forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
memtable.cc
547 lines (487 loc) · 19.7 KB
/
memtable.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
/*
* Copyright (C) 2014 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include "memtable.hh"
#include "database.hh"
#include "frozen_mutation.hh"
#include "sstable_mutation_readers.hh"
namespace stdx = std::experimental;
memtable::memtable(schema_ptr schema, dirty_memory_manager& dmm, memtable_list* memtable_list)
: logalloc::region(dmm.region_group())
, _dirty_mgr(dmm)
, _memtable_list(memtable_list)
, _schema(std::move(schema))
, partitions(memtable_entry::compare(_schema)) {
}
static thread_local dirty_memory_manager mgr_for_tests;
memtable::memtable(schema_ptr schema)
: memtable(std::move(schema), mgr_for_tests, nullptr)
{ }
memtable::~memtable() {
revert_flushed_memory();
clear();
}
uint64_t memtable::dirty_size() const {
return occupancy().total_space();
}
void memtable::clear() noexcept {
auto dirty_before = dirty_size();
with_allocator(allocator(), [this] {
partitions.clear_and_dispose(current_deleter<memtable_entry>());
});
remove_flushed_memory(dirty_before - dirty_size());
}
future<> memtable::clear_gently() noexcept {
return futurize_apply([this] {
static thread_local seastar::thread_scheduling_group scheduling_group(std::chrono::milliseconds(1), 0.2);
auto attr = seastar::thread_attributes();
attr.scheduling_group = &scheduling_group;
auto t = std::make_unique<seastar::thread>(attr, [this] {
auto& alloc = allocator();
// entries can no longer be moved after unlink_leftmost_without_rebalance()
// so need to disable compaction.
logalloc::reclaim_lock rl(*this);
auto p = std::move(partitions);
while (!p.empty()) {
auto batch_size = std::min<size_t>(p.size(), 32);
auto dirty_before = dirty_size();
with_allocator(alloc, [&] () noexcept {
while (batch_size--) {
alloc.destroy(p.unlink_leftmost_without_rebalance());
}
});
remove_flushed_memory(dirty_before - dirty_size());
seastar::thread::yield();
}
});
auto f = t->join();
return f.then([t = std::move(t)] {});
}).handle_exception([this] (auto e) {
this->clear();
});
}
partition_entry&
memtable::find_or_create_partition_slow(partition_key_view key) {
assert(!reclaiming_enabled());
// FIXME: Perform lookup using std::pair<token, partition_key_view>
// to avoid unconditional copy of the partition key.
// We can't do it right now because std::map<> which holds
// partitions doesn't support heterogeneous lookup.
// We could switch to boost::intrusive_map<> similar to what we have for row keys.
auto& outer = current_allocator();
return with_allocator(standard_allocator(), [&, this] () -> partition_entry& {
auto dk = dht::global_partitioner().decorate_key(*_schema, key);
return with_allocator(outer, [&dk, this] () -> partition_entry& {
return with_linearized_managed_bytes([&] () -> partition_entry& {
return find_or_create_partition(dk);
});
});
});
}
partition_entry&
memtable::find_or_create_partition(const dht::decorated_key& key) {
assert(!reclaiming_enabled());
// call lower_bound so we have a hint for the insert, just in case.
auto i = partitions.lower_bound(key, memtable_entry::compare(_schema));
if (i == partitions.end() || !key.equal(*_schema, i->key())) {
memtable_entry* entry = current_allocator().construct<memtable_entry>(
_schema, dht::decorated_key(key), mutation_partition(_schema));
i = partitions.insert(i, *entry);
return entry->partition();
} else {
upgrade_entry(*i);
}
return i->partition();
}
boost::iterator_range<memtable::partitions_type::const_iterator>
memtable::slice(const dht::partition_range& range) const {
if (query::is_single_partition(range)) {
const query::ring_position& pos = range.start()->value();
auto i = partitions.find(pos, memtable_entry::compare(_schema));
if (i != partitions.end()) {
return boost::make_iterator_range(i, std::next(i));
} else {
return boost::make_iterator_range(i, i);
}
} else {
auto cmp = memtable_entry::compare(_schema);
auto i1 = range.start()
? (range.start()->is_inclusive()
? partitions.lower_bound(range.start()->value(), cmp)
: partitions.upper_bound(range.start()->value(), cmp))
: partitions.cbegin();
auto i2 = range.end()
? (range.end()->is_inclusive()
? partitions.upper_bound(range.end()->value(), cmp)
: partitions.lower_bound(range.end()->value(), cmp))
: partitions.cend();
return boost::make_iterator_range(i1, i2);
}
}
class iterator_reader: public mutation_reader::impl {
lw_shared_ptr<memtable> _memtable;
schema_ptr _schema;
const dht::partition_range* _range;
stdx::optional<dht::decorated_key> _last;
memtable::partitions_type::iterator _i;
memtable::partitions_type::iterator _end;
uint64_t _last_reclaim_counter;
size_t _last_partition_count = 0;
memtable::partitions_type::iterator lookup_end() {
auto cmp = memtable_entry::compare(_memtable->_schema);
return _range->end()
? (_range->end()->is_inclusive()
? _memtable->partitions.upper_bound(_range->end()->value(), cmp)
: _memtable->partitions.lower_bound(_range->end()->value(), cmp))
: _memtable->partitions.end();
}
void update_iterators() {
// We must be prepared that iterators may get invalidated during compaction.
auto current_reclaim_counter = _memtable->reclaim_counter();
auto cmp = memtable_entry::compare(_memtable->_schema);
if (_last) {
if (current_reclaim_counter != _last_reclaim_counter ||
_last_partition_count != _memtable->partition_count()) {
_i = _memtable->partitions.upper_bound(*_last, cmp);
_end = lookup_end();
_last_partition_count = _memtable->partition_count();
}
} else {
// Initial lookup
_i = _range->start()
? (_range->start()->is_inclusive()
? _memtable->partitions.lower_bound(_range->start()->value(), cmp)
: _memtable->partitions.upper_bound(_range->start()->value(), cmp))
: _memtable->partitions.begin();
_end = lookup_end();
_last_partition_count = _memtable->partition_count();
}
_last_reclaim_counter = current_reclaim_counter;
}
protected:
iterator_reader(schema_ptr s,
lw_shared_ptr<memtable> m,
const dht::partition_range& range)
: _memtable(std::move(m))
, _schema(std::move(s))
, _range(&range)
{ }
memtable_entry* fetch_next_entry() {
update_iterators();
if (_i == _end) {
return nullptr;
} else {
memtable_entry& e = *_i;
++_i;
_last = e.key();
_memtable->upgrade_entry(e);
return &e;
}
}
logalloc::allocating_section& read_section() {
return _memtable->_read_section;
}
lw_shared_ptr<memtable> mtbl() {
return _memtable;
}
schema_ptr schema() {
return _schema;
}
logalloc::region& region() {
return *_memtable;
};
std::experimental::optional<dht::partition_range> get_delegate_range() {
// We cannot run concurrently with row_cache::update().
if (_memtable->is_flushed()) {
return _last ? _range->split_after(*_last, dht::ring_position_comparator(*_memtable->_schema)) : *_range;
}
return {};
}
mutation_reader delegate_reader(const dht::partition_range& delegate,
const query::partition_slice& slice,
const io_priority_class& pc) {
auto ret = make_mutation_reader<sstable_range_wrapping_reader>(
_memtable->_sstable, _schema, delegate, slice, pc);
_memtable = {};
_last = {};
return ret;
}
public:
virtual future<> fast_forward_to(const dht::partition_range& pr) override {
_range = ≺
_last = { };
return make_ready_future<>();
}
};
class scanning_reader final: public iterator_reader {
stdx::optional<dht::partition_range> _delegate_range;
mutation_reader _delegate;
const io_priority_class& _pc;
const query::partition_slice& _slice;
public:
scanning_reader(schema_ptr s,
lw_shared_ptr<memtable> m,
const dht::partition_range& range,
const query::partition_slice& slice,
const io_priority_class& pc)
: iterator_reader(std::move(s), std::move(m), range)
, _pc(pc)
, _slice(slice)
{ }
virtual future<streamed_mutation_opt> operator()() override {
if (_delegate_range) {
return _delegate();
}
// FIXME: Use cache. See column_family::make_reader().
_delegate_range = get_delegate_range();
if (_delegate_range) {
_delegate = delegate_reader(*_delegate_range, _slice, _pc);
return _delegate();
}
logalloc::reclaim_lock _(region());
managed_bytes::linearization_context_guard lcg;
memtable_entry* e = fetch_next_entry();
if (!e) {
return make_ready_future<streamed_mutation_opt>(stdx::nullopt);
} else {
return make_ready_future<streamed_mutation_opt>(e->read(mtbl(), schema(), _slice));
}
}
};
void memtable::add_flushed_memory(uint64_t delta) {
_flushed_memory += delta;
_dirty_mgr.account_potentially_cleaned_up_memory(this, delta);
}
void memtable::remove_flushed_memory(uint64_t delta) {
delta = std::min(_flushed_memory, delta);
_flushed_memory -= delta;
_dirty_mgr.revert_potentially_cleaned_up_memory(this, delta);
}
void memtable::on_detach_from_region_group() noexcept {
revert_flushed_memory();
}
void memtable::revert_flushed_memory() noexcept {
_dirty_mgr.revert_potentially_cleaned_up_memory(this, _flushed_memory);
_flushed_memory = 0;
}
class flush_memory_accounter {
memtable& _mt;
public:
void update_bytes_read(uint64_t delta) {
_mt.add_flushed_memory(delta);
}
explicit flush_memory_accounter(memtable& mt)
: _mt(mt)
{}
~flush_memory_accounter() {
assert(_mt._flushed_memory <= _mt.occupancy().used_space());
// Flushed the current memtable. There is still some work to do, like finish sealing the
// SSTable and updating the cache, but we can already allow the next one to start.
//
// By erasing this memtable from the flush_manager we'll destroy the semaphore_units
// associated with this flush and will allow another one to start. We'll signal the
// condition variable to let them know we might be ready early.
_mt._dirty_mgr.remove_from_flush_manager(&_mt);
}
void account_component(memtable_entry& e) {
auto delta = _mt.allocator().object_memory_size_in_allocator(&e)
+ e.external_memory_usage_without_rows();
update_bytes_read(delta);
}
void account_component(partition_snapshot& snp) {
update_bytes_read(_mt.allocator().object_memory_size_in_allocator(&*snp.version()));
}
};
class partition_snapshot_accounter {
flush_memory_accounter& _accounter;
public:
partition_snapshot_accounter(flush_memory_accounter& acct): _accounter(acct) {}
// We will be passed mutation fragments here, and they are allocated using the standard
// allocator. So we can't compute the size in memtable precisely. However, precise accounting is
// hard anyway, since we may be holding multiple snapshots of the partitions, and the
// partition_snapshot_reader may compose them. In doing so, we move memory to the standard
// allocation. As long as our size read here is lesser or equal to the size in the memtables, we
// are safe, and worst case we will allow a bit fewer requests in.
void operator()(const range_tombstone& rt) {
_accounter.update_bytes_read(rt.memory_usage());
}
void operator()(const static_row& sr) {
_accounter.update_bytes_read(sr.external_memory_usage());
}
void operator()(const clustering_row& cr) {
// Every clustering row is stored in a rows_entry object, and that has some significant
// overhead - so add it here. We will be a bit short on our estimate because we can't know
// what is the size in the allocator for this rows_entry object: we may have many snapshots,
// and we don't know which one(s) contributed to the generation of this mutation fragment.
//
// We will add the size of the struct here, and that should be good enough.
_accounter.update_bytes_read(sizeof(rows_entry) + cr.external_memory_usage());
}
};
class flush_reader final : public iterator_reader {
flush_memory_accounter _flushed_memory;
public:
flush_reader(schema_ptr s, lw_shared_ptr<memtable> m)
: iterator_reader(std::move(s), m, query::full_partition_range)
, _flushed_memory(*m)
{}
flush_reader(const flush_reader&) = delete;
flush_reader(flush_reader&&) = delete;
flush_reader& operator=(flush_reader&&) = delete;
flush_reader& operator=(const flush_reader&) = delete;
virtual future<streamed_mutation_opt> operator()() override {
logalloc::reclaim_lock _(region());
managed_bytes::linearization_context_guard lcg;
memtable_entry* e = fetch_next_entry();
if (!e) {
return make_ready_future<streamed_mutation_opt>(stdx::nullopt);
} else {
auto cr = query::clustering_key_filter_ranges::get_ranges(*schema(), query::full_slice, e->key().key());
auto snp = e->partition().read(schema());
auto mpsr = make_partition_snapshot_reader<partition_snapshot_accounter>(schema(), e->key(), std::move(cr), snp, region(), read_section(), mtbl(), _flushed_memory);
_flushed_memory.account_component(*e);
_flushed_memory.account_component(*snp);
return make_ready_future<streamed_mutation_opt>(std::move(mpsr));
}
}
};
mutation_reader
memtable::make_reader(schema_ptr s,
const dht::partition_range& range,
const query::partition_slice& slice,
const io_priority_class& pc) {
if (query::is_single_partition(range)) {
const query::ring_position& pos = range.start()->value();
return _read_section(*this, [&] {
managed_bytes::linearization_context_guard lcg;
auto i = partitions.find(pos, memtable_entry::compare(_schema));
if (i != partitions.end()) {
upgrade_entry(*i);
return make_reader_returning(i->read(shared_from_this(), s, slice));
} else {
return make_empty_reader();
}
});
} else {
return make_mutation_reader<scanning_reader>(std::move(s), shared_from_this(), range, slice, pc);
}
}
mutation_reader
memtable::make_flush_reader(schema_ptr s, const io_priority_class& pc) {
if (group()) {
return make_mutation_reader<flush_reader>(std::move(s), shared_from_this());
} else {
return make_mutation_reader<scanning_reader>(std::move(s), shared_from_this(), query::full_partition_range, query::full_slice, pc);
}
}
void
memtable::update(const db::replay_position& rp) {
if (_replay_position < rp) {
_replay_position = rp;
}
}
future<>
memtable::apply(memtable& mt) {
return do_with(mt.make_reader(_schema), [this] (auto&& rd) mutable {
return consume(rd, [self = this->shared_from_this(), &rd] (mutation&& m) {
self->apply(m);
return stop_iteration::no;
});
});
}
void
memtable::apply(const mutation& m, const db::replay_position& rp) {
with_allocator(allocator(), [this, &m] {
_allocating_section(*this, [&, this] {
with_linearized_managed_bytes([&] {
auto& p = find_or_create_partition(m.decorated_key());
p.apply(*_schema, m.partition(), *m.schema());
});
});
});
update(rp);
}
void
memtable::apply(const frozen_mutation& m, const schema_ptr& m_schema, const db::replay_position& rp) {
with_allocator(allocator(), [this, &m, &m_schema] {
_allocating_section(*this, [&, this] {
with_linearized_managed_bytes([&] {
auto& p = find_or_create_partition_slow(m.key(*_schema));
p.apply(*_schema, m.partition(), *m_schema);
});
});
});
update(rp);
}
logalloc::occupancy_stats memtable::occupancy() const {
return logalloc::region::occupancy();
}
mutation_source memtable::as_data_source() {
return mutation_source([mt = shared_from_this()] (schema_ptr s,
const dht::partition_range& range,
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state) {
return mt->make_reader(std::move(s), range, slice, pc);
});
}
size_t memtable::partition_count() const {
return partitions.size();
}
memtable_entry::memtable_entry(memtable_entry&& o) noexcept
: _link()
, _schema(std::move(o._schema))
, _key(std::move(o._key))
, _pe(std::move(o._pe))
{
using container_type = memtable::partitions_type;
container_type::node_algorithms::replace_node(o._link.this_ptr(), _link.this_ptr());
container_type::node_algorithms::init(o._link.this_ptr());
}
void memtable::mark_flushed(lw_shared_ptr<sstables::sstable> sst) {
_sstable = std::move(sst);
}
bool memtable::is_flushed() const {
return bool(_sstable);
}
streamed_mutation
memtable_entry::read(lw_shared_ptr<memtable> mtbl, const schema_ptr& target_schema, const query::partition_slice& slice) {
auto cr = query::clustering_key_filter_ranges::get_ranges(*_schema, slice, _key.key());
if (_schema->version() != target_schema->version()) {
auto mp = mutation_partition(_pe.squashed(_schema, target_schema), *target_schema, std::move(cr));
mutation m = mutation(target_schema, _key, std::move(mp));
return streamed_mutation_from_mutation(std::move(m));
}
auto snp = _pe.read(_schema);
return make_partition_snapshot_reader(_schema, _key, std::move(cr), snp, *mtbl, mtbl->_read_section, mtbl);
}
void memtable::upgrade_entry(memtable_entry& e) {
if (e._schema != _schema) {
assert(!reclaiming_enabled());
with_allocator(allocator(), [this, &e] {
with_linearized_managed_bytes([&] {
e.partition().upgrade(e._schema, _schema);
e._schema = _schema;
});
});
}
}
void memtable::set_schema(schema_ptr new_schema) noexcept {
_schema = std::move(new_schema);
}