Skip to content

Latest commit

 

History

History
101 lines (88 loc) · 3.64 KB

README.md

File metadata and controls

101 lines (88 loc) · 3.64 KB

slanted-stixels

An implementation of Slanted Stixels


Description

  • An implementation of the slanted stixel computation based on [1][2]
    • Extracts slanted stixels from a disparity map, a disparity confidence, and a semantic segmentation
    • Jointly infers geometric and semantic layout of traffic scenes
  • For disparity confidence, the Local Curve (LC) is implemented based on [3]
  • For semantic segmentation, OpenCV DNN module and ERFNet is used

References

  • [1] Hernandez-Juarez, D., Schneider, L., Cebrian, P., Espinosa, A., Vazquez, D., López, A. M., ... & Moure, J. C. (2019). Slanted Stixels: A way to represent steep streets. International Journal of Computer Vision, 127(11), 1643-1658.
  • [2] Hernandez-Juarez, D., Espinosa, A., Vazquez, D., Lopez, A. M., & Moure, J. C. (2021). 3D Perception with Slanted Stixels on GPU. IEEE Transactions on Parallel and Distributed Systems.
  • [3] Pfeiffer, D., Gehrig, S., & Schneider, N. (2013). Exploiting the power of stereo confidences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 297-304).

Requirement

  • OpenCV (recommended latest version)
  • OpenMP (optional)

How to build

$ git clone https://github.com/gishi523/slanted-stixels.git
$ cd slanted-stixels
$ mkdir build
$ cd build
$ cmake ../
$ make

How to run

Command-line arguments

Usage: slanted_stixels [params] image-format-L image-format-R
	-h, --help
		print help message.
	image-format-L
		input left image sequence.
	image-format-R
		input right image sequence.
	--camera
		path to camera parameters.
	--start-number (value:1)
		start frame number.
	--model
		path to a binary file of model contains trained weights.
	--classes
		path to a text file with names of classes.
	--colors
		path to a text file with colors for each class.
	--geometry
		path to a text file with geometry id (0:ground 1:object 2:sky) for each class.
	--width (value:1024)
		input image width for neural network.
	--height (value:512)
		input image height for neural network.
	--backend (value:0)
		computation backend. see cv::dnn::Net::setPreferableBackend.
	--target (value:0)
		target device. see cv::dnn::Net::setPreferableTarget.
	--depth-only
		compute without semantic segmentation.
	--sgm-scaledown
		scaledown sgm input images for speedup.

Example

cd slanted_stixels

./build/slanted_stixels \
path_to_left_images/stuttgart_00_000000_%06d_leftImg8bit.png \
path_to_right_images/stuttgart_00_000000_%06d_rightImg8bit.png \
--camera=camera_parameters/cityscapes.xml \
--model=erfnet/erfnet.onnx \
--classes=erfnet/classes.txt \
--colors=erfnet/colors.txt \
--geometry=erfnet/geometry.txt \
--target=1

If you have manually built OpenCV DNN module with CUDA backend, you can pass DNN_BACKEND_CUDA(=5) and DNN_TARGET_CUDA(=6) to run the semantic segmentation faster.

--backend=5 --target=6

With --depth-only argument, you can test slanted stixel computation with depth information only.

cd slanted_stixels

./build/slanted_stixels \

path_to_left_images/imgleft%09d.pgm \
path_to_right_images/imgright%09d.pgm \
--camera=camera_parameters/daimler_urban_seg.xml \
--depth-only