-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathrun_inference.py
60 lines (45 loc) · 1.81 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs FFN inference within a dense bounding box.
Inference is performed within a single process.
"""
import os
from google.protobuf import text_format
from absl import app
from absl import flags
from tensorflow.io import gfile
from ffn.utils import bounding_box_pb2
from ffn.inference import inference_flags
from ffn.inference import runner as runner_mod
FLAGS = flags.FLAGS
flags.DEFINE_string('bounding_box', None,
'BoundingBox proto in text format defining the area '
'to segmented.')
def main(unused_argv):
request = inference_flags.request_from_flags()
if not gfile.exists(request.segmentation_output_dir):
gfile.makedirs(request.segmentation_output_dir)
bbox = bounding_box_pb2.BoundingBox()
text_format.Parse(FLAGS.bounding_box, bbox)
runner = runner_mod.Runner()
runner.start(request)
runner.run((bbox.start.z, bbox.start.y, bbox.start.x),
(bbox.size.z, bbox.size.y, bbox.size.x))
counter_path = os.path.join(request.segmentation_output_dir, 'counters.txt')
if not gfile.exists(counter_path):
runner.counters.dump(counter_path)
if __name__ == '__main__':
app.run(main)