-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmagicmind.patch
executable file
·650 lines (570 loc) · 21.3 KB
/
magicmind.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
diff --git a/demo.py b/demo.py
index b3659f1..941c992 100644
--- a/demo.py
+++ b/demo.py
@@ -4,6 +4,7 @@ import random
import numpy as np
import torch
+import torch_mlu
import torch.backends.cudnn as cudnn
import gradio as gr
@@ -57,11 +58,11 @@ cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
-model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
+model = model_cls.from_config(model_config).to('mlu:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
-chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
+chat = Chat(model, vis_processor, device='mlu:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
diff --git a/eval_configs/minigpt4_eval.yaml b/eval_configs/minigpt4_eval.yaml
index f9e55a3..0bf99dd 100644
--- a/eval_configs/minigpt4_eval.yaml
+++ b/eval_configs/minigpt4_eval.yaml
@@ -8,7 +8,7 @@ model:
low_resource: True
prompt_path: "prompts/alignment.txt"
prompt_template: '###Human: {} ###Assistant: '
- ckpt: '/path/to/pretrained/ckpt/'
+ ckpt: '/workspace/prerained_minigpt4_7b.pth'
datasets:
diff --git a/minigpt4/common/config.py b/minigpt4/common/config.py
index e184b1f..54ad368 100644
--- a/minigpt4/common/config.py
+++ b/minigpt4/common/config.py
@@ -405,8 +405,8 @@ def create_runner_config_validator():
validator.add_argument(
"device",
type=str,
- choices=["cpu", "cuda"],
- help="Device to use. Support 'cuda' or 'cpu' as for now.",
+ choices=["cpu", "mlu","cuda"],
+ help="Device to use. Support 'mlu' or 'cpu' as for now.",
)
validator.add_argument(
"world_size",
diff --git a/minigpt4/common/dist_utils.py b/minigpt4/common/dist_utils.py
index 9280150..41c41a8 100644
--- a/minigpt4/common/dist_utils.py
+++ b/minigpt4/common/dist_utils.py
@@ -10,6 +10,7 @@ import functools
import os
import torch
+import torch_mlu
import torch.distributed as dist
import timm.models.hub as timm_hub
@@ -61,7 +62,7 @@ def init_distributed_mode(args):
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
- args.gpu = args.rank % torch.cuda.device_count()
+ args.gpu = args.rank % torch.mlu.device_count()
else:
print("Not using distributed mode")
args.distributed = False
@@ -69,8 +70,8 @@ def init_distributed_mode(args):
args.distributed = True
- torch.cuda.set_device(args.gpu)
- args.dist_backend = "nccl"
+ torch.mlu.set_device(args.gpu)
+ args.dist_backend = "cncl"
print(
"| distributed init (rank {}, world {}): {}".format(
args.rank, args.world_size, args.dist_url
diff --git a/minigpt4/common/logger.py b/minigpt4/common/logger.py
index 9a5a727..acb30dd 100644
--- a/minigpt4/common/logger.py
+++ b/minigpt4/common/logger.py
@@ -11,6 +11,7 @@ import time
from collections import defaultdict, deque
import torch
+import torch_mlu
import torch.distributed as dist
from minigpt4.common import dist_utils
@@ -40,7 +41,7 @@ class SmoothedValue(object):
"""
if not dist_utils.is_dist_avail_and_initialized():
return
- t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device="mlu")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
@@ -136,7 +137,7 @@ class MetricLogger(object):
"time: {time}",
"data: {data}",
]
- if torch.cuda.is_available():
+ if torch.mlu.is_available():
log_msg.append("max mem: {memory:.0f}")
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
@@ -147,7 +148,7 @@ class MetricLogger(object):
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
- if torch.cuda.is_available():
+ if torch.mlu.is_available():
print(
log_msg.format(
i,
@@ -156,7 +157,7 @@ class MetricLogger(object):
meters=str(self),
time=str(iter_time),
data=str(data_time),
- memory=torch.cuda.max_memory_allocated() / MB,
+ memory=torch.mlu.max_memory_allocated() / MB,
)
)
else:
diff --git a/minigpt4/configs/datasets/cc_sbu/align.yaml b/minigpt4/configs/datasets/cc_sbu/align.yaml
index 5710834..eced05e 100644
--- a/minigpt4/configs/datasets/cc_sbu/align.yaml
+++ b/minigpt4/configs/datasets/cc_sbu/align.yaml
@@ -2,4 +2,4 @@ datasets:
cc_sbu_align:
data_type: images
build_info:
- storage: /path/to/cc_sbu_align/
+ storage: /workspace/MiniGPT-4_mlu/cc_sbu_align/
diff --git a/minigpt4/configs/models/minigpt4.yaml b/minigpt4/configs/models/minigpt4.yaml
index 87af448..f27548f 100644
--- a/minigpt4/configs/models/minigpt4.yaml
+++ b/minigpt4/configs/models/minigpt4.yaml
@@ -13,7 +13,7 @@ model:
num_query_token: 32
# Vicuna
- llama_model: "/path/to/vicuna/weights/"
+ llama_model: "/workspace/vicuna-7b-all-v1.1"
# generation configs
prompt: ""
diff --git a/minigpt4/conversation/conversation.py b/minigpt4/conversation/conversation.py
index 676d89f..36c3384 100644
--- a/minigpt4/conversation/conversation.py
+++ b/minigpt4/conversation/conversation.py
@@ -3,6 +3,7 @@ import time
from PIL import Image
import torch
+import torch_mlu
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
from transformers import StoppingCriteria, StoppingCriteriaList
@@ -119,7 +120,7 @@ CONV_VISION = Conversation(
class Chat:
- def __init__(self, model, vis_processor, device='cuda:0'):
+ def __init__(self, model, vis_processor, device='mlu:0'):
self.device = device
self.model = model
self.vis_processor = vis_processor
diff --git a/minigpt4/datasets/data_utils.py b/minigpt4/datasets/data_utils.py
index cf6497f..2ba7890 100644
--- a/minigpt4/datasets/data_utils.py
+++ b/minigpt4/datasets/data_utils.py
@@ -20,6 +20,7 @@ from decord import VideoReader
import webdataset as wds
import numpy as np
import torch
+import torch_mlu
from torch.utils.data.dataset import IterableDataset
from minigpt4.common.registry import registry
@@ -80,16 +81,16 @@ def apply_to_sample(f, sample):
return _apply(sample)
-def move_to_cuda(sample):
- def _move_to_cuda(tensor):
- return tensor.cuda()
+def move_to_mlu(sample):
+ def _move_to_mlu(tensor):
+ return tensor.mlu()
- return apply_to_sample(_move_to_cuda, sample)
+ return apply_to_sample(_move_to_mlu, sample)
-def prepare_sample(samples, cuda_enabled=True):
- if cuda_enabled:
- samples = move_to_cuda(samples)
+def prepare_sample(samples, mlu_enabled=True):
+ if mlu_enabled:
+ samples = move_to_mlu(samples)
# TODO fp16 support
diff --git a/minigpt4/datasets/datasets/dataloader_utils.py b/minigpt4/datasets/datasets/dataloader_utils.py
index 8eaa3a5..2dbe647 100644
--- a/minigpt4/datasets/datasets/dataloader_utils.py
+++ b/minigpt4/datasets/datasets/dataloader_utils.py
@@ -8,7 +8,8 @@
import time
import random
import torch
-from minigpt4.datasets.data_utils import move_to_cuda
+import torch_mlu
+from minigpt4.datasets.data_utils import move_to_mlu
from torch.utils.data import DataLoader
@@ -47,13 +48,13 @@ class PrefetchLoader(object):
"""
Modified from https://github.com/ChenRocks/UNITER.
- overlap compute and cuda data transfer
+ overlap compute and mlu data transfer
(copied and then modified from nvidia apex)
"""
def __init__(self, loader):
self.loader = loader
- self.stream = torch.cuda.Stream()
+ self.stream = torch.mlu.Stream()
def __iter__(self):
loader_it = iter(self.loader)
@@ -82,14 +83,14 @@ class PrefetchLoader(object):
# if record_stream() doesn't work, another option is to make sure
# device inputs are created on the main stream.
# self.next_input_gpu = torch.empty_like(self.next_input,
- # device='cuda')
+ # device='mlu')
# self.next_target_gpu = torch.empty_like(self.next_target,
- # device='cuda')
+ # device='mlu')
# Need to make sure the memory allocated for next_* is not still in use
# by the main stream at the time we start copying to next_*:
- # self.stream.wait_stream(torch.cuda.current_stream())
- with torch.cuda.stream(self.stream):
- self.batch = move_to_cuda(self.batch)
+ # self.stream.wait_stream(torch.mlu.current_stream())
+ with torch.mlu.stream(self.stream):
+ self.batch = move_to_mlu(self.batch)
# more code for the alternative if record_stream() doesn't work:
# copy_ will record the use of the pinned source tensor in this
# side stream.
@@ -99,10 +100,10 @@ class PrefetchLoader(object):
# self.next_target = self.next_target_gpu
def next(self, it):
- torch.cuda.current_stream().wait_stream(self.stream)
+ torch.mlu.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is not None:
- record_cuda_stream(batch)
+ record_mlu_stream(batch)
self.preload(it)
return batch
@@ -111,15 +112,15 @@ class PrefetchLoader(object):
return method
-def record_cuda_stream(batch):
+def record_mlu_stream(batch):
if isinstance(batch, torch.Tensor):
- batch.record_stream(torch.cuda.current_stream())
+ batch.record_stream(torch.mlu.current_stream())
elif isinstance(batch, list) or isinstance(batch, tuple):
for t in batch:
- record_cuda_stream(t)
+ record_mlu_stream(t)
elif isinstance(batch, dict):
for t in batch.values():
- record_cuda_stream(t)
+ record_mlu_stream(t)
else:
pass
diff --git a/minigpt4/models/Qformer.py b/minigpt4/models/Qformer.py
index e71b123..94a196b 100644
--- a/minigpt4/models/Qformer.py
+++ b/minigpt4/models/Qformer.py
@@ -15,6 +15,7 @@ from dataclasses import dataclass
from typing import Optional, Tuple, Dict, Any
import torch
+import torch_mlu
from torch import Tensor, device, dtype, nn
import torch.utils.checkpoint
from torch import nn
diff --git a/minigpt4/models/__init__.py b/minigpt4/models/__init__.py
index 54acd24..6d69c8d 100644
--- a/minigpt4/models/__init__.py
+++ b/minigpt4/models/__init__.py
@@ -7,6 +7,7 @@
import logging
import torch
+import torch_mlu
from omegaconf import OmegaConf
from minigpt4.common.registry import registry
diff --git a/minigpt4/models/base_model.py b/minigpt4/models/base_model.py
index 1cd2226..55fe956 100644
--- a/minigpt4/models/base_model.py
+++ b/minigpt4/models/base_model.py
@@ -10,6 +10,7 @@ import os
import numpy as np
import torch
+import torch_mlu
import torch.nn as nn
from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
from minigpt4.common.utils import get_abs_path, is_url
diff --git a/minigpt4/models/blip2.py b/minigpt4/models/blip2.py
index ee4a9dc..dfef0dd 100644
--- a/minigpt4/models/blip2.py
+++ b/minigpt4/models/blip2.py
@@ -11,6 +11,7 @@ import time
import datetime
import torch
+import torch_mlu
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
@@ -38,7 +39,7 @@ class Blip2Base(BaseModel):
enable_autocast = self.device != torch.device("cpu")
if enable_autocast:
- return torch.cuda.amp.autocast(dtype=dtype)
+ return torch.mlu.amp.autocast(enabled=True)
else:
return contextlib.nullcontext()
diff --git a/minigpt4/models/blip2_outputs.py b/minigpt4/models/blip2_outputs.py
index e8722b1..2a02faa 100644
--- a/minigpt4/models/blip2_outputs.py
+++ b/minigpt4/models/blip2_outputs.py
@@ -9,6 +9,7 @@ from dataclasses import dataclass
from typing import Optional
import torch
+import torch_mlu
from transformers.modeling_outputs import (
ModelOutput,
BaseModelOutputWithPoolingAndCrossAttentions,
diff --git a/minigpt4/models/eva_vit.py b/minigpt4/models/eva_vit.py
index 7fcc63a..a4a2165 100644
--- a/minigpt4/models/eva_vit.py
+++ b/minigpt4/models/eva_vit.py
@@ -9,6 +9,7 @@ import math
from functools import partial
import torch
+import torch_mlu
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
@@ -437,6 +438,6 @@ def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precis
# print(incompatible_keys)
if precision == "fp16":
-# model.to("cuda")
+# model.to("mlu")
convert_weights_to_fp16(model)
- return model
\ No newline at end of file
+ return model
diff --git a/minigpt4/models/mini_gpt4.py b/minigpt4/models/mini_gpt4.py
index 667edd5..76ea23c 100644
--- a/minigpt4/models/mini_gpt4.py
+++ b/minigpt4/models/mini_gpt4.py
@@ -2,7 +2,8 @@ import logging
import random
import torch
-from torch.cuda.amp import autocast as autocast
+import torch_mlu
+from torch.mlu.amp import autocast as autocast
import torch.nn as nn
from minigpt4.common.registry import registry
@@ -90,8 +91,8 @@ class MiniGPT4(Blip2Base):
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
- load_in_8bit=True,
- device_map={'': device_8bit}
+ #load_in_8bit=True,
+ #device_map={'': device_8bit}
)
else:
self.llama_model = LlamaForCausalLM.from_pretrained(
diff --git a/minigpt4/models/modeling_llama.py b/minigpt4/models/modeling_llama.py
index 12d980e..eb528d9 100644
--- a/minigpt4/models/modeling_llama.py
+++ b/minigpt4/models/modeling_llama.py
@@ -5,6 +5,7 @@ import math
from typing import List, Optional, Tuple, Union
import torch
+import torch_mlu
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
diff --git a/minigpt4/processors/randaugment.py b/minigpt4/processors/randaugment.py
index 7034a49..f2414e3 100644
--- a/minigpt4/processors/randaugment.py
+++ b/minigpt4/processors/randaugment.py
@@ -9,6 +9,7 @@ import cv2
import numpy as np
import torch
+import torch_mlu
## aug functions
diff --git a/minigpt4/runners/runner_base.py b/minigpt4/runners/runner_base.py
index ccb5706..a33f371 100644
--- a/minigpt4/runners/runner_base.py
+++ b/minigpt4/runners/runner_base.py
@@ -13,6 +13,7 @@ import time
from pathlib import Path
import torch
+import torch_mlu
import torch.distributed as dist
import webdataset as wds
from minigpt4.common.dist_utils import (
@@ -134,7 +135,7 @@ class RunnerBase:
if amp:
if self._scaler is None:
- self._scaler = torch.cuda.amp.GradScaler()
+ self._scaler = torch.mlu.amp.GradScaler()
return self._scaler
@@ -276,8 +277,8 @@ class RunnerBase:
return self._dataloaders
@property
- def cuda_enabled(self):
- return self.device.type == "cuda"
+ def mlu_enabled(self):
+ return self.device.type == "mlu"
@property
def max_epoch(self):
@@ -442,7 +443,7 @@ class RunnerBase:
optimizer=self.optimizer,
scaler=self.scaler,
lr_scheduler=self.lr_scheduler,
- cuda_enabled=self.cuda_enabled,
+ mlu_enabled=self.mlu_enabled,
log_freq=self.log_freq,
accum_grad_iters=self.accum_grad_iters,
)
diff --git a/minigpt4/tasks/base_task.py b/minigpt4/tasks/base_task.py
index 7ceee96..8df644b 100644
--- a/minigpt4/tasks/base_task.py
+++ b/minigpt4/tasks/base_task.py
@@ -9,6 +9,7 @@ import logging
import os
import torch
+import torch_mlu
import torch.distributed as dist
from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized
from minigpt4.common.logger import MetricLogger, SmoothedValue
@@ -80,7 +81,7 @@ class BaseTask:
def inference_step(self):
raise NotImplementedError
- def evaluation(self, model, data_loader, cuda_enabled=True):
+ def evaluation(self, model, data_loader, mlu_enabled=True):
metric_logger = MetricLogger(delimiter=" ")
header = "Evaluation"
# TODO make it configurable
@@ -89,7 +90,7 @@ class BaseTask:
results = []
for samples in metric_logger.log_every(data_loader, print_freq, header):
- samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
+ samples = prepare_sample(samples, mlu_enabled=mlu_enabled)
eval_output = self.valid_step(model=model, samples=samples)
results.extend(eval_output)
@@ -107,7 +108,7 @@ class BaseTask:
optimizer,
lr_scheduler,
scaler=None,
- cuda_enabled=False,
+ mlu_enabled=False,
log_freq=50,
accum_grad_iters=1,
):
@@ -120,7 +121,7 @@ class BaseTask:
scaler=scaler,
lr_scheduler=lr_scheduler,
log_freq=log_freq,
- cuda_enabled=cuda_enabled,
+ mlu_enabled=mlu_enabled,
accum_grad_iters=accum_grad_iters,
)
@@ -134,7 +135,7 @@ class BaseTask:
optimizer,
lr_scheduler,
scaler=None,
- cuda_enabled=False,
+ mlu_enabled=False,
log_freq=50,
accum_grad_iters=1,
):
@@ -148,7 +149,7 @@ class BaseTask:
scaler=scaler,
lr_scheduler=lr_scheduler,
log_freq=log_freq,
- cuda_enabled=cuda_enabled,
+ mlu_enabled=mlu_enabled,
accum_grad_iters=accum_grad_iters,
)
@@ -163,7 +164,7 @@ class BaseTask:
scaler=None,
start_iters=None,
log_freq=50,
- cuda_enabled=False,
+ mlu_enabled=False,
accum_grad_iters=1,
):
"""
@@ -204,7 +205,7 @@ class BaseTask:
samples = next(data_loader)
- samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
+ samples = prepare_sample(samples, mlu_enabled=mlu_enabled)
samples.update(
{
"epoch": inner_epoch,
@@ -215,7 +216,7 @@ class BaseTask:
lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)
- with torch.cuda.amp.autocast(enabled=use_amp):
+ with torch.mlu.amp.autocast(enabled=use_amp):
loss = self.train_step(model=model, samples=samples)
# after_train_step()
diff --git a/minigpt4/tasks/image_text_pretrain.py b/minigpt4/tasks/image_text_pretrain.py
index bbe8ec8..d20f5f2 100644
--- a/minigpt4/tasks/image_text_pretrain.py
+++ b/minigpt4/tasks/image_text_pretrain.py
@@ -14,5 +14,5 @@ class ImageTextPretrainTask(BaseTask):
def __init__(self):
super().__init__()
- def evaluation(self, model, data_loader, cuda_enabled=True):
+ def evaluation(self, model, data_loader, mlu_enabled=True):
pass
diff --git a/train.py b/train.py
index a90cb3f..8094cd8 100644
--- a/train.py
+++ b/train.py
@@ -11,6 +11,7 @@ import random
import numpy as np
import torch
+import torch_mlu
import torch.backends.cudnn as cudnn
import minigpt4.tasks as tasks
@@ -36,6 +37,7 @@ def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
+ parser.add_argument("--local_rank",type=int,default=0, help="local_rank")
parser.add_argument(
"--options",
nargs="+",
@@ -45,8 +47,8 @@ def parse_args():
)
args = parser.parse_args()
- # if 'LOCAL_RANK' not in os.environ:
- # os.environ['LOCAL_RANK'] = str(args.local_rank)
+ #if 'LOCAL_RANK' not in os.environ:
+ # os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
diff --git a/train_configs/minigpt4_stage2_finetune.yaml b/train_configs/minigpt4_stage2_finetune.yaml
index 1013bea..aabb658 100644
--- a/train_configs/minigpt4_stage2_finetune.yaml
+++ b/train_configs/minigpt4_stage2_finetune.yaml
@@ -7,7 +7,7 @@ model:
end_sym: "###"
prompt_path: "prompts/alignment.txt"
prompt_template: '###Human: {} ###Assistant: '
- ckpt: '/path/to/stage1/checkpoint/'
+ ckpt: '/workspace/prerained_minigpt4_7b.pth'
datasets:
@@ -31,9 +31,9 @@ run:
weight_decay: 0.05
max_epoch: 5
iters_per_epoch: 200
- batch_size_train: 12
- batch_size_eval: 12
- num_workers: 4
+ batch_size_train: 2
+ batch_size_eval: 4
+ num_workers: 2
warmup_steps: 200
seed: 42
@@ -45,7 +45,7 @@ run:
evaluate: False
train_splits: ["train"]
- device: "cuda"
+ device: "mlu"
world_size: 1
dist_url: "env://"
- distributed: True
\ No newline at end of file
+ distributed: True