65, 0, 0, "-", "nodes"]], "graphnet.models.graphs.nodes.nodes": [[65, 1, 1, "", "NodeDefinition"], [65, 1, 1, "", "NodesAsPulses"]], "graphnet.models.graphs.nodes.nodes.NodeDefinition": [[65, 3, 1, "", "forward"], [65, 4, 1, "", "nb_outputs"], [65, 3, 1, "", "set_number_of_inputs"]], "graphnet.models.model": [[66, 1, 1, "", "Model"]], "graphnet.models.model.Model": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "forward"], [66, 3, 1, "", "from_config"], [66, 3, 1, "", "load"], [66, 3, 1, "", "load_state_dict"], [66, 3, 1, "", "predict"], [66, 3, 1, "", "predict_as_dataframe"], [66, 3, 1, "", "save"], [66, 3, 1, "", "save_state_dict"]], "graphnet.models.standard_model": [[67, 1, 1, "", "StandardModel"]], "graphnet.models.standard_model.StandardModel": [[67, 3, 1, "", "compute_loss"], [67, 3, 1, "", "configure_optimizers"], [67, 3, 1, "", "forward"], [67, 3, 1, "", "inference"], [67, 3, 1, "", "predict"], [67, 3, 1, "", "predict_as_dataframe"], [67, 4, 1, "", "prediction_labels"], [67, 3, 1, "", "shared_step"], [67, 4, 1, "", "target_labels"], [67, 3, 1, "", "train"], [67, 3, 1, "", "training_step"], [67, 3, 1, "", "validation_step"]], "graphnet.models.task": [[69, 0, 0, "-", "classification"], [70, 0, 0, "-", "reconstruction"], [71, 0, 0, "-", "task"]], "graphnet.models.task.classification": [[69, 1, 1, "", "BinaryClassificationTask"], [69, 1, 1, "", "BinaryClassificationTaskLogits"], [69, 1, 1, "", "MulticlassClassificationTask"]], "graphnet.models.task.classification.BinaryClassificationTask": [[69, 2, 1, "", "default_prediction_labels"], [69, 2, 1, "", "default_target_labels"], [69, 2, 1, "", "nb_inputs"]], "graphnet.models.task.classification.BinaryClassificationTaskLogits": [[69, 2, 1, "", "default_prediction_labels"], [69, 2, 1, "", "default_target_labels"], [69, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction": [[70, 1, 1, "", "AzimuthReconstruction"], [70, 1, 1, "", "AzimuthReconstructionWithKappa"], [70, 1, 1, "", "DirectionReconstructionWithKappa"], [70, 1, 1, "", "EnergyReconstruction"], [70, 1, 1, "", "EnergyReconstructionWithPower"], [70, 1, 1, "", "EnergyReconstructionWithUncertainty"], [70, 1, 1, "", "InelasticityReconstruction"], [70, 1, 1, "", "PositionReconstruction"], [70, 1, 1, "", "TimeReconstruction"], [70, 1, 1, "", "VertexReconstruction"], [70, 1, 1, "", "ZenithReconstruction"], [70, 1, 1, "", "ZenithReconstructionWithKappa"]], "graphnet.models.task.reconstruction.AzimuthReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithPower": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.InelasticityReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.PositionReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.TimeReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.VertexReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstruction": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa": [[70, 2, 1, "", "default_prediction_labels"], [70, 2, 1, "", "default_target_labels"], [70, 2, 1, "", "nb_inputs"]], "graphnet.models.task.task": [[71, 1, 1, "", "IdentityTask"], [71, 1, 1, "", "Task"]], "graphnet.models.task.task.IdentityTask": [[71, 4, 1, "", "default_prediction_labels"], [71, 4, 1, "", "default_target_labels"], [71, 4, 1, "", "nb_inputs"]], "graphnet.models.task.task.Task": [[71, 3, 1, "", "compute_loss"], [71, 4, 1, "", "default_prediction_labels"], [71, 4, 1, "", "default_target_labels"], [71, 3, 1, "", "forward"], [71, 3, 1, "", "inference"], [71, 4, 1, "", "nb_inputs"], [71, 3, 1, "", "train_eval"]], "graphnet.models.utils": [[72, 5, 1, "", "calculate_distance_matrix"], [72, 5, 1, "", "calculate_xyzt_homophily"], [72, 5, 1, "", "knn_graph_batch"]], "graphnet.pisa": [[74, 0, 0, "-", "fitting"], [75, 0, 0, "-", "plotting"]], "graphnet.pisa.fitting": [[74, 1, 1, "", "ContourFitter"], [74, 1, 1, "", "WeightFitter"], [74, 5, 1, "", "config_updater"]], "graphnet.pisa.fitting.ContourFitter": [[74, 3, 1, "", "fit_1d_contour"], [74, 3, 1, "", "fit_2d_contour"]], "graphnet.pisa.fitting.WeightFitter": [[74, 3, 1, "", "fit_weights"]], "graphnet.pisa.plotting": [[75, 5, 1, "", "plot_1D_contour"], [75, 5, 1, "", "plot_2D_contour"], [75, 5, 1, "", "read_entry"]], "graphnet.training": [[77, 0, 0, "-", "callbacks"], [78, 0, 0, "-", "labels"], [79, 0, 0, "-", "loss_functions"], [80, 0, 0, "-", "utils"], [81, 0, 0, "-", "weight_fitting"]], "graphnet.training.callbacks": [[77, 1, 1, "", "PiecewiseLinearLR"], [77, 1, 1, "", "ProgressBar"]], "graphnet.training.callbacks.PiecewiseLinearLR": [[77, 3, 1, "", "get_lr"]], "graphnet.training.callbacks.ProgressBar": [[77, 3, 1, "", "get_metrics"], [77, 3, 1, "", "init_predict_tqdm"], [77, 3, 1, "", "init_test_tqdm"], [77, 3, 1, "", "init_train_tqdm"], [77, 3, 1, "", "init_validation_tqdm"], [77, 3, 1, "", "on_train_epoch_end"], [77, 3, 1, "", "on_train_epoch_start"]], "graphnet.training.labels": [[78, 1, 1, "", "Direction"], [78, 1, 1, "", "Label"]], "graphnet.training.labels.Label": [[78, 4, 1, "", "key"]], "graphnet.training.loss_functions": [[79, 1, 1, "", "BinaryCrossEntropyLoss"], [79, 1, 1, "", "CrossEntropyLoss"], [79, 1, 1, "", "EuclideanDistanceLoss"], [79, 1, 1, "", "LogCMK"], [79, 1, 1, "", "LogCoshLoss"], [79, 1, 1, "", "LossFunction"], [79, 1, 1, "", "MSELoss"], [79, 1, 1, "", "RMSELoss"], [79, 1, 1, "", "VonMisesFisher2DLoss"], [79, 1, 1, "", "VonMisesFisher3DLoss"], [79, 1, 1, "", "VonMisesFisherLoss"]], "graphnet.training.loss_functions.LogCMK": [[79, 3, 1, "", "backward"], [79, 3, 1, "", "forward"]], "graphnet.training.loss_functions.LossFunction": [[79, 3, 1, "", "forward"]], "graphnet.training.loss_functions.VonMisesFisherLoss": [[79, 3, 1, "", "log_cmk"], [79, 3, 1, "", "log_cmk_approx"], [79, 3, 1, "", "log_cmk_exact"]], "graphnet.training.utils": [[80, 5, 1, "", "collate_fn"], [80, 5, 1, "", "get_predictions"], [80, 5, 1, "", "make_dataloader"], [80, 5, 1, "", "make_train_validation_dataloader"], [80, 5, 1, "", "save_results"]], "graphnet.training.weight_fitting": [[81, 1, 1, "", "BjoernLow"], [81, 1, 1, "", "Uniform"], [81, 1, 1, "", "WeightFitter"]], "graphnet.training.weight_fitting.WeightFitter": [[81, 3, 1, "", "fit"]], "graphnet.utilities": [[83, 0, 0, "-", "argparse"], [84, 0, 0, "-", "config"], [91, 0, 0, "-", "decorators"], [92, 0, 0, "-", "filesys"], [93, 0, 0, "-", "imports"], [94, 0, 0, "-", "logging"], [95, 0, 0, "-", "maths"]], "graphnet.utilities.argparse": [[83, 1, 1, "", "ArgumentParser"], [83, 1, 1, "", "Options"]], "graphnet.utilities.argparse.ArgumentParser": [[83, 2, 1, "", "standard_arguments"], [83, 3, 1, "", "with_standard_arguments"]], "graphnet.utilities.argparse.Options": [[83, 3, 1, "", "contains"], [83, 3, 1, "", "pop_default"]], "graphnet.utilities.config": [[85, 0, 0, "-", "base_config"], [86, 0, 0, "-", "configurable"], [87, 0, 0, "-", "dataset_config"], [88, 0, 0, "-", "model_config"], [89, 0, 0, "-", "parsing"], [90, 0, 0, "-", "training_config"]], "graphnet.utilities.config.base_config": [[85, 1, 1, "", "BaseConfig"], [85, 5, 1, "", "get_all_argument_values"]], "graphnet.utilities.config.base_config.BaseConfig": [[85, 3, 1, "", "as_dict"], [85, 3, 1, "", "dump"], [85, 3, 1, "", "load"], [85, 2, 1, "", "model_config"], [85, 2, 1, "", "model_fields"]], "graphnet.utilities.config.configurable": [[86, 1, 1, "", "Configurable"]], "graphnet.utilities.config.configurable.Configurable": [[86, 4, 1, "", "config"], [86, 3, 1, "", "from_config"], [86, 3, 1, "", "save_config"]], "graphnet.utilities.config.dataset_config": [[87, 1, 1, "", "DatasetConfig"], [87, 1, 1, "", "DatasetConfigSaverABCMeta"], [87, 1, 1, "", "DatasetConfigSaverMeta"], [87, 5, 1, "", "save_dataset_config"]], "graphnet.utilities.config.dataset_config.DatasetConfig": [[87, 3, 1, "", "as_dict"], [87, 2, 1, "", "features"], [87, 2, 1, "", "graph_definition"], [87, 2, 1, "", "index_column"], [87, 2, 1, "", "loss_weight_column"], [87, 2, 1, "", "loss_weight_default_value"], [87, 2, 1, "", "loss_weight_table"], [87, 2, 1, "", "model_config"], [87, 2, 1, "", "model_fields"], [87, 2, 1, "", "node_truth"], [87, 2, 1, "", "node_truth_table"], [87, 2, 1, "", "path"], [87, 2, 1, "", "pulsemaps"], [87, 2, 1, "", "seed"], [87, 2, 1, "", "selection"], [87, 2, 1, "", "string_selection"], [87, 2, 1, "", "truth"], [87, 2, 1, "", "truth_table"]], "graphnet.utilities.config.model_config": [[88, 1, 1, "", "ModelConfig"], [88, 1, 1, "", "ModelConfigSaverABC"], [88, 1, 1, "", "ModelConfigSaverMeta"], [88, 5, 1, "", "save_model_config"]], "graphnet.utilities.config.model_config.ModelConfig": [[88, 2, 1, "", "arguments"], [88, 3, 1, "", "as_dict"], [88, 2, 1, "", "class_name"], [88, 2, 1, "", "model_config"], [88, 2, 1, "", "model_fields"]], "graphnet.utilities.config.parsing": [[89, 5, 1, "", "get_all_grapnet_classes"], [89, 5, 1, "", "get_graphnet_classes"], [89, 5, 1, "", "is_graphnet_class"], [89, 5, 1, "", "is_graphnet_module"], [89, 5, 1, "", "list_all_submodules"], [89, 5, 1, "", "traverse_and_apply"]], "graphnet.utilities.config.training_config": [[90, 1, 1, "", "TrainingConfig"]], "graphnet.utilities.config.training_config.TrainingConfig": [[90, 2, 1, "", "dataloader"], [90, 2, 1, "", "early_stopping_patience"], [90, 2, 1, "", "fit"], [90, 2, 1, "", "model_config"], [90, 2, 1, "", "model_fields"], [90, 2, 1, "", "target"]], "graphnet.utilities.filesys": [[92, 5, 1, "", "find_i3_files"], [92, 5, 1, "", "has_extension"], [92, 5, 1, "", "is_gcd_file"], [92, 5, 1, "", "is_i3_file"]], "graphnet.utilities.imports": [[93, 5, 1, "", "has_icecube_package"], [93, 5, 1, "", "has_pisa_package"], [93, 5, 1, "", "has_torch_package"], [93, 5, 1, "", "requires_icecube"]], "graphnet.utilities.logging": [[94, 1, 1, "", "Logger"], [94, 1, 1, "", "RepeatFilter"]], "graphnet.utilities.logging.Logger": [[94, 3, 1, "", "critical"], [94, 3, 1, "", "debug"], [94, 3, 1, "", "error"], [94, 4, 1, "", "file_handlers"], [94, 4, 1, "", "handlers"], [94, 3, 1, "", "info"], [94, 3, 1, "", "setLevel"], [94, 4, 1, "", "stream_handlers"], [94, 3, 1, "", "warning"], [94, 3, 1, "", "warning_once"]], "graphnet.utilities.logging.RepeatFilter": [[94, 3, 1, "", "filter"], [94, 2, 1, "", "nb_repeats_allowed"]], "graphnet.utilities.maths": [[95, 5, 1, "", "eps_like"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:function", "6": "py:exception"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "function", "Python function"], "6": ["py", "exception", "Python exception"]}, "titleterms": {"about": [0, 98], "impact": [0, 98], "usag": [0, 98], "acknowledg": [0, 98], "api": 1, "constant": [2, 4], "data": 3, "dataconvert": 5, "dataload": 6, "dataset": [7, 8], "parquet": [9, 30], "parquet_dataset": 10, "sqlite": [11, 33], "sqlite_dataset": 12, "extractor": 13, "i3extractor": 14, "i3featureextractor": 15, "i3genericextractor": 16, "i3hybridrecoextractor": 17, "i3ntmuonlabelsextractor": 18, "i3particleextractor": 19, "i3pisaextractor": 20, "i3quesoextractor": 21, "i3retroextractor": 22, "i3splinempeextractor": 23, "i3truthextractor": 24, "i3tumextractor": 25, "util": [26, 36, 72, 80, 82], "collect": 27, "frame": 28, "type": 29, "parquet_dataconvert": 31, "pipelin": 32, "sqlite_dataconvert": 34, "sqlite_util": 35, "parquet_to_sqlit": 37, "random": 38, "string_selection_resolv": 39, "deploy": [40, 42], "i3modul": 41, "graphnet_modul": 43, "model": [44, 66], "coarsen": 45, "compon": 46, "layer": 47, "pool": 48, "detector": [49, 50], "icecub": 51, "prometheu": 52, "gnn": [53, 58], "convnet": 54, "dynedg": 55, "dynedge_jinst": 56, "dynedge_kaggle_tito": 57, "graph": [59, 63], "edg": [60, 61], "graph_definit": 62, "node": [64, 65], "standard_model": 67, "task": [68, 71], "classif": 69, "reconstruct": 70, "pisa": 73, "fit": 74, "plot": 75, "train": 76, "callback": 77, "label": 78, "loss_funct": 79, "weight_fit": 81, "argpars": 83, "config": 84, "base_config": 85, "configur": 86, "dataset_config": 87, "model_config": 88, "pars": 89, "training_config": 90, "decor": 91, "filesi": 92, "import": 93, "log": 94, "math": 95, "src": 96, "contribut": 97, "github": 97, "issu": 97, "pull": 97, "request": 97, "convent": 97, "code": 97, "qualiti": 97, "instal": 99, "icetrai": 99, "stand": 99, "alon": 99, "run": 99, "docker": 99}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1, "sphinx": 60}, "alltitles": {"About": [[0, "about"], [98, "about"]], "Impact": [[0, "impact"], [98, "impact"]], "Usage": [[0, "usage"], [98, "usage"]], "Acknowledgements": [[0, "acknowledgements"], [98, "acknowledgements"]], "API": [[1, "module-graphnet"]], "constants": [[2, "module-graphnet.constants"], [4, "module-graphnet.data.constants"]], "data": [[3, "module-graphnet.data"]], "dataconverter": [[5, "module-graphnet.data.dataconverter"]], "dataloader": [[6, "module-graphnet.data.dataloader"]], "dataset": [[7, "module-graphnet.data.dataset"], [8, "module-graphnet.data.dataset.dataset"]], "parquet": [[9, "module-graphnet.data.dataset.parquet"], [30, "module-graphnet.data.parquet"]], "parquet_dataset": [[10, "module-graphnet.data.dataset.parquet.parquet_dataset"]], "sqlite": [[11, "module-graphnet.data.dataset.sqlite"], [33, "module-graphnet.data.sqlite"]], "sqlite_dataset": [[12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"]], "extractors": [[13, "module-graphnet.data.extractors"]], "i3extractor": [[14, "module-graphnet.data.extractors.i3extractor"]], "i3featureextractor": [[15, "module-graphnet.data.extractors.i3featureextractor"]], "i3genericextractor": [[16, "module-graphnet.data.extractors.i3genericextractor"]], "i3hybridrecoextractor": [[17, "module-graphnet.data.extractors.i3hybridrecoextractor"]], "i3ntmuonlabelsextractor": [[18, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"]], "i3particleextractor": [[19, "module-graphnet.data.extractors.i3particleextractor"]], "i3pisaextractor": [[20, "module-graphnet.data.extractors.i3pisaextractor"]], "i3quesoextractor": [[21, "module-graphnet.data.extractors.i3quesoextractor"]], "i3retroextractor": [[22, "module-graphnet.data.extractors.i3retroextractor"]], "i3splinempeextractor": [[23, "module-graphnet.data.extractors.i3splinempeextractor"]], "i3truthextractor": [[24, "module-graphnet.data.extractors.i3truthextractor"]], "i3tumextractor": [[25, "module-graphnet.data.extractors.i3tumextractor"]], "utilities": [[26, "module-graphnet.data.extractors.utilities"], [36, "module-graphnet.data.utilities"], [82, "module-graphnet.utilities"]], "collections": [[27, "module-graphnet.data.extractors.utilities.collections"]], "frames": [[28, "module-graphnet.data.extractors.utilities.frames"]], "types": [[29, "module-graphnet.data.extractors.utilities.types"]], "parquet_dataconverter": [[31, "module-graphnet.data.parquet.parquet_dataconverter"]], "pipeline": [[32, "module-graphnet.data.pipeline"]], "sqlite_dataconverter": [[34, "module-graphnet.data.sqlite.sqlite_dataconverter"]], "sqlite_utilities": [[35, "module-graphnet.data.sqlite.sqlite_utilities"]], "parquet_to_sqlite": [[37, "module-graphnet.data.utilities.parquet_to_sqlite"]], "random": [[38, "module-graphnet.data.utilities.random"]], "string_selection_resolver": [[39, "module-graphnet.data.utilities.string_selection_resolver"]], "deployment": [[40, "module-graphnet.deployment"]], "i3modules": [[41, "i3modules"]], "deployer": [[42, "deployer"]], "graphnet_module": [[43, "module-graphnet.deployment.i3modules.graphnet_module"]], "models": [[44, "module-graphnet.models"]], "coarsening": [[45, "module-graphnet.models.coarsening"]], "components": [[46, "module-graphnet.models.components"]], "layers": [[47, "module-graphnet.models.components.layers"]], "pool": [[48, "module-graphnet.models.components.pool"]], "detector": [[49, "module-graphnet.models.detector"], [50, "module-graphnet.models.detector.detector"]], "icecube": [[51, "module-graphnet.models.detector.icecube"]], "prometheus": [[52, "module-graphnet.models.detector.prometheus"]], "gnn": [[53, "module-graphnet.models.gnn"], [58, "module-graphnet.models.gnn.gnn"]], "convnet": [[54, "module-graphnet.models.gnn.convnet"]], "dynedge": [[55, "module-graphnet.models.gnn.dynedge"]], "dynedge_jinst": [[56, "module-graphnet.models.gnn.dynedge_jinst"]], "dynedge_kaggle_tito": [[57, "module-graphnet.models.gnn.dynedge_kaggle_tito"]], "graphs": [[59, "module-graphnet.models.graphs"], [63, "module-graphnet.models.graphs.graphs"]], "edges": [[60, "module-graphnet.models.graphs.edges"], [61, "module-graphnet.models.graphs.edges.edges"]], "graph_definition": [[62, "module-graphnet.models.graphs.graph_definition"]], "nodes": [[64, "module-graphnet.models.graphs.nodes"], [65, "module-graphnet.models.graphs.nodes.nodes"]], "model": [[66, "module-graphnet.models.model"]], "standard_model": [[67, "module-graphnet.models.standard_model"]], "task": [[68, "module-graphnet.models.task"], [71, "module-graphnet.models.task.task"]], "classification": [[69, "module-graphnet.models.task.classification"]], "reconstruction": [[70, "module-graphnet.models.task.reconstruction"]], "utils": [[72, "module-graphnet.models.utils"], [80, "module-graphnet.training.utils"]], "pisa": [[73, "module-graphnet.pisa"]], "fitting": [[74, "module-graphnet.pisa.fitting"]], "plotting": [[75, "module-graphnet.pisa.plotting"]], "training": [[76, "module-graphnet.training"]], "callbacks": [[77, "module-graphnet.training.callbacks"]], "labels": [[78, "module-graphnet.training.labels"]], "loss_functions": [[79, "module-graphnet.training.loss_functions"]], "weight_fitting": [[81, "module-graphnet.training.weight_fitting"]], "argparse": [[83, "module-graphnet.utilities.argparse"]], "config": [[84, "module-graphnet.utilities.config"]], "base_config": [[85, "module-graphnet.utilities.config.base_config"]], "configurable": [[86, "module-graphnet.utilities.config.configurable"]], "dataset_config": [[87, "module-graphnet.utilities.config.dataset_config"]], "model_config": [[88, "module-graphnet.utilities.config.model_config"]], "parsing": [[89, "module-graphnet.utilities.config.parsing"]], "training_config": [[90, "module-graphnet.utilities.config.training_config"]], "decorators": [[91, "module-graphnet.utilities.decorators"]], "filesys": [[92, "module-graphnet.utilities.filesys"]], "imports": [[93, "module-graphnet.utilities.imports"]], "logging": [[94, "module-graphnet.utilities.logging"]], "maths": [[95, "module-graphnet.utilities.maths"]], "src": [[96, "src"]], "Contribute": [[97, "contribute"]], "GitHub issues": [[97, "github-issues"]], "Pull requests": [[97, "pull-requests"]], "Conventions": [[97, "conventions"]], "Code quality": [[97, "code-quality"]], "Install": [[99, "install"]], "Installing with IceTray": [[99, "installing-with-icetray"]], "Installing stand-alone": [[99, "installing-stand-alone"]], "Running in Docker": [[99, "running-in-docker"]]}, "indexentries": {"graphnet": [[1, "module-graphnet"]], "module": [[1, "module-graphnet"], [2, "module-graphnet.constants"], [3, "module-graphnet.data"], [4, "module-graphnet.data.constants"], [5, "module-graphnet.data.dataconverter"], [6, "module-graphnet.data.dataloader"], [7, "module-graphnet.data.dataset"], [8, "module-graphnet.data.dataset.dataset"], [9, "module-graphnet.data.dataset.parquet"], [10, "module-graphnet.data.dataset.parquet.parquet_dataset"], [11, "module-graphnet.data.dataset.sqlite"], [12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"], [13, "module-graphnet.data.extractors"], [14, "module-graphnet.data.extractors.i3extractor"], [15, "module-graphnet.data.extractors.i3featureextractor"], [16, "module-graphnet.data.extractors.i3genericextractor"], [17, "module-graphnet.data.extractors.i3hybridrecoextractor"], [18, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"], [19, "module-graphnet.data.extractors.i3particleextractor"], [20, "module-graphnet.data.extractors.i3pisaextractor"], [21, "module-graphnet.data.extractors.i3quesoextractor"], [22, "module-graphnet.data.extractors.i3retroextractor"], [23, "module-graphnet.data.extractors.i3splinempeextractor"], [24, "module-graphnet.data.extractors.i3truthextractor"], [25, "module-graphnet.data.extractors.i3tumextractor"], [26, "module-graphnet.data.extractors.utilities"], [27, "module-graphnet.data.extractors.utilities.collections"], [28, "module-graphnet.data.extractors.utilities.frames"], [29, "module-graphnet.data.extractors.utilities.types"], [30, "module-graphnet.data.parquet"], [31, "module-graphnet.data.parquet.parquet_dataconverter"], [32, "module-graphnet.data.pipeline"], [33, "module-graphnet.data.sqlite"], [34, "module-graphnet.data.sqlite.sqlite_dataconverter"], [35, "module-graphnet.data.sqlite.sqlite_utilities"], [36, "module-graphnet.data.utilities"], [37, "module-graphnet.data.utilities.parquet_to_sqlite"], [38, "module-graphnet.data.utilities.random"], [39, "module-graphnet.data.utilities.string_selection_resolver"], [40, "module-graphnet.deployment"], [43, "module-graphnet.deployment.i3modules.graphnet_module"], [44, "module-graphnet.models"], [45, "module-graphnet.models.coarsening"], [46, "module-graphnet.models.components"], [47, "module-graphnet.models.components.layers"], [48, "module-graphnet.models.components.pool"], [49, "module-graphnet.models.detector"], [50, "module-graphnet.models.detector.detector"], [51, "module-graphnet.models.detector.icecube"], [52, "module-graphnet.models.detector.prometheus"], [53, "module-graphnet.models.gnn"], [54, "module-graphnet.models.gnn.convnet"], [55, "module-graphnet.models.gnn.dynedge"], [56, "module-graphnet.models.gnn.dynedge_jinst"], [57, "module-graphnet.models.gnn.dynedge_kaggle_tito"], [58, "module-graphnet.models.gnn.gnn"], [59, "module-graphnet.models.graphs"], [60, "module-graphnet.models.graphs.edges"], [61, "module-graphnet.models.graphs.edges.edges"], [62, "module-graphnet.models.graphs.graph_definition"], [63, "module-graphnet.models.graphs.graphs"], [64, "module-graphnet.models.graphs.nodes"], [65, "module-graphnet.models.graphs.nodes.nodes"], [66, "module-graphnet.models.model"], [67, "module-graphnet.models.standard_model"], [68, "module-graphnet.models.task"], [69, "module-graphnet.models.task.classification"], [70, "module-graphnet.models.task.reconstruction"], [71, "module-graphnet.models.task.task"], [72, "module-graphnet.models.utils"], [73, "module-graphnet.pisa"], [74, "module-graphnet.pisa.fitting"], [75, "module-graphnet.pisa.plotting"], [76, "module-graphnet.training"], [77, "module-graphnet.training.callbacks"], [78, "module-graphnet.training.labels"], [79, "module-graphnet.training.loss_functions"], [80, "module-graphnet.training.utils"], [81, "module-graphnet.training.weight_fitting"], [82, "module-graphnet.utilities"], [83, "module-graphnet.utilities.argparse"], [84, "module-graphnet.utilities.config"], [85, "module-graphnet.utilities.config.base_config"], [86, "module-graphnet.utilities.config.configurable"], [87, "module-graphnet.utilities.config.dataset_config"], [88, "module-graphnet.utilities.config.model_config"], [89, "module-graphnet.utilities.config.parsing"], [90, "module-graphnet.utilities.config.training_config"], [91, "module-graphnet.utilities.decorators"], [92, "module-graphnet.utilities.filesys"], [93, "module-graphnet.utilities.imports"], [94, "module-graphnet.utilities.logging"], [95, "module-graphnet.utilities.maths"]], "graphnet.constants": [[2, "module-graphnet.constants"]], "graphnet.data": [[3, "module-graphnet.data"]], "deepcore (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.DEEPCORE"]], "deepcore (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.DEEPCORE"]], "features (class in graphnet.data.constants)": [[4, "graphnet.data.constants.FEATURES"]], "icecube86 (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.ICECUBE86"]], "icecube86 (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.ICECUBE86"]], "kaggle (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.KAGGLE"]], "kaggle (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.KAGGLE"]], "prometheus (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.PROMETHEUS"]], "prometheus (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.PROMETHEUS"]], "truth (class in graphnet.data.constants)": [[4, "graphnet.data.constants.TRUTH"]], "upgrade (graphnet.data.constants.features attribute)": [[4, "graphnet.data.constants.FEATURES.UPGRADE"]], "upgrade (graphnet.data.constants.truth attribute)": [[4, "graphnet.data.constants.TRUTH.UPGRADE"]], "graphnet.data.constants": [[4, "module-graphnet.data.constants"]], "dataconverter (class in graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.DataConverter"]], "fileset (class in graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.FileSet"]], "cache_output_files() (in module graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.cache_output_files"]], "execute() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.execute"]], "file_suffix (graphnet.data.dataconverter.dataconverter property)": [[5, "graphnet.data.dataconverter.DataConverter.file_suffix"]], "gcd_file (graphnet.data.dataconverter.fileset attribute)": [[5, "graphnet.data.dataconverter.FileSet.gcd_file"]], "get_map_function() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.get_map_function"]], "graphnet.data.dataconverter": [[5, "module-graphnet.data.dataconverter"]], "i3_file (graphnet.data.dataconverter.fileset attribute)": [[5, "graphnet.data.dataconverter.FileSet.i3_file"]], "init_global_index() (in module graphnet.data.dataconverter)": [[5, "graphnet.data.dataconverter.init_global_index"]], "merge_files() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.merge_files"]], "save_data() (graphnet.data.dataconverter.dataconverter method)": [[5, "graphnet.data.dataconverter.DataConverter.save_data"]], "dataloader (class in graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.DataLoader"]], "collate_fn() (in module graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.collate_fn"]], "do_shuffle() (in module graphnet.data.dataloader)": [[6, "graphnet.data.dataloader.do_shuffle"]], "from_dataset_config() (graphnet.data.dataloader.dataloader class method)": [[6, "graphnet.data.dataloader.DataLoader.from_dataset_config"]], "graphnet.data.dataloader": [[6, "module-graphnet.data.dataloader"]], "graphnet.data.dataset": [[7, "module-graphnet.data.dataset"]], "columnmissingexception": [[8, "graphnet.data.dataset.dataset.ColumnMissingException"]], "dataset (class in graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.Dataset"]], "ensembledataset (class in graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.EnsembleDataset"]], "add_label() (graphnet.data.dataset.dataset.dataset method)": [[8, "graphnet.data.dataset.dataset.Dataset.add_label"]], "concatenate() (graphnet.data.dataset.dataset.dataset class method)": [[8, "graphnet.data.dataset.dataset.Dataset.concatenate"]], "from_config() (graphnet.data.dataset.dataset.dataset class method)": [[8, "graphnet.data.dataset.dataset.Dataset.from_config"]], "graphnet.data.dataset.dataset": [[8, "module-graphnet.data.dataset.dataset"]], "load_module() (in module graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.load_module"]], "parse_graph_definition() (in module graphnet.data.dataset.dataset)": [[8, "graphnet.data.dataset.dataset.parse_graph_definition"]], "path (graphnet.data.dataset.dataset.dataset property)": [[8, "graphnet.data.dataset.dataset.Dataset.path"]], "query_table() (graphnet.data.dataset.dataset.dataset method)": [[8, "graphnet.data.dataset.dataset.Dataset.query_table"]], "truth_table (graphnet.data.dataset.dataset.dataset property)": [[8, "graphnet.data.dataset.dataset.Dataset.truth_table"]], "graphnet.data.dataset.parquet": [[9, "module-graphnet.data.dataset.parquet"]], "parquetdataset (class in graphnet.data.dataset.parquet.parquet_dataset)": [[10, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset"]], "graphnet.data.dataset.parquet.parquet_dataset": [[10, "module-graphnet.data.dataset.parquet.parquet_dataset"]], "query_table() (graphnet.data.dataset.parquet.parquet_dataset.parquetdataset method)": [[10, "graphnet.data.dataset.parquet.parquet_dataset.ParquetDataset.query_table"]], "graphnet.data.dataset.sqlite": [[11, "module-graphnet.data.dataset.sqlite"]], "sqlitedataset (class in graphnet.data.dataset.sqlite.sqlite_dataset)": [[12, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset"]], "graphnet.data.dataset.sqlite.sqlite_dataset": [[12, "module-graphnet.data.dataset.sqlite.sqlite_dataset"]], "query_table() (graphnet.data.dataset.sqlite.sqlite_dataset.sqlitedataset method)": [[12, "graphnet.data.dataset.sqlite.sqlite_dataset.SQLiteDataset.query_table"]], "graphnet.data.extractors": [[13, "module-graphnet.data.extractors"]], "i3extractor (class in graphnet.data.extractors.i3extractor)": [[14, "graphnet.data.extractors.i3extractor.I3Extractor"]], "i3extractorcollection (class in graphnet.data.extractors.i3extractor)": [[14, "graphnet.data.extractors.i3extractor.I3ExtractorCollection"]], "graphnet.data.extractors.i3extractor": [[14, "module-graphnet.data.extractors.i3extractor"]], "name (graphnet.data.extractors.i3extractor.i3extractor property)": [[14, "graphnet.data.extractors.i3extractor.I3Extractor.name"]], "set_files() (graphnet.data.extractors.i3extractor.i3extractor method)": [[14, "graphnet.data.extractors.i3extractor.I3Extractor.set_files"]], "set_files() (graphnet.data.extractors.i3extractor.i3extractorcollection method)": [[14, "graphnet.data.extractors.i3extractor.I3ExtractorCollection.set_files"]], "i3featureextractor (class in graphnet.data.extractors.i3featureextractor)": [[15, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractor"]], "i3featureextractoricecube86 (class in graphnet.data.extractors.i3featureextractor)": [[15, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCube86"]], "i3featureextractoricecubedeepcore (class in graphnet.data.extractors.i3featureextractor)": [[15, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCubeDeepCore"]], "i3featureextractoricecubeupgrade (class in graphnet.data.extractors.i3featureextractor)": [[15, "graphnet.data.extractors.i3featureextractor.I3FeatureExtractorIceCubeUpgrade"]], "i3pulsenoisetruthflagicecubeupgrade (class in graphnet.data.extractors.i3featureextractor)": [[15, "graphnet.data.extractors.i3featureextractor.I3PulseNoiseTruthFlagIceCubeUpgrade"]], "graphnet.data.extractors.i3featureextractor": [[15, "module-graphnet.data.extractors.i3featureextractor"]], "i3genericextractor (class in graphnet.data.extractors.i3genericextractor)": [[16, "graphnet.data.extractors.i3genericextractor.I3GenericExtractor"]], "graphnet.data.extractors.i3genericextractor": [[16, "module-graphnet.data.extractors.i3genericextractor"]], "i3galacticplanehybridrecoextractor (class in graphnet.data.extractors.i3hybridrecoextractor)": [[17, "graphnet.data.extractors.i3hybridrecoextractor.I3GalacticPlaneHybridRecoExtractor"]], "graphnet.data.extractors.i3hybridrecoextractor": [[17, "module-graphnet.data.extractors.i3hybridrecoextractor"]], "i3ntmuonlabelextractor (class in graphnet.data.extractors.i3ntmuonlabelsextractor)": [[18, "graphnet.data.extractors.i3ntmuonlabelsextractor.I3NTMuonLabelExtractor"]], "graphnet.data.extractors.i3ntmuonlabelsextractor": [[18, "module-graphnet.data.extractors.i3ntmuonlabelsextractor"]], "i3particleextractor (class in graphnet.data.extractors.i3particleextractor)": [[19, "graphnet.data.extractors.i3particleextractor.I3ParticleExtractor"]], "graphnet.data.extractors.i3particleextractor": [[19, "module-graphnet.data.extractors.i3particleextractor"]], "i3pisaextractor (class in graphnet.data.extractors.i3pisaextractor)": [[20, "graphnet.data.extractors.i3pisaextractor.I3PISAExtractor"]], "graphnet.data.extractors.i3pisaextractor": [[20, "module-graphnet.data.extractors.i3pisaextractor"]], "i3quesoextractor (class in graphnet.data.extractors.i3quesoextractor)": [[21, "graphnet.data.extractors.i3quesoextractor.I3QUESOExtractor"]], "graphnet.data.extractors.i3quesoextractor": [[21, "module-graphnet.data.extractors.i3quesoextractor"]], "i3retroextractor (class in graphnet.data.extractors.i3retroextractor)": [[22, "graphnet.data.extractors.i3retroextractor.I3RetroExtractor"]], "graphnet.data.extractors.i3retroextractor": [[22, "module-graphnet.data.extractors.i3retroextractor"]], "i3splinempeicextractor (class in graphnet.data.extractors.i3splinempeextractor)": [[23, "graphnet.data.extractors.i3splinempeextractor.I3SplineMPEICExtractor"]], "graphnet.data.extractors.i3splinempeextractor": [[23, "module-graphnet.data.extractors.i3splinempeextractor"]], "i3truthextractor (class in graphnet.data.extractors.i3truthextractor)": [[24, "graphnet.data.extractors.i3truthextractor.I3TruthExtractor"]], "graphnet.data.extractors.i3truthextractor": [[24, "module-graphnet.data.extractors.i3truthextractor"]], "i3tumextractor (class in graphnet.data.extractors.i3tumextractor)": [[25, "graphnet.data.extractors.i3tumextractor.I3TUMExtractor"]], "graphnet.data.extractors.i3tumextractor": [[25, "module-graphnet.data.extractors.i3tumextractor"]], "graphnet.data.extractors.utilities": [[26, "module-graphnet.data.extractors.utilities"]], "flatten_nested_dictionary() (in module graphnet.data.extractors.utilities.collections)": [[27, "graphnet.data.extractors.utilities.collections.flatten_nested_dictionary"]], "graphnet.data.extractors.utilities.collections": [[27, "module-graphnet.data.extractors.utilities.collections"]], "serialise() (in module graphnet.data.extractors.utilities.collections)": [[27, "graphnet.data.extractors.utilities.collections.serialise"]], "transpose_list_of_dicts() (in module graphnet.data.extractors.utilities.collections)": [[27, "graphnet.data.extractors.utilities.collections.transpose_list_of_dicts"]], "frame_is_montecarlo() (in module graphnet.data.extractors.utilities.frames)": [[28, "graphnet.data.extractors.utilities.frames.frame_is_montecarlo"]], "frame_is_noise() (in module graphnet.data.extractors.utilities.frames)": [[28, "graphnet.data.extractors.utilities.frames.frame_is_noise"]], "get_om_keys_and_pulseseries() (in module graphnet.data.extractors.utilities.frames)": [[28, "graphnet.data.extractors.utilities.frames.get_om_keys_and_pulseseries"]], "graphnet.data.extractors.utilities.frames": [[28, "module-graphnet.data.extractors.utilities.frames"]], "break_cyclic_recursion() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.break_cyclic_recursion"]], "cast_object_to_pure_python() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.cast_object_to_pure_python"]], "cast_pulse_series_to_pure_python() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.cast_pulse_series_to_pure_python"]], "get_member_variables() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.get_member_variables"]], "graphnet.data.extractors.utilities.types": [[29, "module-graphnet.data.extractors.utilities.types"]], "is_boost_class() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.is_boost_class"]], "is_boost_enum() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.is_boost_enum"]], "is_icecube_class() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.is_icecube_class"]], "is_method() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.is_method"]], "is_type() (in module graphnet.data.extractors.utilities.types)": [[29, "graphnet.data.extractors.utilities.types.is_type"]], "graphnet.data.parquet": [[30, "module-graphnet.data.parquet"]], "parquetdataconverter (class in graphnet.data.parquet.parquet_dataconverter)": [[31, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter"]], "file_suffix (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter attribute)": [[31, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.file_suffix"]], "graphnet.data.parquet.parquet_dataconverter": [[31, "module-graphnet.data.parquet.parquet_dataconverter"]], "merge_files() (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter method)": [[31, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.merge_files"]], "save_data() (graphnet.data.parquet.parquet_dataconverter.parquetdataconverter method)": [[31, "graphnet.data.parquet.parquet_dataconverter.ParquetDataConverter.save_data"]], "insqlitepipeline (class in graphnet.data.pipeline)": [[32, "graphnet.data.pipeline.InSQLitePipeline"]], "graphnet.data.pipeline": [[32, "module-graphnet.data.pipeline"]], "graphnet.data.sqlite": [[33, "module-graphnet.data.sqlite"]], "sqlitedataconverter (class in graphnet.data.sqlite.sqlite_dataconverter)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter"]], "any_pulsemap_is_non_empty() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.any_pulsemap_is_non_empty"]], "construct_dataframe() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.construct_dataframe"]], "file_suffix (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter attribute)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.file_suffix"]], "graphnet.data.sqlite.sqlite_dataconverter": [[34, "module-graphnet.data.sqlite.sqlite_dataconverter"]], "is_mc_tree() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.is_mc_tree"]], "is_pulse_map() (in module graphnet.data.sqlite.sqlite_dataconverter)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.is_pulse_map"]], "merge_files() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.merge_files"]], "save_data() (graphnet.data.sqlite.sqlite_dataconverter.sqlitedataconverter method)": [[34, "graphnet.data.sqlite.sqlite_dataconverter.SQLiteDataConverter.save_data"]], "attach_index() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.attach_index"]], "create_table() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.create_table"]], "create_table_and_save_to_sql() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.create_table_and_save_to_sql"]], "database_exists() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.database_exists"]], "database_table_exists() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.database_table_exists"]], "graphnet.data.sqlite.sqlite_utilities": [[35, "module-graphnet.data.sqlite.sqlite_utilities"]], "run_sql_code() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.run_sql_code"]], "save_to_sql() (in module graphnet.data.sqlite.sqlite_utilities)": [[35, "graphnet.data.sqlite.sqlite_utilities.save_to_sql"]], "graphnet.data.utilities": [[36, "module-graphnet.data.utilities"]], "parquettosqliteconverter (class in graphnet.data.utilities.parquet_to_sqlite)": [[37, "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter"]], "graphnet.data.utilities.parquet_to_sqlite": [[37, "module-graphnet.data.utilities.parquet_to_sqlite"]], "run() (graphnet.data.utilities.parquet_to_sqlite.parquettosqliteconverter method)": [[37, "graphnet.data.utilities.parquet_to_sqlite.ParquetToSQLiteConverter.run"]], "graphnet.data.utilities.random": [[38, "module-graphnet.data.utilities.random"]], "pairwise_shuffle() (in module graphnet.data.utilities.random)": [[38, "graphnet.data.utilities.random.pairwise_shuffle"]], "stringselectionresolver (class in graphnet.data.utilities.string_selection_resolver)": [[39, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver"]], "graphnet.data.utilities.string_selection_resolver": [[39, "module-graphnet.data.utilities.string_selection_resolver"]], "resolve() (graphnet.data.utilities.string_selection_resolver.stringselectionresolver method)": [[39, "graphnet.data.utilities.string_selection_resolver.StringSelectionResolver.resolve"]], "graphnet.deployment": [[40, "module-graphnet.deployment"]], "graphneti3module (class in graphnet.deployment.i3modules.graphnet_module)": [[43, "graphnet.deployment.i3modules.graphnet_module.GraphNeTI3Module"]], "i3inferencemodule (class in graphnet.deployment.i3modules.graphnet_module)": [[43, "graphnet.deployment.i3modules.graphnet_module.I3InferenceModule"]], "i3pulsecleanermodule (class in graphnet.deployment.i3modules.graphnet_module)": [[43, "graphnet.deployment.i3modules.graphnet_module.I3PulseCleanerModule"]], "graphnet.deployment.i3modules.graphnet_module": [[43, "module-graphnet.deployment.i3modules.graphnet_module"]], "graphnet.models": [[44, "module-graphnet.models"]], "attributecoarsening (class in graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.AttributeCoarsening"]], "coarsening (class in graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.Coarsening"]], "customdomcoarsening (class in graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.CustomDOMCoarsening"]], "domandtimewindowcoarsening (class in graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.DOMAndTimeWindowCoarsening"]], "domcoarsening (class in graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.DOMCoarsening"]], "forward() (graphnet.models.coarsening.coarsening method)": [[45, "graphnet.models.coarsening.Coarsening.forward"]], "graphnet.models.coarsening": [[45, "module-graphnet.models.coarsening"]], "reduce_options (graphnet.models.coarsening.coarsening attribute)": [[45, "graphnet.models.coarsening.Coarsening.reduce_options"]], "unbatch_edge_index() (in module graphnet.models.coarsening)": [[45, "graphnet.models.coarsening.unbatch_edge_index"]], "graphnet.models.components": [[46, "module-graphnet.models.components"]], "dynedgeconv (class in graphnet.models.components.layers)": [[47, "graphnet.models.components.layers.DynEdgeConv"]], "dyntrans (class in graphnet.models.components.layers)": [[47, "graphnet.models.components.layers.DynTrans"]], "edgeconvtito (class in graphnet.models.components.layers)": [[47, "graphnet.models.components.layers.EdgeConvTito"]], "forward() (graphnet.models.components.layers.dynedgeconv method)": [[47, "graphnet.models.components.layers.DynEdgeConv.forward"]], "forward() (graphnet.models.components.layers.dyntrans method)": [[47, "graphnet.models.components.layers.DynTrans.forward"]], "forward() (graphnet.models.components.layers.edgeconvtito method)": [[47, "graphnet.models.components.layers.EdgeConvTito.forward"]], "graphnet.models.components.layers": [[47, "module-graphnet.models.components.layers"]], "message() (graphnet.models.components.layers.edgeconvtito method)": [[47, "graphnet.models.components.layers.EdgeConvTito.message"]], "reset_parameters() (graphnet.models.components.layers.edgeconvtito method)": [[47, "graphnet.models.components.layers.EdgeConvTito.reset_parameters"]], "graphnet.models.components.pool": [[48, "module-graphnet.models.components.pool"]], "group_by() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.group_by"]], "group_pulses_to_dom() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.group_pulses_to_dom"]], "group_pulses_to_pmt() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.group_pulses_to_pmt"]], "min_pool() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.min_pool"]], "min_pool_x() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.min_pool_x"]], "std_pool() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.std_pool"]], "std_pool_x() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.std_pool_x"]], "sum_pool() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.sum_pool"]], "sum_pool_and_distribute() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.sum_pool_and_distribute"]], "sum_pool_x() (in module graphnet.models.components.pool)": [[48, "graphnet.models.components.pool.sum_pool_x"]], "graphnet.models.detector": [[49, "module-graphnet.models.detector"]], "detector (class in graphnet.models.detector.detector)": [[50, "graphnet.models.detector.detector.Detector"]], "feature_map() (graphnet.models.detector.detector.detector method)": [[50, "graphnet.models.detector.detector.Detector.feature_map"]], "forward() (graphnet.models.detector.detector.detector method)": [[50, "graphnet.models.detector.detector.Detector.forward"]], "graphnet.models.detector.detector": [[50, "module-graphnet.models.detector.detector"]], "icecube86 (class in graphnet.models.detector.icecube)": [[51, "graphnet.models.detector.icecube.IceCube86"]], "icecubedeepcore (class in graphnet.models.detector.icecube)": [[51, "graphnet.models.detector.icecube.IceCubeDeepCore"]], "icecubekaggle (class in graphnet.models.detector.icecube)": [[51, "graphnet.models.detector.icecube.IceCubeKaggle"]], "icecubeupgrade (class in graphnet.models.detector.icecube)": [[51, "graphnet.models.detector.icecube.IceCubeUpgrade"]], "feature_map() (graphnet.models.detector.icecube.icecube86 method)": [[51, "graphnet.models.detector.icecube.IceCube86.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubedeepcore method)": [[51, "graphnet.models.detector.icecube.IceCubeDeepCore.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubekaggle method)": [[51, "graphnet.models.detector.icecube.IceCubeKaggle.feature_map"]], "feature_map() (graphnet.models.detector.icecube.icecubeupgrade method)": [[51, "graphnet.models.detector.icecube.IceCubeUpgrade.feature_map"]], "graphnet.models.detector.icecube": [[51, "module-graphnet.models.detector.icecube"]], "prometheus (class in graphnet.models.detector.prometheus)": [[52, "graphnet.models.detector.prometheus.Prometheus"]], "feature_map() (graphnet.models.detector.prometheus.prometheus method)": [[52, "graphnet.models.detector.prometheus.Prometheus.feature_map"]], "graphnet.models.detector.prometheus": [[52, "module-graphnet.models.detector.prometheus"]], "graphnet.models.gnn": [[53, "module-graphnet.models.gnn"]], "convnet (class in graphnet.models.gnn.convnet)": [[54, "graphnet.models.gnn.convnet.ConvNet"]], "forward() (graphnet.models.gnn.convnet.convnet method)": [[54, "graphnet.models.gnn.convnet.ConvNet.forward"]], "graphnet.models.gnn.convnet": [[54, "module-graphnet.models.gnn.convnet"]], "dynedge (class in graphnet.models.gnn.dynedge)": [[55, "graphnet.models.gnn.dynedge.DynEdge"]], "forward() (graphnet.models.gnn.dynedge.dynedge method)": [[55, "graphnet.models.gnn.dynedge.DynEdge.forward"]], "graphnet.models.gnn.dynedge": [[55, "module-graphnet.models.gnn.dynedge"]], "dynedgejinst (class in graphnet.models.gnn.dynedge_jinst)": [[56, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST"]], "forward() (graphnet.models.gnn.dynedge_jinst.dynedgejinst method)": [[56, "graphnet.models.gnn.dynedge_jinst.DynEdgeJINST.forward"]], "graphnet.models.gnn.dynedge_jinst": [[56, "module-graphnet.models.gnn.dynedge_jinst"]], "dynedgetito (class in graphnet.models.gnn.dynedge_kaggle_tito)": [[57, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO"]], "forward() (graphnet.models.gnn.dynedge_kaggle_tito.dynedgetito method)": [[57, "graphnet.models.gnn.dynedge_kaggle_tito.DynEdgeTITO.forward"]], "graphnet.models.gnn.dynedge_kaggle_tito": [[57, "module-graphnet.models.gnn.dynedge_kaggle_tito"]], "gnn (class in graphnet.models.gnn.gnn)": [[58, "graphnet.models.gnn.gnn.GNN"]], "forward() (graphnet.models.gnn.gnn.gnn method)": [[58, "graphnet.models.gnn.gnn.GNN.forward"]], "graphnet.models.gnn.gnn": [[58, "module-graphnet.models.gnn.gnn"]], "nb_inputs (graphnet.models.gnn.gnn.gnn property)": [[58, "graphnet.models.gnn.gnn.GNN.nb_inputs"]], "nb_outputs (graphnet.models.gnn.gnn.gnn property)": [[58, "graphnet.models.gnn.gnn.GNN.nb_outputs"]], "graphnet.models.graphs": [[59, "module-graphnet.models.graphs"]], "graphnet.models.graphs.edges": [[60, "module-graphnet.models.graphs.edges"]], "edgedefinition (class in graphnet.models.graphs.edges.edges)": [[61, "graphnet.models.graphs.edges.edges.EdgeDefinition"]], "euclideanedges (class in graphnet.models.graphs.edges.edges)": [[61, "graphnet.models.graphs.edges.edges.EuclideanEdges"]], "knnedges (class in graphnet.models.graphs.edges.edges)": [[61, "graphnet.models.graphs.edges.edges.KNNEdges"]], "radialedges (class in graphnet.models.graphs.edges.edges)": [[61, "graphnet.models.graphs.edges.edges.RadialEdges"]], "forward() (graphnet.models.graphs.edges.edges.edgedefinition method)": [[61, "graphnet.models.graphs.edges.edges.EdgeDefinition.forward"]], "graphnet.models.graphs.edges.edges": [[61, "module-graphnet.models.graphs.edges.edges"]], "graphdefinition (class in graphnet.models.graphs.graph_definition)": [[62, "graphnet.models.graphs.graph_definition.GraphDefinition"]], "forward() (graphnet.models.graphs.graph_definition.graphdefinition method)": [[62, "graphnet.models.graphs.graph_definition.GraphDefinition.forward"]], "graphnet.models.graphs.graph_definition": [[62, "module-graphnet.models.graphs.graph_definition"]], "knngraph (class in graphnet.models.graphs.graphs)": [[63, "graphnet.models.graphs.graphs.KNNGraph"]], "graphnet.models.graphs.graphs": [[63, "module-graphnet.models.graphs.graphs"]], "graphnet.models.graphs.nodes": [[64, "module-graphnet.models.graphs.nodes"]], "nodedefinition (class in graphnet.models.graphs.nodes.nodes)": [[65, "graphnet.models.graphs.nodes.nodes.NodeDefinition"]], "nodesaspulses (class in graphnet.models.graphs.nodes.nodes)": [[65, "graphnet.models.graphs.nodes.nodes.NodesAsPulses"]], "forward() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[65, "graphnet.models.graphs.nodes.nodes.NodeDefinition.forward"]], "graphnet.models.graphs.nodes.nodes": [[65, "module-graphnet.models.graphs.nodes.nodes"]], "nb_outputs (graphnet.models.graphs.nodes.nodes.nodedefinition property)": [[65, "graphnet.models.graphs.nodes.nodes.NodeDefinition.nb_outputs"]], "set_number_of_inputs() (graphnet.models.graphs.nodes.nodes.nodedefinition method)": [[65, "graphnet.models.graphs.nodes.nodes.NodeDefinition.set_number_of_inputs"]], "model (class in graphnet.models.model)": [[66, "graphnet.models.model.Model"]], "fit() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.fit"]], "forward() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.forward"]], "from_config() (graphnet.models.model.model class method)": [[66, "graphnet.models.model.Model.from_config"]], "graphnet.models.model": [[66, "module-graphnet.models.model"]], "load() (graphnet.models.model.model class method)": [[66, "graphnet.models.model.Model.load"]], "load_state_dict() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.load_state_dict"]], "predict() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.predict"]], "predict_as_dataframe() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.predict_as_dataframe"]], "save() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.save"]], "save_state_dict() (graphnet.models.model.model method)": [[66, "graphnet.models.model.Model.save_state_dict"]], "standardmodel (class in graphnet.models.standard_model)": [[67, "graphnet.models.standard_model.StandardModel"]], "compute_loss() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.compute_loss"]], "configure_optimizers() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.configure_optimizers"]], "forward() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.forward"]], "graphnet.models.standard_model": [[67, "module-graphnet.models.standard_model"]], "inference() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.inference"]], "predict() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.predict"]], "predict_as_dataframe() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.predict_as_dataframe"]], "prediction_labels (graphnet.models.standard_model.standardmodel property)": [[67, "graphnet.models.standard_model.StandardModel.prediction_labels"]], "shared_step() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.shared_step"]], "target_labels (graphnet.models.standard_model.standardmodel property)": [[67, "graphnet.models.standard_model.StandardModel.target_labels"]], "train() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.train"]], "training_step() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.training_step"]], "validation_step() (graphnet.models.standard_model.standardmodel method)": [[67, "graphnet.models.standard_model.StandardModel.validation_step"]], "graphnet.models.task": [[68, "module-graphnet.models.task"]], "binaryclassificationtask (class in graphnet.models.task.classification)": [[69, "graphnet.models.task.classification.BinaryClassificationTask"]], "binaryclassificationtasklogits (class in graphnet.models.task.classification)": [[69, "graphnet.models.task.classification.BinaryClassificationTaskLogits"]], "multiclassclassificationtask (class in graphnet.models.task.classification)": [[69, "graphnet.models.task.classification.MulticlassClassificationTask"]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTask.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_prediction_labels"]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtask attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTask.default_target_labels"]], "default_target_labels (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTaskLogits.default_target_labels"]], "graphnet.models.task.classification": [[69, "module-graphnet.models.task.classification"]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtask attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTask.nb_inputs"]], "nb_inputs (graphnet.models.task.classification.binaryclassificationtasklogits attribute)": [[69, "graphnet.models.task.classification.BinaryClassificationTaskLogits.nb_inputs"]], "azimuthreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstruction"]], "azimuthreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa"]], "directionreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa"]], "energyreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.EnergyReconstruction"]], "energyreconstructionwithpower (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower"]], "energyreconstructionwithuncertainty (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty"]], "inelasticityreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.InelasticityReconstruction"]], "positionreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.PositionReconstruction"]], "timereconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.TimeReconstruction"]], "vertexreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.VertexReconstruction"]], "zenithreconstruction (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.ZenithReconstruction"]], "zenithreconstructionwithkappa (class in graphnet.models.task.reconstruction)": [[70, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa"]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.PositionReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[70, "graphnet.models.task.reconstruction.TimeReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.VertexReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstruction.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_prediction_labels"]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.InelasticityReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.PositionReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.timereconstruction attribute)": [[70, "graphnet.models.task.reconstruction.TimeReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.VertexReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstruction.default_target_labels"]], "default_target_labels (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.default_target_labels"]], "graphnet.models.task.reconstruction": [[70, "module-graphnet.models.task.reconstruction"]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.azimuthreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.AzimuthReconstructionWithKappa.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.directionreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.DirectionReconstructionWithKappa.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithpower attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithPower.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.energyreconstructionwithuncertainty attribute)": [[70, "graphnet.models.task.reconstruction.EnergyReconstructionWithUncertainty.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.inelasticityreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.InelasticityReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.positionreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.PositionReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.timereconstruction attribute)": [[70, "graphnet.models.task.reconstruction.TimeReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.vertexreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.VertexReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstruction attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstruction.nb_inputs"]], "nb_inputs (graphnet.models.task.reconstruction.zenithreconstructionwithkappa attribute)": [[70, "graphnet.models.task.reconstruction.ZenithReconstructionWithKappa.nb_inputs"]], "identitytask (class in graphnet.models.task.task)": [[71, "graphnet.models.task.task.IdentityTask"]], "task (class in graphnet.models.task.task)": [[71, "graphnet.models.task.task.Task"]], "compute_loss() (graphnet.models.task.task.task method)": [[71, "graphnet.models.task.task.Task.compute_loss"]], "default_prediction_labels (graphnet.models.task.task.identitytask property)": [[71, "graphnet.models.task.task.IdentityTask.default_prediction_labels"]], "default_prediction_labels (graphnet.models.task.task.task property)": [[71, "graphnet.models.task.task.Task.default_prediction_labels"]], "default_target_labels (graphnet.models.task.task.identitytask property)": [[71, "graphnet.models.task.task.IdentityTask.default_target_labels"]], "default_target_labels (graphnet.models.task.task.task property)": [[71, "graphnet.models.task.task.Task.default_target_labels"]], "forward() (graphnet.models.task.task.task method)": [[71, "graphnet.models.task.task.Task.forward"]], "graphnet.models.task.task": [[71, "module-graphnet.models.task.task"]], "inference() (graphnet.models.task.task.task method)": [[71, "graphnet.models.task.task.Task.inference"]], "nb_inputs (graphnet.models.task.task.identitytask property)": [[71, "graphnet.models.task.task.IdentityTask.nb_inputs"]], "nb_inputs (graphnet.models.task.task.task property)": [[71, "graphnet.models.task.task.Task.nb_inputs"]], "train_eval() (graphnet.models.task.task.task method)": [[71, "graphnet.models.task.task.Task.train_eval"]], "calculate_distance_matrix() (in module graphnet.models.utils)": [[72, "graphnet.models.utils.calculate_distance_matrix"]], "calculate_xyzt_homophily() (in module graphnet.models.utils)": [[72, "graphnet.models.utils.calculate_xyzt_homophily"]], "graphnet.models.utils": [[72, "module-graphnet.models.utils"]], "knn_graph_batch() (in module graphnet.models.utils)": [[72, "graphnet.models.utils.knn_graph_batch"]], "graphnet.pisa": [[73, "module-graphnet.pisa"]], "contourfitter (class in graphnet.pisa.fitting)": [[74, "graphnet.pisa.fitting.ContourFitter"]], "weightfitter (class in graphnet.pisa.fitting)": [[74, "graphnet.pisa.fitting.WeightFitter"]], "config_updater() (in module graphnet.pisa.fitting)": [[74, "graphnet.pisa.fitting.config_updater"]], "fit_1d_contour() (graphnet.pisa.fitting.contourfitter method)": [[74, "graphnet.pisa.fitting.ContourFitter.fit_1d_contour"]], "fit_2d_contour() (graphnet.pisa.fitting.contourfitter method)": [[74, "graphnet.pisa.fitting.ContourFitter.fit_2d_contour"]], "fit_weights() (graphnet.pisa.fitting.weightfitter method)": [[74, "graphnet.pisa.fitting.WeightFitter.fit_weights"]], "graphnet.pisa.fitting": [[74, "module-graphnet.pisa.fitting"]], "graphnet.pisa.plotting": [[75, "module-graphnet.pisa.plotting"]], "plot_1d_contour() (in module graphnet.pisa.plotting)": [[75, "graphnet.pisa.plotting.plot_1D_contour"]], "plot_2d_contour() (in module graphnet.pisa.plotting)": [[75, "graphnet.pisa.plotting.plot_2D_contour"]], "read_entry() (in module graphnet.pisa.plotting)": [[75, "graphnet.pisa.plotting.read_entry"]], "graphnet.training": [[76, "module-graphnet.training"]], "piecewiselinearlr (class in graphnet.training.callbacks)": [[77, "graphnet.training.callbacks.PiecewiseLinearLR"]], "progressbar (class in graphnet.training.callbacks)": [[77, "graphnet.training.callbacks.ProgressBar"]], "get_lr() (graphnet.training.callbacks.piecewiselinearlr method)": [[77, "graphnet.training.callbacks.PiecewiseLinearLR.get_lr"]], "get_metrics() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.get_metrics"]], "graphnet.training.callbacks": [[77, "module-graphnet.training.callbacks"]], "init_predict_tqdm() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.init_predict_tqdm"]], "init_test_tqdm() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.init_test_tqdm"]], "init_train_tqdm() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.init_train_tqdm"]], "init_validation_tqdm() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.init_validation_tqdm"]], "on_train_epoch_end() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.on_train_epoch_end"]], "on_train_epoch_start() (graphnet.training.callbacks.progressbar method)": [[77, "graphnet.training.callbacks.ProgressBar.on_train_epoch_start"]], "direction (class in graphnet.training.labels)": [[78, "graphnet.training.labels.Direction"]], "label (class in graphnet.training.labels)": [[78, "graphnet.training.labels.Label"]], "graphnet.training.labels": [[78, "module-graphnet.training.labels"]], "key (graphnet.training.labels.label property)": [[78, "graphnet.training.labels.Label.key"]], "binarycrossentropyloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.BinaryCrossEntropyLoss"]], "crossentropyloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.CrossEntropyLoss"]], "euclideandistanceloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.EuclideanDistanceLoss"]], "logcmk (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.LogCMK"]], "logcoshloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.LogCoshLoss"]], "lossfunction (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.LossFunction"]], "mseloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.MSELoss"]], "rmseloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.RMSELoss"]], "vonmisesfisher2dloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.VonMisesFisher2DLoss"]], "vonmisesfisher3dloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.VonMisesFisher3DLoss"]], "vonmisesfisherloss (class in graphnet.training.loss_functions)": [[79, "graphnet.training.loss_functions.VonMisesFisherLoss"]], "backward() (graphnet.training.loss_functions.logcmk static method)": [[79, "graphnet.training.loss_functions.LogCMK.backward"]], "forward() (graphnet.training.loss_functions.logcmk static method)": [[79, "graphnet.training.loss_functions.LogCMK.forward"]], "forward() (graphnet.training.loss_functions.lossfunction method)": [[79, "graphnet.training.loss_functions.LossFunction.forward"]], "graphnet.training.loss_functions": [[79, "module-graphnet.training.loss_functions"]], "log_cmk() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[79, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk"]], "log_cmk_approx() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[79, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_approx"]], "log_cmk_exact() (graphnet.training.loss_functions.vonmisesfisherloss class method)": [[79, "graphnet.training.loss_functions.VonMisesFisherLoss.log_cmk_exact"]], "collate_fn() (in module graphnet.training.utils)": [[80, "graphnet.training.utils.collate_fn"]], "get_predictions() (in module graphnet.training.utils)": [[80, "graphnet.training.utils.get_predictions"]], "graphnet.training.utils": [[80, "module-graphnet.training.utils"]], "make_dataloader() (in module graphnet.training.utils)": [[80, "graphnet.training.utils.make_dataloader"]], "make_train_validation_dataloader() (in module graphnet.training.utils)": [[80, "graphnet.training.utils.make_train_validation_dataloader"]], "save_results() (in module graphnet.training.utils)": [[80, "graphnet.training.utils.save_results"]], "bjoernlow (class in graphnet.training.weight_fitting)": [[81, "graphnet.training.weight_fitting.BjoernLow"]], "uniform (class in graphnet.training.weight_fitting)": [[81, "graphnet.training.weight_fitting.Uniform"]], "weightfitter (class in graphnet.training.weight_fitting)": [[81, "graphnet.training.weight_fitting.WeightFitter"]], "fit() (graphnet.training.weight_fitting.weightfitter method)": [[81, "graphnet.training.weight_fitting.WeightFitter.fit"]], "graphnet.training.weight_fitting": [[81, "module-graphnet.training.weight_fitting"]], "graphnet.utilities": [[82, "module-graphnet.utilities"]], "argumentparser (class in graphnet.utilities.argparse)": [[83, "graphnet.utilities.argparse.ArgumentParser"]], "options (class in graphnet.utilities.argparse)": [[83, "graphnet.utilities.argparse.Options"]], "contains() (graphnet.utilities.argparse.options method)": [[83, "graphnet.utilities.argparse.Options.contains"]], "graphnet.utilities.argparse": [[83, "module-graphnet.utilities.argparse"]], "pop_default() (graphnet.utilities.argparse.options method)": [[83, "graphnet.utilities.argparse.Options.pop_default"]], "standard_arguments (graphnet.utilities.argparse.argumentparser attribute)": [[83, "graphnet.utilities.argparse.ArgumentParser.standard_arguments"]], "with_standard_arguments() (graphnet.utilities.argparse.argumentparser method)": [[83, "graphnet.utilities.argparse.ArgumentParser.with_standard_arguments"]], "graphnet.utilities.config": [[84, "module-graphnet.utilities.config"]], "baseconfig (class in graphnet.utilities.config.base_config)": [[85, "graphnet.utilities.config.base_config.BaseConfig"]], "as_dict() (graphnet.utilities.config.base_config.baseconfig method)": [[85, "graphnet.utilities.config.base_config.BaseConfig.as_dict"]], "dump() (graphnet.utilities.config.base_config.baseconfig method)": [[85, "graphnet.utilities.config.base_config.BaseConfig.dump"]], "get_all_argument_values() (in module graphnet.utilities.config.base_config)": [[85, "graphnet.utilities.config.base_config.get_all_argument_values"]], "graphnet.utilities.config.base_config": [[85, "module-graphnet.utilities.config.base_config"]], "load() (graphnet.utilities.config.base_config.baseconfig class method)": [[85, "graphnet.utilities.config.base_config.BaseConfig.load"]], "model_config (graphnet.utilities.config.base_config.baseconfig attribute)": [[85, "graphnet.utilities.config.base_config.BaseConfig.model_config"]], "model_fields (graphnet.utilities.config.base_config.baseconfig attribute)": [[85, "graphnet.utilities.config.base_config.BaseConfig.model_fields"]], "configurable (class in graphnet.utilities.config.configurable)": [[86, "graphnet.utilities.config.configurable.Configurable"]], "config (graphnet.utilities.config.configurable.configurable property)": [[86, "graphnet.utilities.config.configurable.Configurable.config"]], "from_config() (graphnet.utilities.config.configurable.configurable class method)": [[86, "graphnet.utilities.config.configurable.Configurable.from_config"]], "graphnet.utilities.config.configurable": [[86, "module-graphnet.utilities.config.configurable"]], "save_config() (graphnet.utilities.config.configurable.configurable method)": [[86, "graphnet.utilities.config.configurable.Configurable.save_config"]], "datasetconfig (class in graphnet.utilities.config.dataset_config)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig"]], "datasetconfigsaverabcmeta (class in graphnet.utilities.config.dataset_config)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfigSaverABCMeta"]], "datasetconfigsavermeta (class in graphnet.utilities.config.dataset_config)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfigSaverMeta"]], "as_dict() (graphnet.utilities.config.dataset_config.datasetconfig method)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.as_dict"]], "features (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.features"]], "graph_definition (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.graph_definition"]], "graphnet.utilities.config.dataset_config": [[87, "module-graphnet.utilities.config.dataset_config"]], "index_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.index_column"]], "loss_weight_column (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_column"]], "loss_weight_default_value (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_default_value"]], "loss_weight_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.loss_weight_table"]], "model_config (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.model_config"]], "model_fields (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.model_fields"]], "node_truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth"]], "node_truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.node_truth_table"]], "path (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.path"]], "pulsemaps (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.pulsemaps"]], "save_dataset_config() (in module graphnet.utilities.config.dataset_config)": [[87, "graphnet.utilities.config.dataset_config.save_dataset_config"]], "seed (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.seed"]], "selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.selection"]], "string_selection (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.string_selection"]], "truth (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.truth"]], "truth_table (graphnet.utilities.config.dataset_config.datasetconfig attribute)": [[87, "graphnet.utilities.config.dataset_config.DatasetConfig.truth_table"]], "modelconfig (class in graphnet.utilities.config.model_config)": [[88, "graphnet.utilities.config.model_config.ModelConfig"]], "modelconfigsaverabc (class in graphnet.utilities.config.model_config)": [[88, "graphnet.utilities.config.model_config.ModelConfigSaverABC"]], "modelconfigsavermeta (class in graphnet.utilities.config.model_config)": [[88, "graphnet.utilities.config.model_config.ModelConfigSaverMeta"]], "arguments (graphnet.utilities.config.model_config.modelconfig attribute)": [[88, "graphnet.utilities.config.model_config.ModelConfig.arguments"]], "as_dict() (graphnet.utilities.config.model_config.modelconfig method)": [[88, "graphnet.utilities.config.model_config.ModelConfig.as_dict"]], "class_name (graphnet.utilities.config.model_config.modelconfig attribute)": [[88, "graphnet.utilities.config.model_config.ModelConfig.class_name"]], "graphnet.utilities.config.model_config": [[88, "module-graphnet.utilities.config.model_config"]], "model_config (graphnet.utilities.config.model_config.modelconfig attribute)": [[88, "graphnet.utilities.config.model_config.ModelConfig.model_config"]], "model_fields (graphnet.utilities.config.model_config.modelconfig attribute)": [[88, "graphnet.utilities.config.model_config.ModelConfig.model_fields"]], "save_model_config() (in module graphnet.utilities.config.model_config)": [[88, "graphnet.utilities.config.model_config.save_model_config"]], "get_all_grapnet_classes() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.get_all_grapnet_classes"]], "get_graphnet_classes() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.get_graphnet_classes"]], "graphnet.utilities.config.parsing": [[89, "module-graphnet.utilities.config.parsing"]], "is_graphnet_class() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.is_graphnet_class"]], "is_graphnet_module() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.is_graphnet_module"]], "list_all_submodules() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.list_all_submodules"]], "traverse_and_apply() (in module graphnet.utilities.config.parsing)": [[89, "graphnet.utilities.config.parsing.traverse_and_apply"]], "trainingconfig (class in graphnet.utilities.config.training_config)": [[90, "graphnet.utilities.config.training_config.TrainingConfig"]], "dataloader (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.dataloader"]], "early_stopping_patience (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.early_stopping_patience"]], "fit (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.fit"]], "graphnet.utilities.config.training_config": [[90, "module-graphnet.utilities.config.training_config"]], "model_config (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.model_config"]], "model_fields (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.model_fields"]], "target (graphnet.utilities.config.training_config.trainingconfig attribute)": [[90, "graphnet.utilities.config.training_config.TrainingConfig.target"]], "graphnet.utilities.decorators": [[91, "module-graphnet.utilities.decorators"]], "find_i3_files() (in module graphnet.utilities.filesys)": [[92, "graphnet.utilities.filesys.find_i3_files"]], "graphnet.utilities.filesys": [[92, "module-graphnet.utilities.filesys"]], "has_extension() (in module graphnet.utilities.filesys)": [[92, "graphnet.utilities.filesys.has_extension"]], "is_gcd_file() (in module graphnet.utilities.filesys)": [[92, "graphnet.utilities.filesys.is_gcd_file"]], "is_i3_file() (in module graphnet.utilities.filesys)": [[92, "graphnet.utilities.filesys.is_i3_file"]], "graphnet.utilities.imports": [[93, "module-graphnet.utilities.imports"]], "has_icecube_package() (in module graphnet.utilities.imports)": [[93, "graphnet.utilities.imports.has_icecube_package"]], "has_pisa_package() (in module graphnet.utilities.imports)": [[93, "graphnet.utilities.imports.has_pisa_package"]], "has_torch_package() (in module graphnet.utilities.imports)": [[93, "graphnet.utilities.imports.has_torch_package"]], "requires_icecube() (in module graphnet.utilities.imports)": [[93, "graphnet.utilities.imports.requires_icecube"]], "logger (class in graphnet.utilities.logging)": [[94, "graphnet.utilities.logging.Logger"]], "repeatfilter (class in graphnet.utilities.logging)": [[94, "graphnet.utilities.logging.RepeatFilter"]], "critical() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.critical"]], "debug() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.debug"]], "error() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.error"]], "file_handlers (graphnet.utilities.logging.logger property)": [[94, "graphnet.utilities.logging.Logger.file_handlers"]], "filter() (graphnet.utilities.logging.repeatfilter method)": [[94, "graphnet.utilities.logging.RepeatFilter.filter"]], "graphnet.utilities.logging": [[94, "module-graphnet.utilities.logging"]], "handlers (graphnet.utilities.logging.logger property)": [[94, "graphnet.utilities.logging.Logger.handlers"]], "info() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.info"]], "nb_repeats_allowed (graphnet.utilities.logging.repeatfilter attribute)": [[94, "graphnet.utilities.logging.RepeatFilter.nb_repeats_allowed"]], "setlevel() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.setLevel"]], "stream_handlers (graphnet.utilities.logging.logger property)": [[94, "graphnet.utilities.logging.Logger.stream_handlers"]], "warning() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.warning"]], "warning_once() (graphnet.utilities.logging.logger method)": [[94, "graphnet.utilities.logging.Logger.warning_once"]], "eps_like() (in module graphnet.utilities.maths)": [[95, "graphnet.utilities.maths.eps_like"]], "graphnet.utilities.maths": [[95, "module-graphnet.utilities.maths"]]}}) \ No newline at end of file diff --git a/sitemap.xml b/sitemap.xml index 1332adef5..b44cf6991 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -1 +1 @@ -https://graphnet-team.github.io/graphnetabout.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataloader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.parquet_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.sqlite_dataset_perturbed.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3featureextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3genericextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3particleextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3retroextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3truthextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3tumextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.collections.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.frames.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.types.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.parquet_dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pipeline.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.sqlite_dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.random.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.graphnet_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.coarsening.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.layers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.pool.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.convnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graph_definition.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.classification.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.reconstruction.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.plotting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.callbacks.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.labels.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.loss_functions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.weight_fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.argparse.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.base_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.configurable.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.dataset_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.model_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.parsing.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.training_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.decorators.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.filesys.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.imports.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.logging.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.maths.htmlhttps://graphnet-team.github.io/graphnetapi/modules.htmlhttps://graphnet-team.github.io/graphnetcontribute.htmlhttps://graphnet-team.github.io/graphnetindex.htmlhttps://graphnet-team.github.io/graphnetinstall.htmlhttps://graphnet-team.github.io/graphnetgenindex.htmlhttps://graphnet-team.github.io/graphnetpy-modindex.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/constants.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataloader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/parquet/parquet_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/sqlite/sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/sqlite/sqlite_dataset_perturbed.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3featureextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3genericextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3particleextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3retroextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3truthextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3tumextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/collections.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/frames.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/types.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/parquet/parquet_dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/pipeline.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/sqlite_dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/random.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/i3modules/graphnet_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/coarsening.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/layers.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/pool.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/detector.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/icecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/prometheus.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/convnet.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/gnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/edges.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graph_definition.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graphs.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/nodes/nodes.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/classification.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/reconstruction.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/task.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/pisa/fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/pisa/plotting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/callbacks.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/labels.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/loss_functions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/weight_fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/argparse.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/base_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/configurable.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/dataset_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/model_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/parsing.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/training_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/filesys.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/imports.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/logging.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/maths.htmlhttps://graphnet-team.github.io/graphnet_modules/index.htmlhttps://graphnet-team.github.io/graphnetsearch.html \ No newline at end of file +https://graphnet-team.github.io/graphnetabout.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.constants.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataloader.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.parquet.parquet_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.dataset.sqlite.sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3extractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3featureextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3genericextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3particleextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3retroextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3truthextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.i3tumextractor.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.collections.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.frames.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.extractors.utilities.types.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.parquet.parquet_dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.pipeline.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.sqlite_dataconverter.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.sqlite.sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.random.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.data.utilities.string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.deployer.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.deployment.i3modules.graphnet_module.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.coarsening.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.layers.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.components.pool.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.detector.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.icecube.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.detector.prometheus.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.convnet.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.gnn.gnn.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.edges.edges.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graph_definition.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.graphs.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.graphs.nodes.nodes.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.standard_model.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.classification.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.reconstruction.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.task.task.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.models.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.pisa.plotting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.callbacks.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.labels.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.loss_functions.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.utils.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.training.weight_fitting.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.argparse.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.base_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.configurable.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.dataset_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.model_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.parsing.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.config.training_config.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.decorators.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.filesys.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.imports.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.logging.htmlhttps://graphnet-team.github.io/graphnetapi/graphnet.utilities.maths.htmlhttps://graphnet-team.github.io/graphnetapi/modules.htmlhttps://graphnet-team.github.io/graphnetcontribute.htmlhttps://graphnet-team.github.io/graphnetindex.htmlhttps://graphnet-team.github.io/graphnetinstall.htmlhttps://graphnet-team.github.io/graphnetgenindex.htmlhttps://graphnet-team.github.io/graphnetpy-modindex.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/constants.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataloader.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/parquet/parquet_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/dataset/sqlite/sqlite_dataset.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3extractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3featureextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3genericextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3hybridrecoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3ntmuonlabelsextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3particleextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3pisaextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3quesoextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3retroextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3splinempeextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3truthextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/i3tumextractor.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/collections.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/frames.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/extractors/utilities/types.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/parquet/parquet_dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/pipeline.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/sqlite_dataconverter.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/sqlite/sqlite_utilities.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/parquet_to_sqlite.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/random.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/data/utilities/string_selection_resolver.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/deployment/i3modules/graphnet_module.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/coarsening.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/layers.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/components/pool.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/detector.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/icecube.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/detector/prometheus.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/convnet.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_jinst.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/dynedge_kaggle_tito.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/gnn/gnn.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/edges/edges.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graph_definition.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/graphs.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/graphs/nodes/nodes.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/standard_model.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/classification.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/reconstruction.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/task/task.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/models/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/pisa/fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/pisa/plotting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/callbacks.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/labels.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/loss_functions.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/utils.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/training/weight_fitting.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/argparse.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/base_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/configurable.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/dataset_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/model_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/parsing.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/config/training_config.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/filesys.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/imports.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/logging.htmlhttps://graphnet-team.github.io/graphnet_modules/graphnet/utilities/maths.htmlhttps://graphnet-team.github.io/graphnet_modules/index.htmlhttps://graphnet-team.github.io/graphnetsearch.html \ No newline at end of file