forked from pkrusche/vt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
genotype2.cpp
587 lines (504 loc) · 23.6 KB
/
genotype2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/* The MIT License
Copyright (c) 2015 Adrian Tan <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "genotype2.h"
namespace
{
/**
* For detecting overlapping reads.
*/
typedef struct
{
int32_t start1, end1;
} interval_t;
KHASH_MAP_INIT_STR(rdict, interval_t)
class Igor : Program
{
public:
std::string version;
///////////
//options//
///////////
std::string sample_id;
std::string input_vcf_file;
std::string input_sam_file;
std::string output_vcf_file;
std::string ref_fasta_file;
std::string mode;
bool ignore_md;
int32_t debug;
//variables for keeping track of chromosome
std::string chrom; //current chromosome
int32_t tid; // current sequence id in bam
int32_t rid; // current sequence id in bcf
//read filters
uint32_t read_mapq_cutoff;
uint16_t read_exclude_flag;
bool ignore_overlapping_read;
///////
//i/o//
///////
BAMOrderedReader *odr;
BCFGenotypingBufferedReader *gbr;
BCFOrderedWriter *odw;
std::vector<GenomeInterval> intervals;
//options for selecting reads
khash_t(rdict) *reads;
/////////
//stats//
/////////
uint32_t no_reads;
uint32_t no_overlapping_reads;
uint32_t no_passed_reads;
uint32_t no_exclude_flag_reads;
uint32_t no_low_mapq_reads;
uint32_t no_unaligned_cigars;
uint32_t no_malformed_del_cigars;
uint32_t no_malformed_ins_cigars;
uint32_t no_salvageable_ins_cigars;
uint32_t no_snps_genotyped;
uint32_t no_indels_genotyped;
uint32_t no_vntrs_genotyped;
/////////
//tools//
/////////
VariantManip *vm;
Igor(int argc, char ** argv)
{
//////////////////////////
//options initialization//
//////////////////////////
try
{
std::string desc = "Genotypes SNPs, Indels, VNTRs for each sample.\n";
version = "0.5";
TCLAP::CmdLine cmd(desc, ' ', version);
VTOutput my; cmd.setOutput(&my);
//Reads
TCLAP::ValueArg<uint32_t> arg_read_mapq_cutoff("t", "t", "MAPQ cutoff for alignments (>=) [0]", false, 0, "int", cmd);
TCLAP::SwitchArg arg_ignore_overlapping_read("l", "l", "ignore overlapping reads [false]", cmd, false);
TCLAP::ValueArg<uint32_t> arg_read_exclude_flag("a", "a", "read exclude flag [0x0704]", false, 0x0704, "int", cmd);
TCLAP::ValueArg<std::string> arg_intervals("i", "i", "intervals []", false, "", "str", cmd);
TCLAP::ValueArg<std::string> arg_interval_list("I", "I", "file containing list of intervals []", false, "", "file", cmd);
TCLAP::ValueArg<std::string> arg_input_sam_file("b", "b", "input SAM/BAM/CRAM file []", true, "", "string", cmd);
TCLAP::ValueArg<std::string> arg_output_vcf_file("o", "o", "output VCF file", false, "-", "string", cmd);
TCLAP::ValueArg<std::string> arg_sample_id("s", "s", "sample ID []", true, "", "string", cmd);
TCLAP::ValueArg<std::string> arg_mode("m", "m", "mode [d]\n"
" d : iterate by read for dense genotyping.\n"
" (e.g. 50m variants close to one another).\n"
" s : iterate by sites for sparse genotyping.\n"
" (e.g. 100 variants scattered over the genome).",
false, "d", "str", cmd);
TCLAP::ValueArg<std::string> arg_ref_fasta_file("r", "r", "reference FASTA file []", true, "", "string", cmd);
TCLAP::ValueArg<uint32_t> arg_debug("d", "d", "debug [0]", false, 0, "int", cmd);
TCLAP::UnlabeledValueArg<std::string> arg_input_vcf_file("<in.vcf>", "input VCF file", true, "","file", cmd);
cmd.parse(argc, argv);
mode = arg_mode.getValue();
input_vcf_file = arg_input_vcf_file.getValue();
input_sam_file = arg_input_sam_file.getValue();
output_vcf_file = arg_output_vcf_file.getValue();
sample_id = arg_sample_id.getValue();
parse_intervals(intervals, arg_interval_list.getValue(), arg_intervals.getValue());
ref_fasta_file = arg_ref_fasta_file.getValue();
debug = arg_debug.getValue();
read_mapq_cutoff = arg_read_mapq_cutoff.getValue();
ignore_overlapping_read = arg_ignore_overlapping_read.getValue();
read_exclude_flag = arg_read_exclude_flag.getValue();
}
catch (TCLAP::ArgException &e)
{
std::cerr << "error: " << e.error() << " for arg " << e.argId() << "\n";
abort();
}
//////////////////////
//i/o initialization//
//////////////////////
//fails the following types
//1. unmapped reads
//2. secondary reads alignments
//3. failed QC filter
//4. duplicate
//read_exclude_flag = 0x0704;
//input sam
odr = new BAMOrderedReader(input_sam_file, intervals);
//input vcf
gbr = new BCFGenotypingBufferedReader(input_vcf_file, intervals, ref_fasta_file);
//output vcf
odw = new BCFOrderedWriter(output_vcf_file);
bcf_hdr_transfer_contigs(gbr->odr->hdr, odw->hdr);
bcf_hdr_add_sample(odw->hdr, strdup(sample_id.c_str()));
bcf_hdr_add_sample(odw->hdr, NULL);
//INFO fields
bcf_hdr_append_info_with_backup_naming(odw->hdr, "MOTIF", "1", "String", "Canonical motif in an VNTR or homopolymer", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "RU", "1", "String", "Repeat unit in a VNTR or homopolymer", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "RL", "1", "Float", "Reference repeat unit length", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "LL", "1", "Float", "Longest repeat unit length", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "CONCORDANCE", "1", "Float", "Concordance of repeat unit.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "RU_COUNTS", "2", "Integer", "Number of exact repeat units and total number of repeat units.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FLANKS", "2", "Integer", "Left and right flank positions of the Indel, left/right alignment invariant, not necessarily equal to POS.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FZ_RL", "1", "Float", "Fuzzy reference repeat unit length", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FZ_LL", "1", "Float", "Fuzzy longest repeat unit length", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FZ_CONCORDANCE", "1", "Float", "Fuzzy concordance of repeat unit.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FZ_RU_COUNTS", "2", "Integer", "Fuzzy number of exact repeat units and total number of repeat units.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "FZ_FLANKS", "2", "Integer", "Fuzzy left and right flank positions of the Indel, left/right alignment invariant, not necessarily equal to POS.", true);
bcf_hdr_append_info_with_backup_naming(odw->hdr, "TR", "1", "String", "Tandem repeat associated with this indel.", true);
bcf_hdr_append(odw->hdr, "##INFO=<ID=LARGE_REPEAT_REGION,Number=0,Type=Flag,Description=\"Very large repeat region, vt only detects up to 1000bp long regions.\">");
bcf_hdr_append(odw->hdr, "##INFO=<ID=FLANKSEQ,Number=1,Type=String,Description=\"Flanking sequence 10bp on either side of detected repeat region.\">");
//FILTERS
bcf_hdr_append(odw->hdr, "##FILTER=<ID=overlap_snp,Description=\"Overlaps with snp\">");
bcf_hdr_append(odw->hdr, "##FILTER=<ID=overlap_indel,Description=\"Overlaps with indel\">");
bcf_hdr_append(odw->hdr, "##FILTER=<ID=overlap_vntr,Description=\"Overlaps with VNTR\">");
//COMMON
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=PL,Number=G,Type=Integer,Description=\"PHRED scaled genotype likelihoods\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=AD,Number=A,Type=Integer,Description=\"Allele Depth\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=ADF,Number=A,Type=Integer,Description=\"Allele Depth (Forward strand)\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=ADR,Number=A,Type=Integer,Description=\"Allele Depth (Reverse strand)\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Depth\">");
//NONREF SNP
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=BQ,Number=.,Type=Integer,Description=\"Base Qualities\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=MQ,Number=.,Type=Integer,Description=\"Phred-scaled Map Qualities\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=CY,Number=.,Type=Integer,Description=\"Cycle of base\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=ST,Number=1,Type=String,Description=\"Strand of allele\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=AL,Number=.,Type=Integer,Description=\"Alleles - 0,1,2,... for reference and alternate alleles. "
"-1 : other allele, -2 : deletion, -3 : insertion\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=NM,Number=.,Type=Integer,Description=\"Number of mismatches per read\">");
//NONREF INDEL
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=RQ,Number=.,Type=Integer,Description=\"Phred-scaled Reference Allele Qualities for Indels\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=AQ,Number=.,Type=Integer,Description=\"Phred-scaled Alternative Allele Qualities for Indels, the number of entries is ploidy*no_alleles\">");
//VNTR
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=CG,Number=.,Type=Float,Description=\"Repeat count genotype\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=CT,Number=.,Type=Float,Description=\"Repeat counts\">");
//REF
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=BQSUM,Number=1,Type=Integer,Description=\"Sum of Base Qualities\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=AQSUM,Number=A,Type=Integer,Description=\"Sum of Allele Likelihoods\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=DPF,Number=1,Type=Integer,Description=\"Depth of forward reference alleles\">");
bcf_hdr_append(odw->hdr, "##FORMAT=<ID=DPR,Number=1,Type=Integer,Description=\"Depth of reverse reference alleles\">");
odw->write_hdr();
////////////////////////
//stats initialization//
////////////////////////
no_reads = 0;
no_overlapping_reads = 0;
no_passed_reads = 0;
no_exclude_flag_reads = 0;
no_low_mapq_reads = 0;
no_unaligned_cigars = 0;
no_malformed_del_cigars = 0;
no_malformed_ins_cigars = 0;
no_salvageable_ins_cigars = 0;
no_snps_genotyped = 0;
no_indels_genotyped = 0;
no_vntrs_genotyped = 0;
//for tracking overlapping reads
reads = kh_init(rdict);
//////////////////////////////////////
//discovery variables initialization//
//////////////////////////////////////
chrom = "";
tid = -1;
rid = -1;
////////////////////////
//tools initialization//
////////////////////////
vm = new VariantManip(ref_fasta_file);
};
/**
* Filter reads.
*
* Returns true if read is failed.
*/
bool filter_read(bam1_t *s)
{
khiter_t k;
int32_t ret;
if (ignore_overlapping_read)
{
//this read is part of a mate pair on the same contig
if (bam_get_mpos1(s) && (bam_get_tid(s)==bam_get_mtid(s)))
{
//first mate
if (bam_get_mpos1(s)>bam_get_pos1(s))
{
//overlapping
if (bam_get_mpos1(s)<=(bam_get_pos1(s) + bam_get_l_qseq(s) - 1))
{
//add read that has overlapping
//duplicate the record and perform the stitching later
char* qname = strdup(bam_get_qname(s));
k = kh_put(rdict, reads, qname, &ret);
if (!ret)
{
//already present
free(qname);
}
kh_val(reads, k) = {bam_get_pos1(s), bam_get_pos1(s)+bam_get_l_qseq(s)-1};
}
}
else
{
//check overlap
if((k = kh_get(rdict, reads, bam_get_qname(s)))!=kh_end(reads))
{
if (kh_exist(reads, k))
{
free((char*)kh_key(reads, k));
kh_del(rdict, reads, k);
++no_overlapping_reads;
}
//set this on to remove overlapping reads.
return false;
}
}
}
}
if(bam_get_flag(s) & read_exclude_flag)
{
//1. unmapped
//2. secondary alignment
//3. not passing QC
//4. PCR or optical duplicate
++no_exclude_flag_reads;
return false;
}
if (bam_get_mapq(s) < read_mapq_cutoff)
{
//filter short aligments and those with too many indels (?)
++no_low_mapq_reads;
return false;
}
//*****************************************************************
//should we have an assertion on the correctness of the bam record?
//Is, Ds not sandwiched in M
//leading and trailing Is - convert to S
//no Ms!!!!!
//*****************************************************************
int32_t n_cigar_op = bam_get_n_cigar_op(s);
if (n_cigar_op)
{
uint32_t *cigar = bam_get_cigar(s);
bool seenM = false;
int32_t last_opchr = '^';
for (int32_t i = 0; i < n_cigar_op; ++i)
{
int32_t opchr = bam_cigar_opchr(cigar[i]);
int32_t oplen = bam_cigar_oplen(cigar[i]);
if (opchr=='S')
{
if (i!=0 && i!=n_cigar_op-1)
{
std::cerr << "S issue\n";
bam_print_key_values(odr->hdr, s);
//++malformed_cigar;
}
}
else if (opchr=='M')
{
seenM = true;
}
else if (opchr=='D')
{
if (last_opchr!='M' || (i<=n_cigar_op && bam_cigar_opchr(cigar[i+1])!='M'))
{
std::cerr << "D issue\n";
++no_malformed_del_cigars;
bam_print_key_values(odr->hdr, s);
}
}
else if (opchr=='I')
{
if (last_opchr!='M' || (i<n_cigar_op && bam_cigar_opchr(cigar[i+1])!='M'))
{
if (last_opchr!='M')
{
if (last_opchr!='^' && last_opchr!='S')
{
std::cerr << "leading I issue\n";
bam_print_key_values(odr->hdr, s);
++no_malformed_ins_cigars;
}
else
{
++no_salvageable_ins_cigars;
}
}
else if (i==n_cigar_op-1)
{
++no_salvageable_ins_cigars;
}
else if (i==n_cigar_op-2 && (bam_cigar_opchr(cigar[i+1])=='S'))
{
++no_salvageable_ins_cigars;
}
else
{
std::cerr << "trailing I issue\n";
bam_print_key_values(odr->hdr, s);
++no_malformed_ins_cigars;
}
}
}
last_opchr = opchr;
}
if (!seenM)
{
std::cerr << "NO! M issue\n";
bam_print_key_values(odr->hdr, s);
++no_unaligned_cigars;
}
}
//check to see that hash should be cleared when encountering new contig.
//some bams may not be properly formed and contain orphaned sequences that
//can be retained in the hash
if (bam_get_tid(s)!=tid)
{
for (k = kh_begin(reads); k != kh_end(reads); ++k)
{
if (kh_exist(reads, k))
{
free((char*)kh_key(reads, k));
kh_del(rdict, reads, k);
}
}
tid = bam_get_tid(s);
}
return true;
}
void genotype2()
{
if (mode=="d")
{
//iterate sam
bam_hdr_t *h = odr->hdr;
bam1_t * s = bam_init1();
while (odr->read(s))
{
++no_reads;
if (!filter_read(s))
{
continue;
}
gbr->flush(odw, h, s);
gbr->process_read(h, s);
++no_passed_reads;
if ((no_reads & 0x0000FFFF) == 0)
{
std::cerr << bam_get_chrom(h,s) << ":" << bam_get_pos1(s) << " (" << gbr->buffer.size() << ")\n";
}
}
no_snps_genotyped = gbr->no_snps_genotyped;
no_indels_genotyped = gbr->no_indels_genotyped;
no_vntrs_genotyped = gbr->no_vntrs_genotyped;
gbr->flush(odw, h, s, true);
odw->close();
}
else if (mode=="s")
{
//iterate VCF file
//random access per site
}
}
/**
* Print BAM for debugging purposes.
*/
void bam_print_key_values(bam_hdr_t *h, bam1_t *s)
{
const char* chrom = bam_get_chrom(h, s);
uint32_t pos1 = bam_get_pos1(s);
kstring_t seq = {0,0,0};
bam_get_seq_string(s, &seq);
uint32_t len = bam_get_l_qseq(s);
kstring_t qual = {0,0,0};
bam_get_qual_string(s, &qual);
kstring_t cigar_string = {0,0,0};
bam_get_cigar_string(s, &cigar_string);
kstring_t cigar_expanded_string = {0,0,0};
bam_get_cigar_expanded_string(s, &cigar_expanded_string);
uint16_t flag = bam_get_flag(s);
uint32_t mapq = bam_get_mapq(s);
uint8_t *aux;
char* md = NULL;
(aux=bam_aux_get(s, "MD")) && (md = bam_aux2Z(aux));
std::cerr << "##################" << "\n";
std::cerr << "chrom:pos: " << chrom << ":" << pos1 << "\n";
std::cerr << "read : " << seq.s << "\n";
std::cerr << "qual : " << qual.s << "\n";
std::cerr << "cigar_str: " << cigar_string.s << "\n";
std::cerr << "cigar : " << cigar_expanded_string.s << "\n";
std::cerr << "len : " << len << "\n";
std::cerr << "mapq : " << mapq << "\n";
std::cerr << "mpos1 : " << bam_get_mpos1(s) << "\n";
std::cerr << "mtid : " << bam_get_mtid(s) << "\n";
std::cerr << "md : " << (aux?md:"") << "\n";
std::cerr << "##################" << "\n";
if (seq.m) free(seq.s);
if (qual.m) free(qual.s);
if (cigar_string.m) free(cigar_string.s);
if (cigar_expanded_string.m) free(cigar_expanded_string.s);
}
void print_options()
{
std::clog << "genotype2 v" << version << "\n\n";
std::clog << "options: input VCF File " << input_vcf_file << "\n";
std::clog << " [b] input BAM File " << input_sam_file << "\n";
std::clog << " [o] output VCF File " << output_vcf_file << "\n";
std::clog << " [s] sample ID " << sample_id << "\n";
std::clog << " [r] reference FASTA File " << ref_fasta_file << "\n";
std::clog << " [z] ignore MD tags " << (ignore_md ? "true": "false") << "\n";
std::clog << " [m] mode of genotyping " << mode << "\n";
print_int_op(" [i] intervals ", intervals);
std::clog << "\n";
std::clog << " [t] read mapping quality cutoff " << read_mapq_cutoff << "\n";
std::clog << " [l] ignore overlapping read " << (ignore_overlapping_read ? "true" : "false") << "\n";
std::clog << " [a] read flag filter " << std::showbase << std::hex << read_exclude_flag << std::dec << "\n";
std::clog << "\n";
}
void print_stats()
{
std::clog << "genotype2 v" << version << "\n\n";
std::clog << "\n";
std::clog << "stats: no. reads : " << no_reads << "\n";
std::clog << " no. overlapping reads : " << no_overlapping_reads << "\n";
std::clog << " no. low mapq reads : " << no_low_mapq_reads << "\n";
std::clog << " no. passed reads : " << no_passed_reads << "\n";
std::clog << " no. exclude flag reads : " << no_exclude_flag_reads << "\n";
std::clog << "\n";
std::clog << " no. unaligned cigars : " << no_unaligned_cigars << "\n";
std::clog << " no. malformed del cigars : " << no_malformed_del_cigars << "\n";
std::clog << " no. malformed ins cigars : " << no_malformed_ins_cigars << "\n";
std::clog << " no. salvageable ins cigars : " << no_salvageable_ins_cigars << "\n";
std::clog << "\n";
std::clog << " no. SNPs genotyped : " << no_snps_genotyped<< "\n";
std::clog << " no. Indels genotyped : " << no_indels_genotyped << "\n";
std::clog << " no. VNTRs genotyped : " << no_vntrs_genotyped << "\n";
std::clog << "\n";
}
~Igor()
{
kh_destroy(rdict, reads);
};
private:
};
}
void genotype2(int argc, char ** argv)
{
Igor igor(argc, argv);
igor.print_options();
igor.genotype2();
igor.print_stats();
}