-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_showns.py
66 lines (52 loc) · 1.54 KB
/
test_showns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Lotto prediction with Genetic Algorithm and Mersenne Twister (MT19937)
# Go Namhyeon <[email protected]>
# first created: 2021-04-04
# last updated: 2022-09-02
# download excel data: https://dhlottery.co.kr/gameResult.do?method=byWin
import math
import random
import pandas as pd
import numpy as np
cols = [13, 14, 15, 16, 17, 18, 19] # included bonus number
df = pd.read_excel('excel.xlsx', skiprows=2, usecols=cols, names=[0, 1, 2, 3, 4, 5, 6])
rows = df.values[:100]
def step1():
data = []
i = 0
while i < len(rows):
cur = rows[i]
_rows = list(rows)[i+1:i+11]
showns = []
for row in _rows:
showns = sorted(list(set(showns) | set(row)))
notShowns = sorted(list(set(range(1, 46)) - set(showns)))
data.append({
'showns': showns,
'notShowns': notShowns
})
i = i + 1
return data
data = step1()
def get_numbers(lastData):
num = random.sample(range(1, 46), 7)
notShowns = lastData['notShowns']
return random.sample(list(set(num) | set(notShowns)), 6)
def evaluate(nums):
_rows = list(rows)
score = 0
for row in _rows:
result = len(list(set(nums) & set(row)))
if result > 5:
score += 100
elif result > 4:
score += 75
elif result > 3:
score += 50
elif result > 2:
score += 25
return str(round((score / len(rows)) * 50, 2)) + '%'
k = 0
while k < 10:
nums = get_numbers(data[0])
k = k + 1
print (evaluate(nums), nums)