-
Notifications
You must be signed in to change notification settings - Fork 6
/
semi_global_matching.cpp
645 lines (551 loc) · 17.4 KB
/
semi_global_matching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#include "semi_global_matching.h"
#include <opencv2/imgproc.hpp>
#define USE_OPENMP
#if defined(_OPENMP) && defined(USE_OPENMP)
#ifdef _WIN32
#define OMP_PARALLEL_FOR __pragma(omp parallel for)
#else
#define OMP_PARALLEL_FOR _Pragma("omp parallel for")
#endif
#else
#define OMP_PARALLEL_FOR
#endif
#ifdef _WIN32
#define popcnt32 __popcnt
#define popcnt64 __popcnt64
#else
#define popcnt32 __builtin_popcount
#define popcnt64 __builtin_popcountll
#endif
#define WITH_SSE
#ifdef WITH_SSE
#include <smmintrin.h>
static inline int _mm_hmin_epu8(__m128i v)
{
v = _mm_min_epu8(v, _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 2, 3, 2)));
v = _mm_min_epu8(v, _mm_shuffle_epi32(v, _MM_SHUFFLE(1, 1, 1, 1)));
v = _mm_min_epu8(v, _mm_shufflelo_epi16(v, _MM_SHUFFLE(1, 1, 1, 1)));
v = _mm_min_epu8(v, _mm_srli_epi16(v, 8));
return static_cast<uchar>(_mm_cvtsi128_si32(v));
}
static inline __m128i _mm_set1_epi_(uint32_t v) { return _mm_set1_epi32(v); }
static inline __m128i _mm_set1_epi_(uint64_t v) { return _mm_set1_epi64x(v); }
#endif
static const int DEFAULT_MC = 64;
static inline int HammingDistance(uint64_t c1, uint64_t c2) { return static_cast<int>(popcnt64(c1 ^ c2)); }
static inline int HammingDistance(uint32_t c1, uint32_t c2) { return static_cast<int>(popcnt32(c1 ^ c2)); }
static inline int min4(int x, int y, int z, int w)
{
return std::min(std::min(x, y), std::min(z, w));
};
template <int VIEW = 0>
static void census9x7(const cv::Mat& src, cv::Mat& dst)
{
CV_Assert(dst.elemSize() == 8);
memset(dst.data, 0, dst.rows * dst.cols * sizeof(uint64_t));
const int RADIUS_U = 9 / 2;
const int RADIUS_V = 7 / 2;
int v;
OMP_PARALLEL_FOR
for (v = RADIUS_V; v < src.rows - RADIUS_V; v++)
{
uint64_t* dstptr = dst.ptr<uint64>(v);
for (int u = RADIUS_U; u < src.cols - RADIUS_U; u++)
{
uint64_t c = 0;
for (int dv = -RADIUS_V; dv <= RADIUS_V; dv++)
{
for (int du = -RADIUS_U; du <= RADIUS_U; du++)
{
c <<= 1;
c += src.ptr(v)[u] <= src.ptr(v + dv)[u + du] ? 0 : 1;
}
}
if (VIEW == 0)
dstptr[u] = c;
else
dstptr[src.cols - 1 - u] = c;
}
}
}
template <int VIEW = 0>
static void symmetricCensus9x7(const cv::Mat& src, cv::Mat& dst)
{
CV_Assert(dst.elemSize() == 4);
memset(dst.data, 0, dst.rows * dst.cols * sizeof(uint32_t));
const int RADIUS_U = 9 / 2;
const int RADIUS_V = 7 / 2;
int v;
OMP_PARALLEL_FOR
for (v = RADIUS_V; v < src.rows - RADIUS_V; v++)
{
uint32_t* dstptr = dst.ptr<uint32_t>(v);
for (int u = RADIUS_U; u < src.cols - RADIUS_U; u++)
{
uint32_t c = 0;
for (int dv = -RADIUS_V; dv <= -1; dv++)
{
for (int du = -RADIUS_U; du <= RADIUS_U; du++)
{
const int v1 = v + dv;
const int v2 = v - dv;
const int u1 = u + du;
const int u2 = u - du;
c <<= 1;
c += src.ptr(v1)[u1] <= src.ptr(v2)[u2] ? 0 : 1;
}
}
{
int dv = 0;
for (int du = -RADIUS_U; du <= -1; du++)
{
const int v1 = v + dv;
const int v2 = v - dv;
const int u1 = u + du;
const int u2 = u - du;
c <<= 1;
c += src.ptr(v1)[u1] <= src.ptr(v2)[u2] ? 0 : 1;
}
}
if (VIEW == 0)
dstptr[u] = c;
else
dstptr[src.cols - 1 - u] = c;
}
}
}
#ifdef WITH_SSE
static inline void calcMatchingCost16(__m128i _census1, const uint32_t* census2, uchar* MC)
{
for (int i = 0; i < 16; i += 4)
{
__m128i _census2 = _mm_loadu_si128((__m128i*)&census2[i]);
__m128i _diff = _mm_xor_si128(_census1, _census2);
MC[i + 0] = static_cast<uchar>(popcnt32(_mm_extract_epi32(_diff, 0)));
MC[i + 1] = static_cast<uchar>(popcnt32(_mm_extract_epi32(_diff, 1)));
MC[i + 2] = static_cast<uchar>(popcnt32(_mm_extract_epi32(_diff, 2)));
MC[i + 3] = static_cast<uchar>(popcnt32(_mm_extract_epi32(_diff, 3)));
}
}
static inline void calcMatchingCost16(__m128i _census1, const uint64_t* census2, uchar* MC)
{
for (int i = 0; i < 16; i += 2)
{
__m128i _census2 = _mm_loadu_si128((__m128i*)&census2[i]);
__m128i _diff = _mm_xor_si128(_census1, _census2);
MC[i + 0] = static_cast<uchar>(popcnt64(_mm_extract_epi64(_diff, 0)));
MC[i + 1] = static_cast<uchar>(popcnt64(_mm_extract_epi64(_diff, 1)));
}
}
#endif
template <typename T>
static inline void updateCost(T census1, const T* census2, const uchar* Lp, uchar* Lc, int u, int n, int P1, int P2)
{
#ifdef WITH_SSE
__m128i _minLp = _mm_set1_epi8(-1);
for (int d = 0; d < n; d += 16)
{
__m128i _Lp = _mm_load_si128((__m128i*)&Lp[d]);
_minLp = _mm_min_epu8(_minLp, _Lp);
}
const uchar minLp = _mm_hmin_epu8(_minLp);
P1 -= minLp;
const __m128i _census1 = _mm_set1_epi_(census1);
const __m128i _P1 = _mm_set1_epi8(P1);
const __m128i _P2 = _mm_set1_epi8(P2);
const __m128i _INF = _mm_set1_epi8(255 - P1);
_minLp = _mm_set1_epi8(minLp);
alignas(16) uchar MC[16];
for (int d = 0; d < n; d += 16)
{
if (u >= n - 1)
{
calcMatchingCost16(_census1, census2 + d, MC);
}
else
{
for (int i = 0; i < 16; i++)
MC[i] = u - (d + i) >= 0 ? HammingDistance(census1, census2[d + i]) : DEFAULT_MC;
}
const __m128i _MC = _mm_load_si128((__m128i*)MC);
__m128i _Lp0 = _mm_load_si128((__m128i*)&Lp[d]);
__m128i _Lp1 = d > 0 ? _mm_loadu_si128((__m128i*)&Lp[d - 1]) : _mm_alignr_epi8(_Lp0, _INF, 15);
__m128i _Lp2 = d < n - 16 ? _mm_loadu_si128((__m128i*)&Lp[d + 1]) : _mm_alignr_epi8(_INF, _Lp0, 1);
_Lp0 = _mm_sub_epi8(_Lp0, _minLp);
_Lp1 = _mm_add_epi8(_Lp1, _P1);
_Lp2 = _mm_add_epi8(_Lp2, _P1);
_Lp0 = _mm_min_epu8(_Lp0, _P2);
_Lp1 = _mm_min_epu8(_Lp1, _Lp2);
_Lp0 = _mm_min_epu8(_Lp0, _Lp1);
const __m128i _Lc = _mm_adds_epu8(_MC, _Lp0);
_mm_store_si128((__m128i*)&Lc[d], _Lc);
}
#else
uchar minLp = std::numeric_limits<uchar>::max();
for (int d = 0; d < n; d++)
minLp = std::min(minLp, Lp[d]);
uchar _P1 = P1 - minLp;
for (int d = 0; d < n; d++)
{
const uchar MC = u - d >= 0 ? HammingDistance(census1, census2[d]) : DEFAULT_MC;
const uchar Lp0 = Lp[d] - minLp;
const uchar Lp1 = d > 0 ? Lp[d - 1] + _P1 : 0xFF;
const uchar Lp2 = d < n - 1 ? Lp[d + 1] + _P1 : 0xFF;
const uchar Lp3 = P2;
Lc[d] = static_cast<uchar>(MC + min4(Lp0, Lp1, Lp2, Lp3));
}
#endif
}
template <typename T>
static inline void updateCost(T census1, const T* census2, uchar* Lc, int u, int n)
{
for (int d = 0; d < n; d++)
{
const int MC = u - d >= 0 ? HammingDistance(census1, census2[d]) : DEFAULT_MC;
Lc[d] = MC;
}
}
template <typename T>
static void scanCost(const cv::Mat& C1, const cv::Mat& C2, cv::Mat1b& L, int P1, int P2, int ru, int rv)
{
const int h = L.size[0];
const int w = L.size[1];
const int n = L.size[2];
const bool forward = rv > 0 || (rv == 0 && ru > 0);
int u0 = 0, u1 = w, du = 1, v0 = 0, v1 = h, dv = 1;
if (!forward)
{
u0 = w - 1; u1 = -1; du = -1;
v0 = h - 1; v1 = -1; dv = -1;
}
for (int vc = v0; vc != v1; vc += dv)
{
const T* _census1 = C1.template ptr<T>(vc);
const T* _census2 = C2.template ptr<T>(vc) + w - 1;
for (int uc = u0; uc != u1; uc += du)
{
const int vp = vc - rv;
const int up = uc - ru;
const bool inside = vp >= 0 && vp < h && up >= 0 && up < w;
uchar* _Lc = L.ptr<uchar>(vc, uc);
uchar* _Lp = (uchar*)(L.data + vp * L.step.p[0] + up * L.step.p[1]); // for CV_DbgAssert avoidance
if (inside)
updateCost(_census1[uc], _census2 - uc, _Lp, _Lc, uc, n, P1, P2);
else
updateCost(_census1[uc], _census2 - uc, _Lc, uc, n);
}
}
}
static inline int winnerTakesAll(const uchar* L0, const uchar* L1, const uchar* L2, const uchar* L3,
const uchar* L4, const uchar* L5, const uchar* L6, const uchar* L7, ushort* S, int n)
{
int minS = std::numeric_limits<int>::max();
int disp = 0;
#ifdef WITH_SSE
__m128i _zero = _mm_setzero_si128();
for (int d = 0; d < n; d += 16)
{
__m128i _L0 = _mm_load_si128((__m128i*)&L0[d]);
__m128i _L1 = _mm_load_si128((__m128i*)&L1[d]);
__m128i _L2 = _mm_load_si128((__m128i*)&L2[d]);
__m128i _L3 = _mm_load_si128((__m128i*)&L3[d]);
__m128i _L4 = _mm_load_si128((__m128i*)&L4[d]);
__m128i _L5 = _mm_load_si128((__m128i*)&L5[d]);
__m128i _L6 = _mm_load_si128((__m128i*)&L6[d]);
__m128i _L7 = _mm_load_si128((__m128i*)&L7[d]);
// sign extension
__m128i _L0_0 = _mm_unpacklo_epi8(_L0, _zero);
__m128i _L0_1 = _mm_unpackhi_epi8(_L0, _zero);
__m128i _L1_0 = _mm_unpacklo_epi8(_L1, _zero);
__m128i _L1_1 = _mm_unpackhi_epi8(_L1, _zero);
__m128i _L2_0 = _mm_unpacklo_epi8(_L2, _zero);
__m128i _L2_1 = _mm_unpackhi_epi8(_L2, _zero);
__m128i _L3_0 = _mm_unpacklo_epi8(_L3, _zero);
__m128i _L3_1 = _mm_unpackhi_epi8(_L3, _zero);
__m128i _L4_0 = _mm_unpacklo_epi8(_L4, _zero);
__m128i _L4_1 = _mm_unpackhi_epi8(_L4, _zero);
__m128i _L5_0 = _mm_unpacklo_epi8(_L5, _zero);
__m128i _L5_1 = _mm_unpackhi_epi8(_L5, _zero);
__m128i _L6_0 = _mm_unpacklo_epi8(_L6, _zero);
__m128i _L6_1 = _mm_unpackhi_epi8(_L6, _zero);
__m128i _L7_0 = _mm_unpacklo_epi8(_L7, _zero);
__m128i _L7_1 = _mm_unpackhi_epi8(_L7, _zero);
// add costs
_L0_0 = _mm_adds_epu16(_L0_0, _L1_0);
_L0_1 = _mm_adds_epu16(_L0_1, _L1_1);
_L2_0 = _mm_adds_epu16(_L2_0, _L3_0);
_L2_1 = _mm_adds_epu16(_L2_1, _L3_1);
_L4_0 = _mm_adds_epu16(_L4_0, _L5_0);
_L4_1 = _mm_adds_epu16(_L4_1, _L5_1);
_L6_0 = _mm_adds_epu16(_L6_0, _L7_0);
_L6_1 = _mm_adds_epu16(_L6_1, _L7_1);
_L0_0 = _mm_adds_epu16(_L0_0, _L2_0);
_L0_1 = _mm_adds_epu16(_L0_1, _L2_1);
_L4_0 = _mm_adds_epu16(_L4_0, _L6_0);
_L4_1 = _mm_adds_epu16(_L4_1, _L6_1);
const __m128i _S_0 = _mm_adds_epu16(_L0_0, _L4_0);
const __m128i _S_1 = _mm_adds_epu16(_L0_1, _L4_1);
const __m128i _minS_0 = _mm_minpos_epu16(_S_0);
const __m128i _minS_1 = _mm_minpos_epu16(_S_1);
_mm_store_si128((__m128i*)&S[d + 0], _S_0);
_mm_store_si128((__m128i*)&S[d + 8], _S_1);
const int S_0 = _mm_extract_epi16(_minS_0, 0);
const int S_1 = _mm_extract_epi16(_minS_1, 0);
if (S_0 < minS)
{
minS = S_0;
disp = _mm_extract_epi16(_minS_0, 1) + d + 0;
}
if (S_1 < minS)
{
minS = S_1;
disp = _mm_extract_epi16(_minS_1, 1) + d + 8;
}
}
#else
for (int d = 0; d < n; d++)
{
S[d] = L0[d] + L1[d] + L2[d] + L3[d] + L4[d] + L5[d] + L6[d] + L7[d];
if (S[d] < minS)
{
minS = S[d];
disp = d;
}
}
#endif
return disp;
}
static inline int winnerTakesAll(const uchar* L0, const uchar* L1, const uchar* L2, const uchar* L3,
ushort* S, int n)
{
int minS = std::numeric_limits<int>::max();
int disp = 0;
#ifdef WITH_SSE
__m128i _zero = _mm_setzero_si128();
for (int d = 0; d < n; d += 16)
{
__m128i _L0 = _mm_load_si128((__m128i*)&L0[d]);
__m128i _L1 = _mm_load_si128((__m128i*)&L1[d]);
__m128i _L2 = _mm_load_si128((__m128i*)&L2[d]);
__m128i _L3 = _mm_load_si128((__m128i*)&L3[d]);
// sign extension
__m128i _L0_0 = _mm_unpacklo_epi8(_L0, _zero);
__m128i _L0_1 = _mm_unpackhi_epi8(_L0, _zero);
__m128i _L1_0 = _mm_unpacklo_epi8(_L1, _zero);
__m128i _L1_1 = _mm_unpackhi_epi8(_L1, _zero);
__m128i _L2_0 = _mm_unpacklo_epi8(_L2, _zero);
__m128i _L2_1 = _mm_unpackhi_epi8(_L2, _zero);
__m128i _L3_0 = _mm_unpacklo_epi8(_L3, _zero);
__m128i _L3_1 = _mm_unpackhi_epi8(_L3, _zero);
// add costs
_L0_0 = _mm_adds_epu16(_L0_0, _L1_0);
_L0_1 = _mm_adds_epu16(_L0_1, _L1_1);
_L2_0 = _mm_adds_epu16(_L2_0, _L3_0);
_L2_1 = _mm_adds_epu16(_L2_1, _L3_1);
const __m128i _S_0 = _mm_adds_epu16(_L0_0, _L2_0);
const __m128i _S_1 = _mm_adds_epu16(_L0_1, _L2_1);
const __m128i _minS_0 = _mm_minpos_epu16(_S_0);
const __m128i _minS_1 = _mm_minpos_epu16(_S_1);
_mm_store_si128((__m128i*)&S[d + 0], _S_0);
_mm_store_si128((__m128i*)&S[d + 8], _S_1);
const int S_0 = _mm_extract_epi16(_minS_0, 0);
const int S_1 = _mm_extract_epi16(_minS_1, 0);
if (S_0 < minS)
{
minS = S_0;
disp = _mm_extract_epi16(_minS_0, 1) + d + 0;
}
if (S_1 < minS)
{
minS = S_1;
disp = _mm_extract_epi16(_minS_1, 1) + d + 8;
}
}
#else
for (int d = 0; d < n; d++)
{
S[d] = L0[d] + L1[d] + L2[d] + L3[d];
if (S[d] < minS)
{
minS = S[d];
disp = d;
}
}
#endif
return disp;
}
static inline int WTA4Path(const std::vector<cv::Mat1b>& L, cv::Mat1w& S, int v, int u, int n)
{
ushort* _S = S.ptr<ushort>(v, u);
const uchar* _L0 = L[0].ptr<uchar>(v, u);
const uchar* _L1 = L[1].ptr<uchar>(v, u);
const uchar* _L2 = L[2].ptr<uchar>(v, u);
const uchar* _L3 = L[3].ptr<uchar>(v, u);
return winnerTakesAll(_L0, _L1, _L2, _L3, _S, n);
}
static inline int WTA8Path(const std::vector<cv::Mat1b>& L, cv::Mat1w& S, int v, int u, int n)
{
ushort* _S = S.ptr<ushort>(v, u);
const uchar* _L0 = L[0].ptr<uchar>(v, u);
const uchar* _L1 = L[1].ptr<uchar>(v, u);
const uchar* _L2 = L[2].ptr<uchar>(v, u);
const uchar* _L3 = L[3].ptr<uchar>(v, u);
const uchar* _L4 = L[4].ptr<uchar>(v, u);
const uchar* _L5 = L[5].ptr<uchar>(v, u);
const uchar* _L6 = L[6].ptr<uchar>(v, u);
const uchar* _L7 = L[7].ptr<uchar>(v, u);
return winnerTakesAll(_L0, _L1, _L2, _L3, _L4, _L5, _L6, _L7, _S, n);
}
using WinnerTakesAll = int(*)(const std::vector<cv::Mat1b>& L, cv::Mat1w& S, int v, int u, int n);
template <WinnerTakesAll wta>
static void calcDisparity(const std::vector<cv::Mat1b>& L, cv::Mat1w& S, cv::Mat& D1, cv::Mat& D2,
float uniquenessRatio)
{
const int DISP_SCALE = SemiGlobalMatching::DISP_SCALE;
const int DISP_INV = SemiGlobalMatching::DISP_INV;
const int h = S.size[0];
const int w = S.size[1];
const int n = S.size[2];
int v;
OMP_PARALLEL_FOR
for (v = 0; v < h; v++)
{
short* _D1 = D1.ptr<short>(v);
short* _D2 = D2.ptr<short>(v);
for (int u = 0; u < w; u++)
{
ushort* _S = S.ptr<ushort>(v, u);
int disp = wta(L, S, v, u, n);
// uniqueness check
int d;
for (d = 0; d < n; d++)
{
if (uniquenessRatio * _S[d] < _S[disp] && std::abs(d - disp) > 1)
break;
}
if (d < n)
{
_D1[u] = DISP_INV;
continue;
}
// sub-pixel interpolation
if (disp > 0 && disp < n - 1)
{
const int numer = _S[disp - 1] - _S[disp + 1];
const int denom = _S[disp - 1] - 2 * _S[disp] + _S[disp + 1];
disp = disp * DISP_SCALE + (DISP_SCALE * numer + denom) / (2 * denom);
}
else
{
disp *= DISP_SCALE;
}
_D1[u] = static_cast<short>(disp);
}
// calculate right disparity
for (int u = 0; u < w; u++)
{
int minS = std::numeric_limits<int>::max();
int disp = 0;
for (int d = 0; d < n && u + d < w; d++)
{
const ushort _S = S(v, u + d, d);
if (_S < minS)
{
minS = _S;
disp = d;
}
}
_D2[u] = static_cast<short>(DISP_SCALE * disp);
}
}
}
static void LRConsistencyCheck(cv::Mat& D1, cv::Mat& D2, int max12Diff)
{
const int DISP_SHIFT = SemiGlobalMatching::DISP_SHIFT;
const int DISP_INV = SemiGlobalMatching::DISP_INV;
const int h = D1.rows;
const int w = D1.cols;
int v;
OMP_PARALLEL_FOR
for (v = 0; v < h; v++)
{
short* _D1 = D1.ptr<short>(v);
short* _D2 = D2.ptr<short>(v);
for (int u = 0; u < w; u++)
{
if (_D1[u] == DISP_INV)
continue;
const int d = _D1[u] >> DISP_SHIFT;
if (u - d >= 0 && std::abs(_D1[u] - _D2[u - d]) > max12Diff)
_D1[u] = DISP_INV;
}
}
}
SemiGlobalMatching::SemiGlobalMatching(const Parameters & param) : param_(param)
{
}
void SemiGlobalMatching::compute(const cv::Mat& I1, const cv::Mat& I2, cv::Mat& D1, cv::Mat& D2)
{
CV_Assert(I1.type() == CV_8U && I2.type() == CV_8U);
CV_Assert(I1.size() == I2.size());
CV_Assert(param_.numDisparities % 16 == 0);
CV_Assert(param_.pathType == SCAN_4PATH || param_.pathType == SCAN_8PATH);
const int h = I1.rows;
const int w = I1.cols;
const int n = param_.numDisparities;
const int dims[3] = { h, w, n };
const int MAX_DIRECTIONS = 8;
const int ru[MAX_DIRECTIONS] = { +1, -1, +0, +0, +1, -1, -1, +1 };
const int rv[MAX_DIRECTIONS] = { +0, +0, +1, -1, +1, +1, -1, -1 };
const int numDirections = param_.pathType == SCAN_4PATH ? 4 : 8;
L.resize(numDirections);
if (param_.censusType == CENSUS_9x7)
{
census[0].create(h, w, CV_64F);
census[1].create(h, w, CV_64F);
census9x7<0>(I1, census[0]);
census9x7<1>(I2, census[1]);
int dir;
OMP_PARALLEL_FOR
for (dir = 0; dir < numDirections; dir++)
{
L[dir].create(3, dims);
scanCost<uint64_t>(census[0], census[1], L[dir], param_.P1, param_.P2, ru[dir], rv[dir]);
}
}
else if (param_.censusType == SYMMETRIC_CENSUS_9x7)
{
census[0].create(h, w, CV_32S);
census[1].create(h, w, CV_32S);
symmetricCensus9x7<0>(I1, census[0]);
symmetricCensus9x7<1>(I2, census[1]);
int dir;
OMP_PARALLEL_FOR
for (dir = 0; dir < numDirections; dir++)
{
L[dir].create(3, dims);
scanCost<uint32_t>(census[0], census[1], L[dir], param_.P1, param_.P2, ru[dir], rv[dir]);
}
}
else
{
CV_Error(cv::Error::StsInternal, "No such mode");
}
S.create(3, dims);
D1.create(h, w, CV_16S);
D2.create(h, w, CV_16S);
if (param_.pathType == SCAN_4PATH)
calcDisparity<WTA4Path>(L, S, D1, D2, param_.uniquenessRatio);
else
calcDisparity<WTA8Path>(L, S, D1, D2, param_.uniquenessRatio);
if (param_.medianKernelSize > 0)
{
cv::medianBlur(D1, D1, param_.medianKernelSize);
cv::medianBlur(D2, D2, param_.medianKernelSize);
}
const int max12Diff = param_.max12Diff << DISP_SHIFT;
if (max12Diff >= 0)
{
LRConsistencyCheck(D1, D2, max12Diff);
}
}