forked from cleverhans-lab/cleverhans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_tutorial_keras_tf.py
207 lines (176 loc) · 8 KB
/
mnist_tutorial_keras_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
This tutorial shows how to generate adversarial examples using FGSM
and train a model using adversarial training with Keras.
It is very similar to mnist_tutorial_tf.py, which does the same
thing but without a dependence on keras.
The original paper can be found at:
https://arxiv.org/abs/1412.6572
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import keras
from keras import backend
import tensorflow as tf
from tensorflow.python.platform import flags
from cleverhans.utils_mnist import data_mnist
from cleverhans.utils_tf import model_train, model_eval
from cleverhans.attacks import FastGradientMethod
from cleverhans.utils import AccuracyReport
from cleverhans.utils_keras import cnn_model
from cleverhans.utils_keras import KerasModelWrapper
FLAGS = flags.FLAGS
def mnist_tutorial(train_start=0, train_end=60000, test_start=0,
test_end=10000, nb_epochs=6, batch_size=128,
learning_rate=0.001, train_dir="/tmp",
filename="mnist.ckpt", load_model=False,
testing=False):
"""
MNIST CleverHans tutorial
:param train_start: index of first training set example
:param train_end: index of last training set example
:param test_start: index of first test set example
:param test_end: index of last test set example
:param nb_epochs: number of epochs to train model
:param batch_size: size of training batches
:param learning_rate: learning rate for training
:param train_dir: Directory storing the saved model
:param filename: Filename to save model under
:param load_model: True for load, False for not load
:param testing: if true, test error is calculated
:return: an AccuracyReport object
"""
keras.layers.core.K.set_learning_phase(0)
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
if not hasattr(backend, "tf"):
raise RuntimeError("This tutorial requires keras to be configured"
" to use the TensorFlow backend.")
if keras.backend.image_dim_ordering() != 'tf':
keras.backend.set_image_dim_ordering('tf')
print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to "
"'th', temporarily setting to 'tf'")
# Create TF session and set as Keras backend session
sess = tf.Session()
keras.backend.set_session(sess)
# Get MNIST test data
X_train, Y_train, X_test, Y_test = data_mnist(train_start=train_start,
train_end=train_end,
test_start=test_start,
test_end=test_end)
# Use label smoothing
assert Y_train.shape[1] == 10
label_smooth = .1
Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, 28, 28, 1))
y = tf.placeholder(tf.float32, shape=(None, 10))
# Define TF model graph
model = cnn_model()
preds = model(x)
print("Defined TensorFlow model graph.")
def evaluate():
# Evaluate the accuracy of the MNIST model on legitimate test examples
eval_params = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds, X_test, Y_test, args=eval_params)
report.clean_train_clean_eval = acc
assert X_test.shape[0] == test_end - test_start, X_test.shape
print('Test accuracy on legitimate examples: %0.4f' % acc)
# Train an MNIST model
train_params = {
'nb_epochs': nb_epochs,
'batch_size': batch_size,
'learning_rate': learning_rate,
'train_dir': train_dir,
'filename': filename
}
ckpt = tf.train.get_checkpoint_state(train_dir)
ckpt_path = False if ckpt is None else ckpt.model_checkpoint_path
rng = np.random.RandomState([2017, 8, 30])
if load_model and ckpt_path:
saver = tf.train.Saver()
saver.restore(sess, ckpt_path)
print("Model loaded from: {}".format(ckpt_path))
evaluate()
else:
print("Model was not loaded, training from scratch.")
model_train(sess, x, y, preds, X_train, Y_train, evaluate=evaluate,
args=train_params, save=True, rng=rng)
# Calculate training error
if testing:
eval_params = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds, X_train, Y_train, args=eval_params)
report.train_clean_train_clean_eval = acc
# Initialize the Fast Gradient Sign Method (FGSM) attack object and graph
wrap = KerasModelWrapper(model)
fgsm = FastGradientMethod(wrap, sess=sess)
fgsm_params = {'eps': 0.3,
'clip_min': 0.,
'clip_max': 1.}
adv_x = fgsm.generate(x, **fgsm_params)
# Consider the attack to be constant
adv_x = tf.stop_gradient(adv_x)
preds_adv = model(adv_x)
# Evaluate the accuracy of the MNIST model on adversarial examples
eval_par = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds_adv, X_test, Y_test, args=eval_par)
print('Test accuracy on adversarial examples: %0.4f\n' % acc)
report.clean_train_adv_eval = acc
# Calculating train error
if testing:
eval_par = {'batch_size': batch_size}
acc = model_eval(sess, x, y, preds_adv, X_train,
Y_train, args=eval_par)
report.train_clean_train_adv_eval = acc
print("Repeating the process, using adversarial training")
# Redefine TF model graph
model_2 = cnn_model()
preds_2 = model_2(x)
wrap_2 = KerasModelWrapper(model_2)
fgsm2 = FastGradientMethod(wrap_2, sess=sess)
preds_2_adv = model_2(fgsm2.generate(x, **fgsm_params))
def evaluate_2():
# Accuracy of adversarially trained model on legitimate test inputs
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x, y, preds_2, X_test, Y_test,
args=eval_params)
print('Test accuracy on legitimate examples: %0.4f' % accuracy)
report.adv_train_clean_eval = accuracy
# Accuracy of the adversarially trained model on adversarial examples
accuracy = model_eval(sess, x, y, preds_2_adv, X_test,
Y_test, args=eval_params)
print('Test accuracy on adversarial examples: %0.4f' % accuracy)
report.adv_train_adv_eval = accuracy
# Perform and evaluate adversarial training
model_train(sess, x, y, preds_2, X_train, Y_train,
predictions_adv=preds_2_adv, evaluate=evaluate_2,
args=train_params, save=False, rng=rng)
# Calculate training errors
if testing:
eval_params = {'batch_size': batch_size}
accuracy = model_eval(sess, x, y, preds_2, X_train, Y_train,
args=eval_params)
report.train_adv_train_clean_eval = accuracy
accuracy = model_eval(sess, x, y, preds_2_adv, X_train,
Y_train, args=eval_params)
report.train_adv_train_adv_eval = accuracy
return report
def main(argv=None):
mnist_tutorial(nb_epochs=FLAGS.nb_epochs,
batch_size=FLAGS.batch_size,
learning_rate=FLAGS.learning_rate,
train_dir=FLAGS.train_dir,
filename=FLAGS.filename,
load_model=FLAGS.load_model)
if __name__ == '__main__':
flags.DEFINE_integer('nb_epochs', 6, 'Number of epochs to train model')
flags.DEFINE_integer('batch_size', 128, 'Size of training batches')
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
flags.DEFINE_string('train_dir', '/tmp', 'Directory where to save model.')
flags.DEFINE_string('filename', 'mnist.ckpt', 'Checkpoint filename.')
flags.DEFINE_boolean('load_model', True, 'Load saved model or train.')
tf.app.run()