-
Notifications
You must be signed in to change notification settings - Fork 284
/
predict.py
88 lines (73 loc) · 3.05 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
from pathlib import Path
import numpy as np
import tempfile
import tensorflow as tf
import mediapy
from PIL import Image
import cog
from eval import interpolator, util
_UINT8_MAX_F = float(np.iinfo(np.uint8).max)
class Predictor(cog.Predictor):
def setup(self):
import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
self.interpolator = interpolator.Interpolator("pretrained_models/film_net/Style/saved_model", None)
# Batched time.
self.batch_dt = np.full(shape=(1,), fill_value=0.5, dtype=np.float32)
@cog.input(
"frame1",
type=Path,
help="The first input frame",
)
@cog.input(
"frame2",
type=Path,
help="The second input frame",
)
@cog.input(
"times_to_interpolate",
type=int,
default=1,
min=1,
max=8,
help="Controls the number of times the frame interpolator is invoked If set to 1, the output will be the "
"sub-frame at t=0.5; when set to > 1, the output will be the interpolation video with "
"(2^times_to_interpolate + 1) frames, fps of 30.",
)
def predict(self, frame1, frame2, times_to_interpolate):
INPUT_EXT = ['.png', '.jpg', '.jpeg']
assert os.path.splitext(str(frame1))[-1] in INPUT_EXT and os.path.splitext(str(frame2))[-1] in INPUT_EXT, \
"Please provide png, jpg or jpeg images."
# make sure 2 images are the same size
img1 = Image.open(str(frame1))
img2 = Image.open(str(frame2))
if not img1.size == img2.size:
img1 = img1.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1])))
img2 = img2.crop((0, 0, min(img1.size[0], img2.size[0]), min(img1.size[1], img2.size[1])))
frame1 = 'new_frame1.png'
frame2 = 'new_frame2.png'
img1.save(frame1)
img2.save(frame2)
if times_to_interpolate == 1:
# First batched image.
image_1 = util.read_image(str(frame1))
image_batch_1 = np.expand_dims(image_1, axis=0)
# Second batched image.
image_2 = util.read_image(str(frame2))
image_batch_2 = np.expand_dims(image_2, axis=0)
# Invoke the model once.
mid_frame = self.interpolator.interpolate(image_batch_1, image_batch_2, self.batch_dt)[0]
out_path = Path(tempfile.mkdtemp()) / "out.png"
util.write_image(str(out_path), mid_frame)
return out_path
input_frames = [str(frame1), str(frame2)]
frames = list(
util.interpolate_recursively_from_files(
input_frames, times_to_interpolate, self.interpolator))
print('Interpolated frames generated, saving now as output video.')
ffmpeg_path = util.get_ffmpeg_path()
mediapy.set_ffmpeg(ffmpeg_path)
out_path = Path(tempfile.mkdtemp()) / "out.mp4"
mediapy.write_video(str(out_path), frames, fps=30)
return out_path