-
Notifications
You must be signed in to change notification settings - Fork 821
/
Copy pathLongestChunkedPalindromeDecomposition.java
57 lines (53 loc) · 1.82 KB
/
LongestChunkedPalindromeDecomposition.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* (C) 2024 YourCompanyName */
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 17/04/2020 Return the largest possible k such that there exists
* a_1, a_2, ..., a_k such that:
*
* <p>Each a_i is a non-empty string; Their concatenation a_1 + a_2 + ... + a_k is equal to text;
* For all 1 <= i <= k, a_i = a_{k+1 - i}.
*
* <p>Example 1:
*
* <p>Input: text = "ghiabcdefhelloadamhelloabcdefghi" Output: 7 Explanation: We can split the
* string on "(ghi)(abcdef)(hello)(adam)(hello)(abcdef)(ghi)". Example 2:
*
* <p>Input: text = "merchant" Output: 1 Explanation: We can split the string on "(merchant)".
* Example 3:
*
* <p>Input: text = "antaprezatepzapreanta" Output: 11 Explanation: We can split the string on
* "(a)(nt)(a)(pre)(za)(tpe)(za)(pre)(a)(nt)(a)". Example 4:
*
* <p>Input: text = "aaa" Output: 3 Explanation: We can split the string on "(a)(a)(a)".
*
* <p>Constraints:
*
* <p>text consists only of lowercase English characters. 1 <= text.length <= 1000
*/
public class LongestChunkedPalindromeDecomposition {
public static void main(String[] args) {
System.out.println(
new LongestChunkedPalindromeDecomposition().longestDecomposition("merchant"));
}
private int[] DP;
public int longestDecomposition(String text) {
DP = new int[text.length()];
return dp(0, text.length() - 1, text);
}
private int dp(int i, int e, String text) {
if (i > e) return 0;
else if (i == e) return 1;
else if (DP[i] > 0) return DP[i];
else {
for (int j = e; j > i; j--) {
if (text.charAt(j) == text.charAt(i)) {
if (text.substring(j, e + 1).equals(text.substring(i, i + (e - j + 1)))) {
DP[i] = Math.max(DP[i], dp(i + (e - j + 1), j - 1, text) + 2);
}
}
}
DP[i] = DP[i] == 0 ? 1 : DP[i];
return DP[i];
}
}
}