forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboost.py
112 lines (102 loc) · 5.79 KB
/
boost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import KFold
import scipy.stats as sts
import xgboost as xgb
from xiter import *
import pandas as pd
import argparse
from datetime import datetime
def timer(start_time=None):
if not start_time:
start_time = datetime.now()
return start_time
elif start_time:
thour, temp_sec = divmod((datetime.now() - start_time).total_seconds(), 3600)
tmin, tsec = divmod(temp_sec, 60)
print('\n Time taken: %i hours %i minutes and %s seconds.' % (thour, tmin, round(tsec, 2)))
parser=argparse.ArgumentParser()
parser.add_argument("--end",type=float,default=100000.,help='end ratio')
parser.add_argument("--save",type=str,default="test_",help='save name')
parser.add_argument("--network",type=str,default="rnn",help='network name on symbols/')
parser.add_argument("--right",type=str,default="/scratch/yjdata/gluon100_img",help='which train sample (qq,gg,zq,zg)')
parser.add_argument("--pt",type=int,default=200,help='pt range pt~pt*1.1')
parser.add_argument("--ptmin",type=float,default=0.,help='pt range pt~pt*1.1')
parser.add_argument("--ptmax",type=float,default=2.,help='pt range pt~pt*1.1')
parser.add_argument("--epochs",type=int,default=10,help='num epochs')
parser.add_argument("--batch_size",type=int,default=100000,help='batch_size')
parser.add_argument("--loss",type=str,default="categorical_crossentropy",help='network name on symbols/')
parser.add_argument("--gpu",type=int,default=0,help='gpu number')
parser.add_argument("--isz",type=int,default=0,help='0 or z or not')
parser.add_argument("--eta",type=float,default=0.,help='end ratio')
parser.add_argument("--etabin",type=float,default=1,help='end ratio')
args=parser.parse_args()
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu)
batch_size=args.batch_size
vzjdata="Data/zj_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
vjjdata="Data/jj_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
vzqdata="Data/zq_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
vzgdata="Data/zg_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
vqqdata="Data/qq_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
vggdata="Data/gg_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
rc="c"
onehot=0
if(args.isz==0):
tqdata="Data/zj_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
tgdata="Data/jj_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
train=wkiter([tqdata,tgdata],batch_size=batch_size,end=args.end*0.7,istrain=1,rc=rc,onehot=onehot,etabin=args.etabin,pt=args.pt,ptmin=args.ptmin,ptmax=args.ptmax)
#valid1=wkiter([vzjdata,vjjdata],batch_size=batch_size,begin=0.8*args.end,end=args.end*1.,rc=rc,onehot=onehot)
#valid2=wkiter([vzqdata,vzgdata],batch_size=batch_size,end=2048,rc=rc,onehot=onehot)
#valid3=wkiter([vqqdata,vggdata],batch_size=batch_size,end=2048,rc=rc,onehot=onehot)
elif(args.isz==1):
tqdata="Data/zq_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
tgdata="Data/zg_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
train=wkiter([tqdata,tgdata],batch_size=batch_size,begin=0.5*args.end,end=args.end*1.,istrain=1,rc=rc,onehot=onehot,etabin=args.etabin,pt=args.pt,ptmin=args.ptmin,ptmax=args.ptmax)
#valid1=wkiter([vzjdata,vjjdata],batch_size=batch_size,begin=0.7*args.end,end=args.end*0.7+512,rc=rc,onehot=onehot,etabin=args.etabin,pt=args.pt,ptmin=args.ptmin,ptmax=args.ptmax)
#valid2=wkiter([vzqdata,vzgdata],batch_size=batch_size,end=args.end*0.1,rc=rc,onehot=onehot)
#valid3=wkiter([vqqdata,vggdata],batch_size=batch_size,end=512,rc=rc,onehot=onehot)
else:
tqdata="Data/qq_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
tgdata="Data/gg_pt_{0}_{1}.root".format(args.pt,int(args.pt*1.1))
train=wkiter([tqdata,tgdata],batch_size=batch_size,begin=0.5*args.end,end=args.end*1.,istrain=1,rc=rc,onehot=onehot,etabin=args.etabin,pt=args.pt,ptmin=args.ptmin,ptmax=args.ptmax)
#valid1=wkiter([vzjdata,vjjdata],batch_size=batch_size,begin=0.7*args.end,end=args.end*0.7+512,rc=rc,onehot=onehot,etabin=args.etabin,pt=args.pt,ptmin=args.ptmin,ptmax=args.ptmax)
#valid2=wkiter([vzqdata,vzgdata],batch_size=batch_size,end=512,rc=rc,onehot=onehot)
#valid3=wkiter([vqqdata,vggdata],batch_size=batch_size,end=args.end*0.1,rc=rc,onehot=onehot)
print("data ",tqdata)
gen=train.next()
params = {
'max_depth': sts.randint(1,6),
'learning_rate': sts.uniform(0.0010,0.500),
'n_estimators': sts.randint(10,101)
}
model=xgb.XGBClassifier(objective='binary:logistic',tree_method="gpu_hist")
X,Y=next(gen)
Y=np.array(Y)[:,0]
X=np.array(X[0])
folds = 5
param_comb = 100
skf = KFold(n_splits=folds, shuffle = True, random_state = 173)
#skf = StratifiedKFold(n_splits=folds, shuffle = True, random_state = 1001)
random_search = RandomizedSearchCV(model, param_distributions=params, n_iter=param_comb, scoring='roc_auc', n_jobs=6, cv=skf.split(X,Y), verbose=3, random_state=173 )
# Here we go
start_time = timer(None) # timing starts from this point for "start_time" variable
random_search.fit(X, Y)
timer(start_time)
#print(random_search.predict(X[:10]))
#print('\n All results:')
#print(random_search.cv_results_)
#print('\n Best estimator:')
#print(random_search.best_estimator_)
print('\n Best normalized gini score for %d-fold search with %d parameter combinations:' % (folds, param_comb))
print(random_search.best_score_ * 2 - 1)
#print('\n Best hyperparameters:')
#print(random_search.best_params_)
results = pd.DataFrame(random_search.cv_results_)
results.to_csv('xgb/{}-{}.csv'.format(args.save,args.pt), index=False)
import pickle
pickle.dump(random_search.best_estimator_,open("xgb/bdt5500pickle-{}.dat".format(args.pt),'wb'))
#random_search.best_estimator_.save_model("bdt-{}.dat".format(args.pt))