forked from hwiyoung/Orthophoto_Maps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_Orthophoto_DEM.py
141 lines (118 loc) · 6.25 KB
/
test_Orthophoto_DEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import time
from module.ExifData import *
from module.EoData import *
from module.Boundary import boundary, ray_tracing
from module.BackprojectionResample import *
from tabulate import tabulate
import trimesh
from scipy.interpolate import RectBivariateSpline
import pandas as pd
if __name__ == '__main__':
ground_height = 0 # unit: m
sensor_width = 6.3 # unit: mm
print("Read DEM")
start_time = time.time()
# --- DEM configuration ---
# dem = trimesh.load('../00_data/DEM_Yangpyeong/dem2point_whole_15_2 - Cloud.ply')
dem = trimesh.load('../00_data/DEM_Yangpyeong/dem2point_DJI_0361.ply')
vertices = np.array(dem.vertices)
ind = np.lexsort((vertices[:, 0], -vertices[:, 1]))
vertices = vertices[ind]
dem_gsd = 0.152 # unit: m
# -------------------------
print("--- %s seconds ---" % (time.time() - start_time))
for root, dirs, files in os.walk('./tests/query_images'):
for file in files:
# file = "DJI_0326.JPG"
image_start_time = time.time()
start_time = time.time()
filename = os.path.splitext(file)[0]
extension = os.path.splitext(file)[1]
file_path = root + '/' + file
dst = './' + filename
if extension == '.JPG' or extension == '.jpg':
print('Read the image - ' + file)
image = cv2.imread(file_path, -1)
# 1. Extract EXIF data from a image
focal_length, orientation, eo, maker = get_metadata(file_path) # unit: m, _, ndarray
print(tabulate([[eo[0], eo[1], eo[2], eo[3], eo[4], eo[5]]],
headers=["Longitude(deg)", "Latitude(deg)", "Altitude(deg)",
"Gimbal-Roll(deg)", "Gimbal-Pitch(deg)", "Gimbal-Yaw(deg)"],
tablefmt='psql'))
# 2. Restore the image based on orientation information
restored_image = restoreOrientation(image, orientation)
image_rows = restored_image.shape[0]
image_cols = restored_image.shape[1]
pixel_size = sensor_width / image_cols # unit: mm/px
pixel_size = pixel_size / 1000 # unit: m/px
print("--- %s seconds ---" % (time.time() - start_time))
print('Construct EOP')
start_time = time.time()
eo = geographic2plane(eo)
opk = rpy_to_opk(eo[3:], maker)
eo[3:] = opk * np.pi / 180 # degree to radian
R = Rot3D(eo)
print("--- %s seconds ---" % (time.time() - start_time))
print('Ray-tracing & Compute GSD')
start_time = time.time()
# 3. Extract ROI on dem of the image
bbox, extracted_dem = ray_tracing(restored_image, eo, R, dem, vertices, pixel_size, focal_length)
# 4. Compute GSD & Boundary size
# GSD
gsd = (pixel_size * (eo[2] - ground_height)) / focal_length # unit: m/px
# Boundary size
boundary_cols = int((bbox[1, 0] - bbox[0, 0]) / gsd)
boundary_rows = int((bbox[3, 0] - bbox[2, 0]) / gsd)
print("--- %s seconds ---" % (time.time() - start_time))
# 5. Compute coordinates of the projected boundary(Generate a virtual DEM)
print('projectedCoord')
start_time = time.time()
proj_coords = projectedCoord(bbox, boundary_rows, boundary_cols, gsd, eo, ground_height)
print("--- %s seconds ---" % (time.time() - start_time))
print('RectBivariateSpline')
start_time = time.time()
# x = np.unique(extracted_dem[:, 0]) # dem_cols
# y = np.unique(extracted_dem[:, 1]) # dem_rows
x = np.sort(pd.unique(extracted_dem[:, 0])) # dem_cols
y = np.sort(pd.unique(extracted_dem[:, 1])) # dem_rows
Z = extracted_dem[:, 2].reshape(y.size, x.size)
interp_spline = RectBivariateSpline(y, x, Z) # row, col, value
print("--- %s seconds ---" % (time.time() - start_time))
print('x2 = np.unique(proj_coords[0])')
start_time = time.time()
# x2 = np.unique(proj_coords[0])
x2 = np.sort(pd.unique(proj_coords[0]))
print("--- %s seconds ---" % (time.time() - start_time))
print('y2 = np.unique(proj_coords[1])')
start_time = time.time()
# y2 = np.unique(proj_coords[1])
y2 = np.sort(pd.unique(proj_coords[1]))
print("--- %s seconds ---" % (time.time() - start_time))
print('Z2 = interp_spline(y2, x2)')
start_time = time.time()
Z2 = interp_spline(y2, x2)
print("--- %s seconds ---" % (time.time() - start_time))
print('proj_coords[2] = np.ravel(Z2)')
start_time = time.time()
proj_coords[2] = np.ravel(Z2)
print("--- %s seconds ---" % (time.time() - start_time))
# Image size
image_size = np.reshape(restored_image.shape[0:2], (2, 1))
# 6. Back-projection into camera coordinate system
print('backProjection')
start_time = time.time()
backProj_coords = backProjection(proj_coords, R, focal_length, pixel_size, image_size)
print("--- %s seconds ---" % (time.time() - start_time))
# 7. Resample the pixels
print('resample')
start_time = time.time()
b, g, r, a = resample(backProj_coords, boundary_rows, boundary_cols, image)
print("--- %s seconds ---" % (time.time() - start_time))
# 8. Create GeoTiff
print('Save the image in GeoTiff')
start_time = time.time()
createGeoTiff(b, g, r, a, bbox, gsd, boundary_rows, boundary_cols, dst)
print("--- %s seconds ---" % (time.time() - start_time))
print('*** Processing time per each image')
print("--- %s seconds ---" % (time.time() - image_start_time))