-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathvisualizations.py
119 lines (100 loc) · 5.06 KB
/
visualizations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import cv2
import numpy as np
from tqdm import tqdm
from skimage.transform import rescale
from PIL import Image, ImageDraw, ImageFont
# Height and width of a single image
H = 512
W = 512
TEXT_H = 175
FONTSIZE = 80
SPACE = 50 # Space between two images
def write_labels_to_image(labels=["text1", "text2"]):
"""Creates an image with vertical text, spaced along rows."""
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", FONTSIZE)
img = Image.new('RGB', ((W * len(labels)) + 50 * (len(labels)-1), TEXT_H), (1, 1, 1))
d = ImageDraw.Draw(img)
for i, text in enumerate(labels):
_, _, w, h = d.textbbox((0,0), text, font=font)
d.text(((W+SPACE)*i + W//2 - w//2, 1), text, fill=(0, 0, 0), font=font)
return np.array(img)
def draw(img, c=(0, 255, 0), thickness=20):
"""Draw a colored (usually red or green) box around an image."""
p = np.array([[0, 0], [0, img.shape[0]], [img.shape[1], img.shape[0]], [img.shape[1], 0]])
for i in range(3):
cv2.line(img, (p[i, 0], p[i, 1]), (p[i+1, 0], p[i+1, 1]), c, thickness=thickness*2)
return cv2.line(img, (p[3, 0], p[3, 1]), (p[0, 0], p[0, 1]), c, thickness=thickness*2)
def build_prediction_image(images_paths, preds_correct=None):
"""Build a row of images, where the first is the query and the rest are predictions.
For each image, if is_correct then draw a green/red box.
"""
assert len(images_paths) == len(preds_correct)
labels = ["Query"] + [f"Pr{i} - {is_correct}" for i, is_correct in enumerate(preds_correct[1:])]
num_images = len(images_paths)
images = [np.array(Image.open(path)) for path in images_paths]
for img, correct in zip(images, preds_correct):
if correct is None:
continue
color = (0, 255, 0) if correct else (255, 0, 0)
draw(img, color)
concat_image = np.ones([H, (num_images*W)+((num_images-1)*SPACE), 3])
rescaleds = [rescale(i, [min(H/i.shape[0], W/i.shape[1]), min(H/i.shape[0], W/i.shape[1]), 1]) for i in images]
for i, image in enumerate(rescaleds):
pad_width = (W - image.shape[1] + 1) // 2
pad_height = (H - image.shape[0] + 1) // 2
image = np.pad(image, [[pad_height, pad_height], [pad_width, pad_width], [0, 0]], constant_values=1)[:H, :W]
concat_image[: , i*(W+SPACE) : i*(W+SPACE)+W] = image
try:
labels_image = write_labels_to_image(labels)
final_image = np.concatenate([labels_image, concat_image])
except OSError: # Handle error in case of missing PIL ImageFont
final_image = concat_image
final_image = Image.fromarray((final_image*255).astype(np.uint8))
return final_image
def save_file_with_paths(query_path, preds_paths, positives_paths, output_path):
file_content = []
file_content.append("Query path:")
file_content.append(query_path + "\n")
file_content.append("Predictions paths:")
file_content.append("\n".join(preds_paths) + "\n")
file_content.append("Positives paths:")
file_content.append("\n".join(positives_paths) + "\n")
with open(output_path, "w") as file:
_ = file.write("\n".join(file_content))
def save_preds(predictions, eval_ds, output_folder, save_only_wrong_preds=None):
"""For each query, save an image containing the query and its predictions,
and a file with the paths of the query, its predictions and its positives.
Parameters
----------
predictions : np.array of shape [num_queries x num_preds_to_viz], with the preds
for each query
eval_ds : TestDataset
output_folder : str / Path with the path to save the predictions
save_only_wrong_preds : bool, if True save only the wrongly predicted queries,
i.e. the ones where the first pred is uncorrect (further than 25 m)
"""
positives_per_query = eval_ds.get_positives()
os.makedirs(f"{output_folder}/preds", exist_ok=True)
for query_index, preds in enumerate(tqdm(predictions, ncols=80, desc=f"Saving preds in {output_folder}")):
query_path = eval_ds.queries_paths[query_index]
list_of_images_paths = [query_path]
# List of None (query), True (correct preds) or False (wrong preds)
preds_correct = [None]
for pred_index, pred in enumerate(preds):
pred_path = eval_ds.database_paths[pred]
list_of_images_paths.append(pred_path)
is_correct = pred in positives_per_query[query_index]
preds_correct.append(is_correct)
if save_only_wrong_preds and preds_correct[1]:
continue
prediction_image = build_prediction_image(list_of_images_paths, preds_correct)
pred_image_path = f"{output_folder}/preds/{query_index:03d}.jpg"
prediction_image.save(pred_image_path)
positives_paths = [eval_ds.database_paths[idx] for idx in positives_per_query[query_index]]
save_file_with_paths(
query_path=list_of_images_paths[0],
preds_paths=list_of_images_paths[1:],
positives_paths=positives_paths,
output_path=f"{output_folder}/preds/{query_index:03d}.txt"
)