diff --git a/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).html b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).html new file mode 100644 index 0000000..41db190 --- /dev/null +++ b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).html @@ -0,0 +1,7963 @@ + + + + + +Seminar 6 (Expectation and Variance) + + + + + + + + + + + + +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ + +
+ + +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+
+ +
+ + +
+
+ + diff --git a/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).ipynb b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).ipynb new file mode 100755 index 0000000..14900a2 --- /dev/null +++ b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).ipynb @@ -0,0 +1,639 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a8f7b639", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "# Seminar 6" + ] + }, + { + "cell_type": "markdown", + "id": "present-example", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of random variables\n", + "\n", + "A **random variable** is a function from sample space to the real numbers $X: S \\to \\mathbb{R}$." + ] + }, + { + "cell_type": "markdown", + "id": "congressional-malaysia", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of distributions\n", + "\n", + "For a random variable $X: S \\to \\mathbb{R}$, its distribution acts on numbers in $\\mathbb{R}$ in the same way as probability function $P$ acts on outcomes." + ] + }, + { + "cell_type": "markdown", + "id": "behind-startup", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Functions describing distributions\n", + "\n", + "- For any distribution we have **cumulative distribution function** (CDF) $F_X(x) = \\mathbb{P}(X \\leqslant x)$\n", + "- For discrete distributions we have **probability mass function** (PMF) $\\mathbb{P}_X(x) = \\mathbb{P}(X = x)$\n", + "- For continuous distributions we have **probability density function** (PDF) $f_X(x) = F'_X(x)$" + ] + }, + { + "cell_type": "markdown", + "id": "auburn-speaking", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Location-scale transformation\n", + "\n", + "Random variables transform like functions, i.e. if $Y = \\varphi(X)$, then $Y(\\omega) = \\varphi(X(\\omega))$.\n", + "\n", + "For a $\\varphi(x) = ax + b$ and $a > 0$, we have\n", + "$$\n", + "F_Y(y) = \\mathbb{P}(Y \\leqslant y) = \\mathbb{P}(a X + b \\leqslant y) = \\mathbb{P}\\left(X \\leqslant \\frac{y - b}{a}\\right) = F_X\\left(\\frac{y - b}{a}\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "laden-divorce", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Mathematical expectation\n", + "\n", + "Mathematical expectation generalizes the concept of mean. Consider probability space $(S, \\mathbb{P})$ and discrete random variable $X: S \\to \\mathbb{R}$. Then expected value of $X$ is then\n", + "$$\n", + "\\mathbb{E}\\left[X\\right] = \\sum_k x_k \\mathbb{P}(X = x_k)\n", + "$$\n", + " \n", + "It may be the case that $\\mathbb{E}\\left[X\\right] = \\pm \\infty$ or even does not exist." + ] + }, + { + "cell_type": "markdown", + "id": "rational-operator", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 1\n", + "\n", + "We roll a die and r.v. $X$ is the score of a roll. What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "returning-webcam", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 1\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[X\\right] = \\sum_{k=1}^6 k \\cdot \\mathbb{P}(X = k) = \\frac16 \\sum_{k=1}^6 k = \\frac72\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "basic-feature", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 2\n", + "\n", + "We flip a non-symmetric coin and $X$ is the r.v. for heads, $X \\sim Be(p)$. What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "running-lemon", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 2\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[X\\right] = 0 \\cdot \\mathbb{P}(X = 0) + 1 \\cdot \\mathbb{P}(X = 1) = p\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "interesting-topic", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 3\n", + "\n", + "Consider discrete r.v. $X$ with distribution $\\mathbb{P}(X = 2^n) = 2^{-n}$. What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "working-syria", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 3\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[X\\right] = \\sum_{n} 2^n 2^{-n} = \\infty\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "dressed-bookmark", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 4\n", + "\n", + "Consider discrete r.v. $X$ with distribution $\\mathbb{P}(X = 2^n) = \\mathbb{P}(X = - 2^n) = 2^{-n-1}$. What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "prospective-partnership", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 4\n", + "\n", + "Expectation of r.v. $X$ exists if and only if $\\mathbb{E}\\left[|X|\\right] < \\infty$" + ] + }, + { + "cell_type": "markdown", + "id": "incredible-revolution", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 5\n", + "\n", + "Consider $X$ with **Poisson distribution** $X \\sim Pois(\\lambda)$:\n", + "$$\n", + "\\mathbb{P}(X = k) = \\frac{\\lambda^k}{k!} e^{-\\lambda}\n", + "$$\n", + "\n", + "What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "criminal-lighter", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 5\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + "\\mathbb{E}\\left[X\\right] & = \\sum_{k=0}^\\infty k \\frac{\\lambda^k}{k!} e^{-\\lambda} = e^{-\\lambda} \\sum_{k=0}^\\infty k \\frac{\\lambda^k}{k!} = e^{-\\lambda} \\sum_{k=0}^\\infty \\frac{\\lambda^k}{(k - 1)!} = \\\\\n", + "& = e^{-\\lambda} \\sum_{k=0}^\\infty \\frac{\\lambda^{k-1} \\lambda}{(k - 1)!} = \\lambda e^{-\\lambda} \\sum_{j=0}^\\infty \\frac{\\lambda^j}{j!} = \\lambda e^{-\\lambda} e^\\lambda = \\lambda\n", + "\\end{aligned}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "missing-jurisdiction", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Properties of expectation\n", + "\n", + "Consider r.v.s $X$ and $Y$ with finite expectations. Then,\n", + "1. For any constants $a$ and $b$ it holds $\\mathbb{E}\\left[aX + b\\right] = a \\mathbb{E}\\left[X\\right] + b$\n", + "2. $\\mathbb{E}\\left[X + Y\\right] = \\mathbb{E}\\left[X\\right] + \\mathbb{E}\\left[Y\\right]$\n", + "3. If $X \\leqslant Y$ a.s., then $\\mathbb{E}\\left[X\\right] \\leqslant \\mathbb{E}\\left[Y\\right]$ ($X \\leqslant Y$ a.s. $\\Leftrightarrow \\mathbb{P}((x, y) : x > y) = 0$)\n", + "4. If $X \\perp Y$, then $\\mathbb{E}\\left[XY\\right] = \\mathbb{E}\\left[X\\right] \\mathbb{E}\\left[Y\\right]$" + ] + }, + { + "cell_type": "markdown", + "id": "blond-gibraltar", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 6\n", + "\n", + "Consider $X$ with binomial distribution $X \\sim Bi(n, p)$. What is $\\mathbb{E}\\left[X\\right]$?" + ] + }, + { + "cell_type": "markdown", + "id": "worst-mention", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 6\n", + "\n", + "- We know that $X = \\sum_{k=1}^n X_k$, where $X_k \\sim Be(p)$\n", + "- We know that $\\mathbb{E}\\left[X_k\\right] = p$\n", + "- Then, $\\mathbb{E}\\left[X\\right] = \\sum_{k=1}^n \\mathbb{E}\\left[X_k\\right] = np$" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "65a318d2-4684-4e86-91fe-7b156e94fd4c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "skip" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/33/j0cl7y453td68qb96j7bqcj4cf41kc/T/ipykernel_28394/2600749600.py:8: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`\n", + " dp.set_matplotlib_formats(\"retina\")\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import scipy.stats as sts\n", + "\n", + "import IPython.display as dp\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "dp.set_matplotlib_formats(\"retina\")\n", + "sns.set(style=\"whitegrid\", font_scale=1.5)\n", + "sns.despine()\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "89e40c31-8fdb-4c25-b29f-f0cf481980d2", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACksAAAXXCAYAAADifdvxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAB7CAAAewgFu0HU+AAD6U0lEQVR4nOzdd5jV5Z03/s80BoYZmhRFUBEQA1ZCUDGJRmMhu6vGumrWR9c1UazRFDEWbOijUYOJbdWNyWqIJZaoj6ghJFiIGJUgsKJgDEVQEGaYwvTz+8OfZzkzA0w/cOb1uq5czH1/7/I5J5wZuXhz31mJRCIRAAAAAAAAAAAAABkqO90FAAAAAAAAAAAAAHQkYUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABktNx0F8C2qbq6OoqLi5Pt/Pz8yMnJSV9BAAAAAAAAAAAAdAl1dXVRVVWVbPfp0ye6devWpjWFJWlScXFxLF++PN1lAAAAAAAAAAAAQAwcOLBN813DDQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgo7mGmybl5+entIcOHRoFBQVpqgZg+7RkyZKoq6uLnJycGDFiRLrLAYBO52chAF2dn4UAdDV/X//3+Len/m2LY/772/8dw/oO66SK0ujvf4/4ty2/F/Hf/x0xrAu8FwBdlD8TArRNRUVFLF++PNlumGdrDWFJmpSTk5PSLigoiMLCwjRVA7B9ys7Ojrq6usjOzvY9FIAuyc9CALo6PwsB6GqyK7Ljb+v/tuUx+V3k52J2dsTftvxeRHZ2RFd4LwC6KH8mBGhfDfNsreEabgAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGy013AQAAAAAAAMD2Lz83P0YPGJ1sV1ZWRiQiIiuie/fuyTFdQn5+xOjRWx8DAAB0GmFJAAAAAAAAoM1G9BsRCyctTLbnz58fNTU1kZeXF/vss08aK0uDESMiFi7c+jgAAKDTuIYbAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRctNdAAAAAAAAAAAA0LkSiURUVVXFhg0boqKiIurr66Ouri7dZQHboJycnMjOzo6CgoLo1atX5OfnR1ZWVrrLajFhSQAAAAAAAAAA6CISiUSsXbs2SkpKoqamJt3lANuB2traiIjYuHFjfPbZZ5GXlxe9e/eO/v37b1ehSWFJAAAAAAAAAADoAhKJRKxcuTJKS0sbPcvKyoqcnJw0VAVs6+rq6iKRSCTbNTU1sXbt2qiqqoqdd955uwlMCksCAAAAAAAAAECGayoo2bNnzygqKoqioqLIzRUjAjavtrY2SktLo7S0NMrLyyMiorS0NFauXLndBCZ9lwMAAAAAAAAAgAy3du3aZFAyKysrhgwZEoWFhWmuCthe5ObmRt++faNv375RVlYWK1asiEQiEaWlpbF27doYMGBAukvcqux0FwAAAAAAAAAAAHScRCIRJSUlybagJNAWhYWFMWTIkGS7pKQk5ZrubZWwJAAAAAAAAAAAZLCqqqqoqamJiM+v3haUBNqqsLAwCgoKIiKipqYmqqqq0lzR1glLAgAAAAAAAABABtuwYUPy66KiojRWAmSSXr16Jb/e9PvMtio33QUAAAAAAAAA278l65bEsb89NtmurKyMSEREVkT3V7tHRMQz//pMjOg3Ik0VdqIlSyKOPXbLY555JmJEF3gvANgmVFRUJL8WlgTaS1FRUaxevToiIjZu3JjmarZOWBIAAAAAAABos6raqli0ZlHTD0v/d0yXUFUVsWgz78WmYwCgk9TX10dERFZWVuTmigsB7SM3NzeysrIikUhEXV1dusvZKtdwAwAAAAAAAABABvsixJSTk5PmSoBM88X3FWFJAAAAAAAAAAAAgDQTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhouekuAAAAAAAAAAAAgO3Pk08+GZMnT+6w9W+66aY4/vjjU/reeOONOOOMM7Y479vf/nbcfPPNERFx3XXXxSOPPJLy/F//9V/j2muvbVNtM2fOjEmTJqX0XX311XH66afHihUr4vDDD9/i/PHjx8d///d/t6kGWsbJkgAAAAAAAAAAAGSkH/7wh7Hbbrul9P32t7+NV155pdVrrl69Oq644oqUvm984xtx+umnt3pNOp6wJAAAAAAAAAAAABmpR48eccstt0ROTk5K/09+8pPYsGFDi9erq6uLyy67LIqLi5N9AwYMiKlTp7a1VDqYa7gBAAAAAAAAAABoF1OmTGm3tfbbb7+tjtltt93izDPPTOkbNmxYSnvfffeNc845J+69995k3yeffBLXXntt3HbbbS2q6a677oq//vWvyXZWVlbccsst0a9fv2Rfnz59Gr0PH330UTz00EMt2ov2JSwJAAAAAAAAAABAuzj11FM7db+BAwc2a88LLrggZs+eHYsWLUr2Pffcc3HEEUfE0Ucf3ay95s6dG/fcc09K31lnnRUTJkxI6SssLGxU0xtvvCEsmWau4QYAAAAAAAAAACCj5eXlxS233BLdunVL6Z8yZUqsXbt2q/PXrVsXP/jBD6K+vj7ZN2bMmPj+97/f7rXSMYQlAQAAAAAAAAAAyHgjR45sFG5cv359XHnllVude8UVV8Qnn3ySbBcUFMRtt93WKHzJtktYEgAAAAAAAAAAgC7hzDPPjK985SspfbNmzYonnnhis3MeeuihmDVrVkrfT37ykxg2bFiH1EjHEJYEAAAAAAAAAACgS8jOzo6bb745evbsmdJ/0003xcqVKxuNX7hwYfz0pz9N6Tv66KPjxBNP7NA6aX/CkgAAAAAAAAAAAHQZQ4YMicmTJ6f0lZWVxU9+8pNIJBLJvo0bN8all14aNTU1yb7BgwfH9ddf32m10n6EJQEAAAAAAAAAAOhSTjrppPjGN76R0jdnzpz47W9/m2zfdNNN8dFHHyXbOTk5ceutt0avXr06q0zakbAkAAAAAAAAAAAAXc4NN9wQffv2Ten76U9/Gp9++mm8/vrr8eijj6Y8+973vhfjxo3rzBJpR7npLgAAAAAAAAAAaD8VlTWxtnhjVFbXRfduOdG/T48o6J6X7rIAYJvTv3//uPbaa+Oiiy5K9pWVlcWNN94YixYtShm7//77xwUXXNDZJdKOhCUBAAAAAACANkskElsds3jZuhg9IBFZWVmdUBF0LYlEIt5dujaef+3v8ZcFq6O+/n8/k9nZWXHQXjvFtw7eLfYe3t9nEGibhQvTs29+fsSIES2ft2RJRFVV+9fTHGPGtHzO8uURGza0bQ1a5Kijjopjjz02nnnmmWTfjBkzUsYUFhbGrbfeGjk5OZ1dHu1IWBIAAAAAAABokyUriuPGR+Zuddydj86LmbNq4vunjo0RQ/p0fGHQRSxZURx3TH87lq0ubfJ5fX0iXpv/cbw2/+PYZccin0GgbfbaKz37jh7duqDmscdGNDghsNM04x+TNHLppRFPPNG2NWixq666KubOnRurVq1q8vm1114bQ4cO7eSqaG/CkgAAAAAAAECrvbP405j60NxYU1seUbj18ctWl8bku16NK84cH/uPGtjxBUKG++IzWFld16zxPoMAdLRRo0a1yzozZ86MIUOGtMtaW1NUVBQ33XRTnHXWWY1OTD/uuOPin//5nzulDjpWdroLAAAAAAAAALZPS1YUtyik9YXK6rqY+tDcWLKiuGMKgy7CZxAA2s/+++8fAwc2/ocERUVFaaiGjiAsCQAAAAAAALRYIpGIO6a/3eKQ1hcqq+viZ9PfbnRyD9A8PoMA0L6mTp0an3zySaP+hx9+OF5//fU0VER7cw03AAAAAAAA0GLvLl0by1aXtmmNf6wujQVLP4u9R/Rvp6qg6/AZBGBbNWXKlHZZp0+fPu2yTnP84Q9/iEcffbTJZ4lEIiZPnhy///3vo3fv3p1WE+1PWBIAAAAAAABosf/32kftss7zr/9dUAtawWcQgG3Vqaeemu4SWuSTTz6Jn/zkJyl9AwYMiDVr1iTbq1evjuuuuy5uu+22zi6PdiQsCQAAAAAAALRIRWVNzFmwKqWvqH6X+OcNT7d4rTnvroqKypoo6J7XTtVtA8aMiXC1MR2oqc9ga2XkZxAAmimRSMSPf/zjKC4uTvYVFBTE9OnT4+KLL46FCxcm+5977rk4/PDD41vf+lYaKqU9ZKe7AAAAAAAAAGD7srZ4Y9TXt08YsL4+EZ+VVLbLWtBV+AwCQPt44IEHYs6cOSl9559/fgwdOjSuv/76yMnJSXl27bXXxieffNKZJdKOnCwJAAAAAAAAtEhldV27rrexqrZd14NM5zMIpNWCBenZNz+/dfOeeSaiqqp9a+lIt98eMWVKuqvoEhYsWBDTpk1L6dtvv/3irLPOioiIMWPGxDnnnBP33ntv8nlxcXFcccUV8eCDD3ZqrbQPYUkAAAAAAACgRbp3y9n6oBboke+vLaElfAaBtBozJt0VtMyIEemuoGWGDk13BV1CRUVFXHbZZVFTU5PsKygoiFtuuSXlNMnzzz8//vSnP8V7772X7Hv11VfjkUceidNPP71Ta6btXMMNAAAAAAAAtEj/Pj0iOzurXdbKyc6KHXp3b5e1oKvwGQSAtrnhhhvio48+Sun78Y9/HLvuumtKX7du3eL//t//G3l5eSn9t956a/z973/v6DJpZ8KSAAAAAAAAQIsUdM+Lg/baqV3WOnDvnaKge97WBwJJPoMA0HozZsyI3/3udyl9hx56aPzrv/5rk+P33HPPuOCCC1L6Nm7cGD/60Y+itra2w+qk/QlLAgAAAAAAAC32rYN3a5d1/mnCsHZZB7oan0EAaLlVq1bF1VdfndLXt2/fuPHGG7c475xzzol99903pW/+/Plx7733tnuNdBxhSQAAAAAAAKDF9h7eP3bZsahNa+y6Y1HsNXyHdqoIuhafQQBomfr6+vjRj34UJSUlKf3XX3999O/ff4tzc3Jy4uabb47u3bun9N9zzz3x7rvvtnutdAxhSQAAAAAAAKDFsrKy4vunjo3u3XJaNb97t5y45NSxkZWV1c6VQdfgMwgALXPffffF3LlzU/qOP/74OOKII5o1f/fdd49LL700pa+2tjZ+9KMfRWVlZbvVSccRlgQAAAAAAABaZcSQPnHFmeNbHNbq3i0nrjhzfIwY0qdjCoMuwmcQAJpn/vz58Ytf/CKlb+edd46f/OQnLVrnjDPOiPHjx6f0ffjhh/HTn/60zTXS8XLTXQAAAAAAAACw/dp/1MC46fyvxh3T345lq0u3On7XHYviklPHCmlBO/EZBGBbM3369HZd71/+5V+isLCw1fPLysrisssui9ra2mRfdnZ23HLLLS1eNysrK2666aY45phjory8PNn/8MMPx2GHHRYTJkxodZ10PGFJAAAAAAAAoE1GDOkTv/jBN2LB0s/i6T8vibmLPkl5npOdFQfuvVP804RhsdfwHVz7C+3MZxCAbcmUKVPadb2vfe1rbQpLXn/99bFs2bKUvn//93+PcePGtWq9IUOGxOTJk+PKK69M9iUSiZg8eXI8++yz0atXr1bXSsdyDTcAAAAAAADQZllZWbH3iP5x0Sn7N3p2z48Pj8vP+ErsPaK/kBZ0EJ9BAGjs+eefj6effjqlb88994yLL764TeuedNJJccghh6T0rV69Oq699to2rUvHcrIkAAAAAAAA0GbLS5bHpS9dGjW19fFWj9Upz857+deRl5sdtx95ewztPTRNFXai5csjLr10y2Nuvz1iaBd4L9gmFHQXDQCg61m5cmVcc801KX3dunWLW2+9Nbp169bm9W+44Yb4l3/5lyguLk72Pffcc3H44YfHt771rTavT/vzX0QAAAAAAABAm22o2hBPLHri80Ze6rNn3v/81ymHTOnUmtJmw4aIJ57Y8ph2vp4SACAdjj/++Dj++OPTXUaTdt555/jrX//aYesPHDgw3njjjQ5bn/bnGm4AAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEbLTXcBAAAAAAAAAAAA0BqffvppTJ8+PaVv2LBhceCBB6apooiysrJ49tlnU/o++uij9BRDkrAkAAAAAAAAAAAA26WPPvoopkyZktL37W9/O61hyeLi4kY1kX6u4QYAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNFcww0AAAAAAAAAAMB24YADDojFixenu4wtGjJkyDZfY1fkZEkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGy013AQAAAAAAAMD2b3i/4bHgvAVRWlEdl9/1asqzm8//ahQVdIvh/YanqbpONnx4xIIFWx8DAAB0GmFJAAAAAAAAoM2653aPMQPHRElZVRTVL0t59qX+o6N3YX6aKkuD7t0jxoxJdxUAAMAmXMMNAAAAAAAAAAAAZDQnSwIAAAAAAAAAAEAnGjVqVEp78eLFaaqk63CyJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAyWm66CwAAAAAAAAAAACCzJBKJePfdd+N//ud/Yv369ZGbmxs77rhj7L///rHzzjtvce4HH3wQ8+fPj7Vr10ZeXl70798/9t9//xg6dGibaqqsrIx58+bF8uXLY/369ZGXlxf9+vWLYcOGxV577RXZ2W0/e7CkpCTmzZsXH330UVRWVsaAAQNi2LBhsd9++0VWVlab1/9CIpGIBQsWxEcffRSfffZZ1NTURP/+/WPIkCGx3377RV5eXrvtlSmEJQEAAAAAAIA2+7T807j7zbujsro2FucvSXl20+tvRvduuTHpK5NiYM+BaaqwE336acTdd295zKRJEQO7wHsBAGS0UaNGJb8+/fTT4+qrr46IiCeeeCLuvvvuWLlyZZPzJkyYED/5yU9ixIgRKf0zZ86MadOmxeLFi5uc9+Uvfzkuv/zy2GeffVpU57x58+KBBx6IP//5z1FdXd3kmD59+sTRRx8dkyZNikGDBrVo/YiIpUuXxp133hkzZ86MmpqaRs+HDh0a55xzTpxyyiktXntT69ati3vuuSf+3//7f7F27domxxQWFsYRRxwRF1xwQQwZMqRN+2USYUkAAAAAAACgzdaUr4lr/3zt54381Gf/d87nv540+qSuEZZcsybi2mu3POakk4QlAYCMU1paGj/+8Y9j5syZWxz3+uuvx0knnRT3339/jBs3Lurq6uLaa6+NRx99dIvz3nrrrTj99NPjjjvuiG9+85tbraeioiKuv/76ePLJJ7c6tri4OH7729/G008/HZdcckmcddZZW53zhQcffDBuv/32qK2t3eyY5cuXx9VXXx2zZs2KadOmNXvtTT3xxBMxderUKC8v3+K4srKyeOqpp+L555+PSy65JM4+++xW7ZdphCUBAAAAAAAAAIBmWfjpwrTsm5+bHyP6jdj6wAaWrFsSVbVVHVDR1o0ZOKbFc5aXLI8NVRvatEa61NbWxkUXXRSvv/56Sn+PHj0iKysrKioqUvorKirikksuiRdeeCFuvPHGeOqpp1Ke9+zZM2pra6OqKvX/v+rq6vjRj34Uzz33XAwePHiz9ZSWlsbpp5++2VMqN7d+ZWVl3HzzzbF06dK4/vrrt3p19m233Rb/+Z//2eSzwsLCqKqqSjlpctasWXHZZZdtcc2mTJs2Le7ezOnlPXr0iOzs7EYhyurq6rjlllti+fLlcc0117TrNeDbI2FJAAAAAAAAAACgWfa6Z6+07Dt6wOhYOKnlQc1jf3tsLFqzqAMq2rrENYkWz7n0pUvjiUVPtGmNdHnmmWeisrIyIiL69u0bZ555Zhx33HExaNCgyMrKig8//DB+9rOfxYsvvpics2bNmvj3f//3mD9/fkRE9OvXL84999yYOHFiDBw4MBKJRHzwwQdx1113xYwZM5LzysvL41e/+lVMnjy5yVqqq6vj/PPPbxSUHDlyZHz3u9+NQw45JHr37h0REStXrowZM2bEf/7nf0ZxcXFy7OOPPx477rhjXHDBBZt9zS+++GKjoGTfvn3jwgsvjIkTJ0a/fv0ikUjE4sWLY/r06fHYY49FfX19vPzyy814R//X448/3igoufPOO8d//Md/xOGHH568Nry0tDReeeWVuP/++2PRov/9fT99+vTYddddW3RaZibKTncBAAAAAAAAAAAAbN++CErutttu8fjjj8e5554bO+64Y/I0w9133z2mTZsWBx10UMq8L4KSw4cPj6effjr+z//5PzFw4MCIiMjKyoo99tgjpk2bFt/+9rdT5r300kubreXXv/51vPHGGyl9p556ajz99NNxzDHHJIOSEZ+HDs8+++x44YUXYp999kmZc9ddd8Vbb73V5B5VVVVx/fXXp/SNGDEinn322Tj99NOjX79+ydew5557xrXXXhv/+Z//Gd27d99s3U358MMP44YbbkjpO+qoo+K5556L0047LRmUjIgoKiqKb33rW/HEE080Ckbedttt8d5777Vo70wjLAkAAAAAAAAAAECbZWdnx7Rp02Lo0KFNPs/Kyor/+I//aNSfm5sbP//5z1OCfw19//vfT7lG+uOPP47PPvus0bjy8vJ44IEHUvr+6Z/+KaZMmRK5uZu/iLlfv37xy1/+MqX2+vr6uOuuu5oc/+STT8aaNWuS7YKCgrj//vtjwIABm93ja1/7WqOA5dbcd999ySBqRMT48ePj9ttvj4KCgs3OycnJicsvvzyOP/74ZF9NTU3cf//9Ldo70whLAgAAAAAAAAAA0GZHH3107Lnnnlsc8+Uvfzkl9BgRcfjhh8fw4cO3OG/QoEGx4447pvRtGlb8wnPPPRfr169PtgsLC+Oaa67ZWunJsQ3DjK+99lqj67wjPr92fFP/8R//EYMHD97qHsccc0yMHz++WfWsWbMmnn/++WQ7Kysrrrrqqi2GPjf1wx/+MPLz85PtGTNmxCeffNKsuZlIWBIAAAAAAAAAAIA2O/TQQ7c6pkePHtG3b9+Uvq997WvNWn+HHXZIaZeVlTUa8/rrr6e0/+Vf/iXl2u2tOeigg2KPPfZI6XvllVdS2sXFxTFv3rxkOysrK4477rhm73HSSSc1a9zs2bOjpqYm2R49enSj2rakX79+Ke9tbW1tzJkzp9nzM03zIqbtbOnSpfG73/0u3nzzzVi+fHmUlpZGfn5+DBkyJMaOHRvHHHNMjB07tlNrWrBgQbz88svx1ltvxfLly6OkpCQSiUT07ds3dt555xg/fnwceeSR8aUvfanFa0+dOjV+9atftbq2YcOGxYwZM1o9HwAAAAAAAAAAoKONGjWqWeN69OiR0m5uALB79+4p7bq6upR2IpGIuXPnpvR94xvfaNbamzrssMPi/fffT7bffPPNlOvD582bF4lEItkeOnRo7Lzzzs1evzmh0oiIt99+O6W99957N3uPL4wdOzb+8Ic/pKzZkmBnJunUsGRZWVlMnTo1nnzyyZTfLBGfp1YXL14cixcvjunTp8cRRxwRN954Y4tSva2xdOnSmDJlSqMPyRdWrVoVq1atir/+9a9x9913xze+8Y248sorY8iQIc3eo6ljWAEAAAAAAAAAADLJwIEDWzWvqKioWeOys7d8kfKGDRti3bp1KX2tCRg2nPP3v/89pf3hhx+mtJsbEv1Cr169YqeddopVq1ZtcdzChQtT2itXrozp06e3aK+GtX/wwQctmp9JOi0suW7dujjzzDObHRx8+eWXY8GCBfHQQw/Fbrvt1iE1vfDCCzF58uTYuHFjs+fMmjUr3nnnnbjzzjvjgAMOaNacTVPGAAAAAAAAAAAAmaiwsLBV87p169Yu+xcXF6e08/Lyol+/fi1ep2Hos6SkJKX9ySefpLT79+/f4j2GDBmy1bDk+vXrU9qvvPJKoyvBW6rha+lKOiUsWVtbG5MmTWoUlBw5cmQceuih0b9//1i7dm3MmjUrlixZkny+atWqmDRpUjz22GOt/iBtzpw5c+KHP/xhyp3uX9Q0YcKEGDx4cNTV1cXy5ctj9uzZsXLlyuSY4uLiOO+88+LRRx+NkSNHbnGfTz/9NCWtPGrUqDj11FNbVGtHn64JAAAAAAAAAADNseC8BWnZNz83v1XznvnXZ6Kqtqqdq+k4tx95e0w5ZEq6y2i19go9tlbDsGRrM2cNT7rcsGFDJBKJyMrKioiIioqKlOcFBQUt3qNnz55bHbNhw4YWr7s1wpId7N5774133nkn2c7Ly4urr746Tj755JRxP/jBD+Lxxx+P66+/PqqqPv8mtXTp0pg6dWpMnTq13eqpqKhoFJTs06dP3HjjjfHNb36z0fi6urp49NFH46abborq6uqIiCgvL4+LL744nn322cjJydnsXg0DogceeGCLw5IAAAAAAAAAALAtGDNwTLpLaJER/Uaku4QWGdp7aLpLID7Pi20qOzs7GZRsL/n5Ww8ANzwIsD18kcvrijo8LLl27dp48MEHU/puuOGGOO6445ocf9JJJ0Xv3r3joosuikQiERERTz/9dHzve9+LXXfdtV1q+uUvfxlr1qxJtnv27Bm/+c1vYvjw4U2Oz8nJidNOOy2GDBkS5557bvLDsHTp0njyySfjpJNO2uxeDcOSe+yxRzu8AgAAAAAAAAAAADbVq1evlHZZWVmr1mk4r3v37inthidJtmaf8vLyrY7p1atXfPbZZ8n2/fffH1//+tdbvBefy+7oDaZPn55y7OjXv/71zQYlv3DkkUfGd77znWS7rq4u7rvvvnar6amnnkppX3bZZZsNSm7q61//eqNTIRuu1dD777+f0haWBAAAAAAAAAAAaH+9e/dOadfU1KSEDZvr448/TmkPGDAgpb3TTjultD/99NMW77F+/fqtjmn4erryFdrtocPDkg3DhGeddVaz5p1zzjkp11u/9NJL7XKs6HvvvRfLly9PtgsKCuKEE05o9vzTTjstpT1v3rwtJoM3PVkyKysrRozYvo72BQAAAAAAAAAA2B7069cvdthhh5S+BQsWtHidhQsXprR32WWXlHbDg/kajt+a2traWLJkyVbHNdyn4cF9tEyHhiU/+OCDWLlyZbLdp0+fOOCAA5o1d9CgQbHffvsl26WlpTFnzpw217Ro0aKU9n777dfomNQtGT58ePTs2TPZrquri1WrVjU5tra2NpYuXZpsDxkypNERrAAAAAAAAAAAALSPsWPHprRnzZrV4jX++Mc/prT33XfflPb+++8fubm5yfann34a7733XrPXnzdvXlRVVW113Je//OWUdmvyc7/61a/i3HPPjeuvvz5++ctftksGb3vVoWHJN954I6X95S9/OeW0yK0ZP358Snv27NltrqnhEalDhgxp8RoNA4+bO970ww8/TDkN0xXcAAAAAAAAAAAAHedrX/taSvvZZ5+N4uLiZs9//fXX48MPP0zp++pXv5rSLiwsjAkTJqT0TZ8+vdl7PP74480a13Dfd999N955551m71NeXh733XdfzJo1Kx5++OG4+eabWxUezRQdGpZsmJYdPXp0i+Y3HN+aI1EbuuCCC+Ldd9+Nl19+Of77v/87Tj/99BbNr6ysjHXr1qX09erVq8mxm17BHRExcuTIlhULAAAAAAAAAABAsx1zzDHRp0+fZLusrCyuu+66Zs0tLy+Pa665JqVv1KhRjU6WjIg49dRTU9qPPfZYs4KMb731Vvz+979vVj0jR46Mgw8+OKXvqquuio0bNzZr/rRp0+Kzzz5L6TvuuOOaNTcTdWhYctMrqCMidt999xbNb3jX+9///vc21xQR0a1bt9hll11i/Pjxseeee7Zo7l/+8peoq6tL6Rs0aFCTYxuGJUeNGpX8uqKiIubOnRvPPvtsPPXUUzF79uxYvnx5i2oBAAAAAAAAAADgf/Xo0SPOOuuslL7nn38+pkyZErW1tZudt379+jj77LNj2bJlKf2XXnppk+MPO+yw2H///ZPt+vr6OO+882LhwoWb3eO9996LCy64IOrr65vzUiIiYtKkSZGVlZVsf/DBB3HOOefE+vXrtzjvkUceiV/96lcpfYcffniLDzzMJLlbH9J6Da+83lyocHMGDhyY0i4uLo7y8vLo2bNnm2trrUceeSSlPWbMmOjdu3eTY5s6WXL27NnxyCOPxKuvvtrkh2/EiBFx8sknx2mnnRZ5eXntVzgAAAAAAAAAAEAXcM4558Rrr70Wc+fOTfZNnz493nrrrfjud78bhxxySPI24VWrVsWMGTPivvvuaxRAPPnkk+PQQw/d7D433nhjnHDCCcmTHtevXx+nnHJK/Pu//3uceOKJycMCV6xYEb/73e/iwQcfjKqqqoiIyMrKikQisdXXMm7cuPje974X9957b7LvzTffjKOPPjrOPvvsOProo5P7VFdXx1tvvRW/+tWvGl233adPn7jyyiu3ul8m69CwZMPrqvv379+i+X379o3s7OyUJO369evTFpacM2dOzJ49O6XvsMMO2+z4999/P6V93XXXpXwAm7JkyZKYOnVqPPLII3HnnXe2+ORLAAAAAAAAAACAriwnJyfuuOOOOOecc2LRokXJ/vfffz9+8IMfREREYWFh1NbWRmVlZZNrHHXUUXH11VdvcZ/hw4fH7bffHhdddFHU1NRERERNTU3cd999cd9990WPHj0iIhpdmz1+/PiIiK1myb5w0UUXxapVq+KZZ55J9hUXF8dtt90Wt912W+Tl5UXPnj2jtLS00a3JEREFBQXxs5/9LAYPHtys/TJVh13DXV5eHtXV1Sl9hYWFLVojKysr+RvmCxs2bGhzba1RUlISV111VUpffn5+nHzyyZsdv3r16pS+5v7mjoj4xz/+Eaeddlq8/vrrLS8WAAAAAAAAAACgC+vfv3888sgjMXHixCafl5WVNRmU7NatW3z/+9+Pn/3sZ826Gfiwww6L+++/P3bYYYdGzzZu3NgoKDlmzJiYNm1a5OTkNPOVfB7+vOWWW+L73/9+dOvWrdHzmpqaKC4ubjIoueuuu8avfvWrOOigg5q9X6bqsJMlvzgudFMNg4/NUVBQEOXl5cn25pK8Hamuri4uu+yyWL58eUr/2Wef3eiq8C80vIL7C717944TTjghJk6cGEOGDImCgoL45JNPYu7cufHwww/He++9lxxbXl4eF110Ufzud7+LXXfdtf1eUCssWbIksrM7LFsLkJE2/Vcj8+fPT3M1AND5/CwEoKvzsxCArmbJhiVbHbP4/cVRt7rxX+BmmvwlS2LUVsYsXrw4qpr4y2xoq/LKxr+vFi1aFD27Nz+QAbTdtvZnwtra2sjJyYmsrKyoqKhIdzlksOb+/tr0puGIzzNhzZnbMAxYVVW11XlTp06Nk08+OR544IF48803Gx0A+IU+ffrEUUcdFWeccUYMHjy4RTm1fffdN5588sl48MEH4+mnn27yQMBevXrF8ccfH+edd15069at0Wtpzus/44wz4sgjj4wHH3wwZs6c2eja8E3ttttucfzxx8fJJ58c+fn5HfbZr6uri+rq6ti4cWO7fr9r+HukPXRYWPKLb/opm+W2fLuGCdra2tpW19QaiUQirrjiinjllVdS+vfYY48477zzNjuvqbDkgQceGLfddluj68h33XXX2HXXXeOEE06Ie+65J+68887ks9LS0rj00kvjiSeeiKysrDa+mtarq6trMnkMQPM09XMRALoSPwsB6Or8LASgK2jO3+PV1tZ2iZ+LOd4L0qimpvHf69bU1ERNTvsHDoDm2da+3ycSiXSXQAZ5++23U9rN/f31/PPPN+prztz777+/VfP23Xff+PnPfx4bN26MefPmxSeffBLFxcUR8XlIco899ohRo0Yls2qt+ZwUFRXFJZdcEpMmTYp33303lixZEqWlpdGnT58YPHhwjBs3LnkqZCKRiHvvvbfFryMiYtCgQXHFFVfE5MmT47333ouPPvoo1q9fHxUVFdGzZ88YMGBAjB49OuXK7c743CcSiW3u+11DHRaWbCpY15qTCRvO6YjE6OYkEom45ppr4umnn07pLyoqijvvvLPJI02/UFJSEgUFBclE7rhx4+KBBx7Y4tGs2dnZcf7550cikYif//znyf4FCxbEzJkz45vf/GbbXlAb5OTkOFkSoIU2/Y+A5hzNDQCZxs9CALo6PwsB6Gqac3BKbm5ul/i56L0gnfLqGv+9bl5eXuTlOVkSOtO29mfCTf9RQzoP64J0KygoiAkTJnToHvn5+TFu3LgYN25ch+6TlZUVo0ePjtGjR3foPs2VlZXVqsMUN6e+vr7dD/frsLBkUy+8rq6uxW9Iw7RpZ/0Aqauri8mTJ8czzzzTaP9f/OIXMWzYsC3Ov+CCC+KCCy6IdevWxfLly2OXXXZpdu2TJk2KF198Md5///1k329+85u0hiVHjBgRhYWFadsfYHs0f/78qKmpiby8vNhnn33SXQ4AdDo/CwHo6vwsBKCryfk0J2LmlseM2mNUjBk4pnMKSqecrYfSRo0aFTGmC7wXdLqSsqqIWJbSN3r06OhdmJ+egqCL2tb+TPjBBx8kr+IuKChIdzlABsnJyYlu3bpFbm5ujBw5st3WLSsra/J257bosKMCmzp1sTXHbDY8rn9Lpzm2l8rKyrjwwgsbBSVzc3PjjjvuiAMPPLDZa/Xr1y/23Xff6Nu3b7PnZGdnx7/927+l9L311ltRXV3d7DUAAAAAAAAAAACAz3VYWLKoqKjRsb3l5eUtXqfhnJ49e7aprq1Zt25dnHHGGTFzZuo/e8vLy4vbb789jjjiiA7d/wsNj3utrKxs96QsAAAAAAAAAAAAdAUdFpbMycmJXr16pfRt2LChRWtUVlY2Ok1xhx12aHNtm/PRRx/FKaecEn/7299S+vPz8+MXv/hFHHXUUR22d0NDhgyJ7t27p/StW7eu0/YHAAAAAAAAAACATNFhYcmIiB133DGlvXbt2hbNX7NmTUq7W7du0bt37zbX1ZS33347TjnllFi2bFlKf2FhYdx///1x6KGHdsi+W9LWsCkAAAAAAAAAAAAQkduRiw8dOjTl6ugVK1a0aH7D8bvttlt7lNXI7Nmz48ILL4zKysqU/gEDBsT9998fX/rSlzpk362pqqpKaRcWFqalDgAAAAAAANiaIb2GxGMnPhYVlTVx52PzUp5ddPJ+UdA9L4b0GpKe4jrbkCERjz229TEAAECn6dCw5KhRo+IPf/hDsr106dIWzf/www9T2sOHD2+XujY1c+bMuPjii6Ompialf7fddosHHngghg4d2uI1E4lElJSUxGeffRbr1q2LioqKOOSQQ1q0RnV1daOTJPv27dviWgAAAAAAAKAz9O7eO04ac1KUlFXFE7U9U54dN+ro6F2Yn6bK0qB374iTTkp3FQAAwCY6NCy5zz77pLTnz5/fovnz5s1Lae+///5tLSnFq6++2mRQct9994177703+vXr16p1Z8+eHd/97neT7ezs7PjrX/8aPXv23MKsVO+++24kEolkOzc3N/bYY49W1QMAAAAAAAAAAABdWXZHLv6Vr3wl8vLyku2//e1vUVJS0qy5dXV18dprr6X0TZgwod1qe//99+Oiiy5qFJQ8+OCD46GHHmp1UDIiYuTIkSnt+vr6mDt3bovW+OMf/5jSHjNmTBQUFLS6JgAAAAAAAAAAAOiqOjQs2bNnz/jqV7+abNfW1saTTz7ZrLkzZ86Mzz77LNkeOXJkoxBia1VXV8dll10W5eXlKf2HHXZY3HvvvW0OJQ4ePDh23XXXlL7HH3+82fNLSkoajT/22GPbVBMAAAAAAAAAAAB0VR0aloyIOPHEE1Pa9957b3z88cdbnLNhw4a49dZbU/pOPvnkdqvpjjvuiPfffz+lb/z48TFt2rTo1q1bu+xxzDHHpLRnzpwZc+bM2eq8RCIRV111VcoJnH369InjjjuuXeoCAAAAAAAAAACArqbDw5KHH3547Lnnnsl2cXFxnHvuubF27domx5eXl8fFF18cy5YtS/bttNNOccopp2x2jyeffDJGjRqV8r833nijybErV66MX//61yl9gwYNijvvvLPdgpIREd/5zneiT58+KX2XXHJJvPvuu5udU1NTEz/5yU/ixRdfTOn/0Y9+FD179my32gAAAAAAAAAAAKArye3oDbKysmLKlClx2mmnRX19fURELF68OI477ri4+OKLY+LEiVFYWBhVVVUxa9asmDZtWnz44Ycpa1x11VWRn5/fLvX813/9V9TW1qb0jR07NmbMmNHqNQ844IDYfffdU/r69OkTkydPjh//+MfJvuLi4jjttNPijDPOiBNOOCE5p7S0NP70pz/FPffcE0uXLk1Z5/DDD48TTjih1bUBAAAAAAAAAABAV9fhYcmIiP333z+mTJkSV199dbJvzZo1ceWVV8aVV14ZRUVFUVZWFolEotHc733ve3H44Ye3Sx01NTXx1FNPNep/4YUX4oUXXmj1ujfddFOjsGRExHHHHRfLli2Lu+66K9lXXV0dDzzwQDzwwAORn58f3bp1i9LS0ibXHTduXPz0pz9tdV0AAAAAAAAAAABAJ1zD/YVTTjklrrvuuujevXujZ6WlpY2CktnZ2XHBBRfEpZde2m41LFy4MMrLy9ttvea46KKL4oYbbmjydVdVVW02KHniiSfGgw8+GAUFBR1dIgAAAAAAAAAAAGS0TgtLRnwemHzuuedi4sSJTYYHv3DwwQfHI488EhdeeGG77r9q1ap2Xa+5TjrppJgxY0b827/9WxQVFW12XE5OThx66KHxm9/8Jm688cYtvkcAAAAAAAAAAABA83TKNdybGjp0aPzsZz+LioqKePPNN+OTTz6JdevWRffu3WPw4MExduzY6N+/f4vWPP744+P444/f6riJEyfGxIkTW1t6m+y0005x5ZVXxuTJk2PRokXxwQcfRHFxcVRVVUVRUVHssssusf/++28xTAkAAAAAAAAAAAC0XKeHJb9QUFAQhxxySLq2T5ucnJzYe++9Y++99053KQAAAAAAAAAAANAlpC0sCQAAAAAAAGSOksqSeGnpS1FRWRMf585Lefb04vIo6J4XRw4/Mnp3752eAjtTSUnESy9tecyRR0b07gLvBQAAbCOEJQEAAAAAAIA2W7FhRZz8xMmfNwpSn5353Oe/LjhvQdcIS65YEXHyyVses2CBsCQAAHSi7HQXAAAAAAAAAAAAANCRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNFy010AAAAAAAAAAAAA25+f//zn8Ytf/KJFc7KzsyM3Nzd69OgRffv2jcGDB8e+++4bEyZMiLFjx0Zu7tYjbaNGjWqyf+LEifGzn/2sRfVszrnnnhuzZs1q1P/LX/4yJkyY0OSc1rwfzfHtb387br755nZft6sRlgQAAAAAAAAAAKBT1NfXR3V1dVRXV0dJSUl89NFH8frrr8c999wTu+yyS1x88cXxz//8z61a+89//nNUVVVFfn5+m2osLS2NV199tU1rsO1xDTcAAAAAAAAAAJCRKiprYtnqDfH+svWxbPWGqKisSXdJbMGyZcvisssui6uuuirq6+tbPL+ioqJdQo4zZ86Mmhq/VzKNkyUBAAAAAAAAAICMkUgk4t2la+P51/4ef1mwOurrE8ln2dlZcdBeO8W3Dt4t9h7eP7KystJYaebp06dPXHLJJVsck0gkora2NjZu3BiffPJJvP322/E///M/KWMee+yxyM/PjyuvvLLFNbz00ktx+OGHt3jepmbMmNGm+V9ozvvRHMOGDWt7MQhLAgAAAAAAAAAAmWHJiuK4Y/rbsWx1aZPP6+sT8dr8j+O1+R/HLjsWxfdPHRsjhvTp3CIzWM+ePePUU09t8bw//vGP8cMf/jDKysqSfQ8//HD88z//c+y3334tWmvWrFlRU1MTeXl5La4j4vMruF977bVWzW2ote8HHcM13AAAAAAAAAAAwHbvncWfxuS7Xt1sULKhZatLY/Jdr8Y7iz/t4MrYmsMOOyzuueeeyMnJSfYlEom44447mjV/1113TX5dUlISb7zxRqtrmTlzZlRXVyfb+fn5rV6LbYuwJAAAAAAAAAAAsF1bsqI4pj40Nyqr61o0r7K6LqY+NDeWrCjumMJotvHjx8exxx6b0jd37txYs2bNVuceddRRKe2XXnqp1XVsegX36NGjo3///q1ei22LsCQAAAAAAAAAALDdSiQSccf0t1sclPxCZXVd/Gz625FIJNq5MlrqlFNOSWnX19fHK6+8stV53/zmNyM3NzfZ/sMf/hD19fUt3r+srCzlCu6JEye2eA22XcKSAAAAAAAAAADAduvdpWubffX25vxjdWksWPpZO1VEa+21116Rl5eX0vfxxx9vdV6fPn1i/PjxyfZnn30Wb731Vov3b3gFt7BkZhGWBAAAAAAAAAAAtlv/77WP2mWd51//e7usQ+vl5uZGnz59Uvqacw13ROOruF988cUW7//CCy8kvx4zZkwMHTq0xWuw7RKWBAAAAAAAAAAAtksVlTUxZ8GqdllrzruroqKypl3WovVqalL/P8jPz2/WvCOOOCJycnKS7ZdffrlFV6u7gjvzCUsCAAAAAAAAAADbpbXFG6O+vvmBuC2pr0/EZyWV7bIWrbNx48bYsGFDSl+/fv2aNXeHHXaIcePGJdurV6+O+fPnN3tvV3BnPmFJAAAAAAAAAABgu1RZXdeu622sqm3X9WiZt956K+rr61P69tprr2bPb3gV90svvdTsuTNmzEh+vffee8eQIUOaPZftg7AkAAAAAAAAAACwXereLWfrg1qgR35uu65Hyzz88MMp7fz8/Pjyl7/c7PlHHnlkZGf/bySuuWHJsrKyePXVV5Ntp0pmJmFJAAAAAAAAAABgu9S/T4/Izs5ql7VysrNih97d22UtWu7xxx+PWbNmpfSdeOKJ0aNHj2avMWDAgBg7dmyyvWzZsnjvvfe2Oq/hFdxHH310s/dk+yEKDQAAAAAAAAAAbJcKuufFQXvtFK/N/7jNax24905R0D2vHaqiJdatWxf3339//PKXv0zp79mzZ5xzzjktXu+oo46Kv/71r8n2Sy+9FHvuuecW52x6Bfc+++wTO++8c4v3bcrKlStj1KhRrZ7/61//Og444IB2qQVhSQAAAAAAAAAAYDv2rYN3a5ew5D9NGNYO1XRt5eXlMX369C2Oqa+vj/Ly8vjss89i0aJF8c4770RNTU2jcddff33stNNOLa7hqKOOiqlTp0YikYiIz8OSF1100WbHu4K76xCWBAAAAAAAAAAAtlt7D+8fu+xYFMtWl7Z6jV13LIq9hu/QjlV1TcXFxTFlypQ2rZGdnR0/+MEP4p/+6Z9aNX/QoEGx3377xTvvvBMRER988EF8+OGHsfvuuzc5/o9//GPyCu6srCxXcGcwYUkAAAAAAAAAAGC7lZWVFd8/dWxMvuvVqKyua/H87t1y4pJTx0ZWVlYHVEdLfOUrX4nLLrss9t9//zatc/TRRyfDkhGfny557rnnNjn2hRdeSH697777xuDBg9u096b69OkTl1xySavn77bbbu1WC8KSAAAAAAAAAADAdm7EkD5xxZnjY+pDc1sUmOzeLSeuOHN8jBjSp+OKI0VWVlbk5eVFUVFRDBw4MIYNGxb77rtvHHLIITFsWPtchX7kkUfGTTfdlGxvLizZ0Vdw9+zZM0499dR2XZPWE5YEAAAAAAAA2mxAzwFxzSHXRGV1bTz5pyUpz44/dER075YbA3oOSFN1nWzAgIhrrtn6GACgXe0/amDcdP5X447pbzfrSu5ddyyKS04dKyjZjnbeeef44x//mO4yYvDgwbHPPvvE/PnzIyJi4cKFsWLFihgyZEjKOFdwdy3CkgAAAAAAAECbDew5MKYcOiVKyqpi4YszUp5NnnB09C7MT1NlaTBwYMSUKemuAgC6pBFD+sQvfvCNWLD0s3j6z0ti7qJPUp7nZGfFgXvvFP80YVjsNXwHV29nsKOOOioZloyIePnll+Oss85KGTNjxv/+d+t+++0XO+64Y6fVR+fLTncBAAAAAAAAAAAA7SUrKyv2HtE/Ljpl/0bP7vnx4XH5GV+JvUf0F5TMcEcddVRK+8UXX0xpd/QV3Gx7hCUBAAAAAAAAAIAuoaC7i3i7iqFDh8aYMWOS7Xnz5sWnn36abM+aNSuqqqoiwhXcXYWwJAAAAAAAAAAAABln0wBkIpGIP/zhD8n2pldwjx07NgYNGtSptdH5hCUBAAAAAAAAAADIOA2v4n755ZcjIqKioiLlCm6nSnYNwpIAAAAAAAAAAABknF133TX23HPPZHvu3LmxYcOG+NOf/hSVlZUREZGdnd0oVElmEpYEAAAAAAAAAAAgI20ahKytrY0//elPKddxu4K76xCWBAAAAAAAAAAAICM1vGL7xRdfjD//+c/J9sSJEzu7JNJEWBIAAAAAAAAAAICMtPvuu8cee+yRbP/hD3+IsrKyiHAFd1cjLAkAAAAAAAAAAEDG2lwgcty4cTFgwIBOroZ0yU13AQAAAAAAAAAAwLYvUVcXtf//iXzbg9ry6uhRV5nat2FD1NR1S1NFLZdbWBhZOTnpLmO7d9RRR8XPf/7zRv0Nr+gmswlLAgAAAAAAAAAAW7T2tdfjw/seiJqSknSX0iIXN2i/d95jaamjtfJ6947dv/cf0f/gCekuZbs2cuTI2H333ePDDz9M9uXk5LiCu4sRlgQAAAAAAADarLK2MpauWxqlFdVRmr0s5dn/rF0URRXdYni/4dE9t3uaKuxElZURS5dueczw4RHdu8B7AUDGWHLXPVFXXpHuMrqcmpKSWHLXPcKS7eDoo4+Ou+++O9keN25c9O/fP40V0dmEJQEAAAAAAIA2W7puaex1z16fNwpTnx30q89/XXDeghgzcEznFpYOS5dG7LXXlscsWBAxpgu8FwBARrvwwgvjwgsv7PR9Fy9e3OI5F198cVx8ccOzRrfuj3/8Y7PHpuv9oHmy010AAAAAAAAAAACwbRtx/nmR17t3usvocvJ6944R55+X7jIgIzhZEgAAAAAAAAAA2KL+B0+IHQ48IGrLytJdSpeSW1gYWTk56S4DMoKwJAAAAAAAAAAAsFVZOTlOlwS2W67hBgAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAACQwXJyciIioq6uLs2VAJnmi+8rX3yf2ZYJSwIAAAAAAAAAQAbLzv48IpRIJKK2tjbN1QCZora2NhKJREQISwIAAAAAAAAAAGlWUFCQ/Lq0tDSNlQCZZNPvJz169EhjJc0jLAkAAAAAAAAAABmsV69eya+FJYH2smHDhuTXm36f2VYJSwIAAAAAAAAAQAbLz8+PvLy8iIgoLy+PsrKyNFcEbO/KysqioqIiIiLy8vIiPz8/zRVtnbAkAAAAAAAAAABksKysrOjdu3eyvWLFCoFJoNXKyspixYoVyXbv3r0jKysrjRU1T266CwAAAAAAAAAAADpW//79o6qqKkpLSyORSMTy5cujoKAgevXqFUVFRZGbK0YEbF5tbW2UlpbGhg0bkidKRkQUFRVF//7901hZ8/kuBwAAAAAAAAAAGS4rKyt23nnnWLlyZZSWlkZEREVFRVRUVMTq1asjKysrcnJy0lwlsC2qq6uLRCLRqL+oqCh23nnn7eJUyQhhSQAAAAAAAAAA6BK+CEyuXbs2SkpKoqamJvkskUhEbW1tGqsDthd5eXnRu3fv6N+//3YTlIwQlgQAAAAAAAAAgC4jKysrBgwYkLyWe8OGDbFx48aoq6uLurq6dJcHbINycnIiJycnevToEb169Yr8/PztKiT5BWFJAAAAAAAAAADoYrKysqJ79+7RvXv3dJcC0CmEJQEAAAAAAIA265XfK04cfWLU1NbH3IWrU56NH7Nj5OVmR6/8XmmqrpP16hVx4olbHwMAAHQaYUkAAAAAAACgzYb2HhqPn/R4lJRVxXf+OiPl2a/+5ejoXZifpsrSYOjQiMcfT3cVAADAJrLTXQAAAAAAAAAAAABARxKWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjJab7gIAAAAAAACA7d/CTxfGXvfs9XmjV+qzPrd9/uuC8xbEmIFjOrewdFi4MGKvvbY8ZsGCiDFd4L0AAIBthJMlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGi56S4AAAAAAAAA2P7l5+bH6AGjo74+ESs+LUt5NmRgYWRnZ0V+bn6aqutk+fkRo0dvfQwAANBphCUBAAAAAACANhvRb0QsnLQwSsqq4jvXzEh59vCZR0fvwi4UDhwxImLhwnRXAQAAbMI13AAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMlpvuAgAAAAAAAIDt35J1S+LY3x4b9fWJWNGzLOXZgQ8VRnZ2Vjzzr8/EiH4j0lRhJ1qyJOLYY7c85plnIkZ0gfcCAAC2EcKSAAAAAAAAQJtV1VbFojWLPm/kpD5777P/HdMlVFVFLFq09TEAAECncQ03AAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGS033QUAAAAAAAAA278xA8dE4ppElJRVxXeumZHy7OFrj47ehflpqiwNxoyJSCTSXQUAALAJJ0sCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0YQlAQAAAAAAAAAAgIwmLAkAAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMlpuugsAAAAAAAAAtn/LS5bHpS9dGjW19fFWj9Upz/7Ps7+OvNzsuP3I22No76FpqrATLV8ecemlWx5z++0RQ7vAewEAANsIYUkAAAAAAACgzTZUbYgnFj3xeSMv9dkz73/+65RDpnRqTWmzYUPEE09secyUKZ1SCgAA8DnXcAMAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZDRhSQAAAAAAAAAAACCjCUsCAAAAAAAAAAAAGU1YEgAAAAAAAAAAAMhowpIAAAAAAAAAAABARhOWBAAAAAAAAAAAADKasCQAAAAAAAAAAACQ0XLTsenSpUvjd7/7Xbz55puxfPnyKC0tjfz8/BgyZEiMHTs2jjnmmBg7dmyn1rRgwYJ4+eWX46233orly5dHSUlJJBKJ6Nu3b+y8884xfvz4OPLII+NLX/pSm/aZM2dOPP/88/HOO+/EJ598Ehs3bozCwsIYNmxYHHTQQXHCCSfEkCFD2ulVAQAAAAAAAAAAAJ0aliwrK4upU6fGk08+GYlEIuVZbW1tLF68OBYvXhzTp0+PI444Im688cbo3bt3h9a0dOnSmDJlSsydO7fJ56tWrYpVq1bFX//617j77rvjG9/4Rlx55ZUtDjT+4x//iMsvvzzefvvtRs+Ki4vjnXfeiXfeeSfuu+++OPfcc+P888+PnJycVr0mAAAAAAAAAAAA4H912jXc69ati9NOOy1+97vfNQpKNuXll1+OY489Nj766KMOq+mFF16IE044YbNByabMmjUrTjjhhHjjjTeaPWf+/Plx4oknNhmUbKiuri7uuuuuOPPMM6OqqqrZewAAAAAAAAAAAABN65STJWtra2PSpEmxePHilP6RI0fGoYceGv3794+1a9fGrFmzYsmSJcnnq1atikmTJsVjjz0WhYWF7VrTnDlz4oc//GHU1NQ0qmnChAkxePDgqKuri+XLl8fs2bNj5cqVyTHFxcVx3nnnxaOPPhojR47c4j6rVq2Kc845JzZs2JDsy8rKigMPPDDGjRsXhYWF8Y9//CNmzJgR69atS46ZO3duXHnllXHrrbe20ysGAAAAAAAAAACArqlTwpL33ntvvPPOO8l2Xl5eXH311XHyySenjPvBD34Qjz/+eFx//fXJUxWXLl0aU6dOjalTp7ZbPRUVFY2Ckn369Ikbb7wxvvnNbzYaX1dXF48++mjcdNNNUV1dHRER5eXlcfHFF8ezzz67xeuyL7/88iguLk62d9xxx7jjjjti7NixKeMmT54cN910U/zmN79J9v3+97+Pgw8+OI477rhWvlIAAAAAAAAAAACgw6/hXrt2bTz44IMpfTfccEOjoOQXTjrppPjpT38aWVlZyb6nn346/vGPf7RbTb/85S9jzZo1yXbPnj3jN7/5TZNByYiInJycOO200+Kuu+5KCUYuXbo0nnzyyc3uM2vWrPjLX/6Sss8DDzzQKCgZEdGtW7e45ppr4owzzkjpv+uuu6K2trbZrw0AAAAAAAAAAABI1eFhyenTp0dFRUWy/fWvf32rJyUeeeSR8Z3vfCfZrquri/vuu6/danrqqadS2pdddlkMHz58q/O+/vWvx6mnnrrFtTb1X//1Xynt8847b6vXdl9++eXxpS99KdletmxZPPfcc1utDQAAAAAAAAAAAGhah4clG4YJzzrrrGbNO+ecc1JOcXzppZdSrs1urffeey+WL1+ebBcUFMQJJ5zQ7PmnnXZaSnvevHlRVlbWaNzy5cvjzTffTLZ79OjRKGjZlJycnDjnnHNS+p5//vlm1wcAAAAAAAAAAACkyu3IxT/44INYuXJlst2nT5844IADmjV30KBBsd9++8Vbb70VERGlpaUxZ86c+PrXv96mmhYtWpTS3m+//aJ79+7Nnj98+PDo2bNnlJeXR8Tnp16uWrWq0YmRs2fPjkQikWxPmDAhCgsLm7XHYYcdFt26dYvq6uqIiJgzZ06UlZU1ez4AAAAAAAB0tuH9hseC8xZEaUV1XH7XqynPbj7/q1FU0C2G99v6bW8ZYfjwiAULtj4GAADoNB0alnzjjTdS2l/+8pdTTovcmvHjxyfDkhGfBxDbGpb8+OOPU9pDhgxp8RoFBQXJsGRERElJSaMxDV/7+PHjm71+jx49Yu+9906+9pqampgzZ04cccQRLa4VAAAAAAAAOkP33O4xZuCYKCmriqL6ZSnPvtR/dPQuzE9TZWnQvXvEmDHprgIAANhEh4Yl33vvvZT26NGjWzS/4fgFW/vXV81wwQUXxHe/+91YvXp1rF69Onr16tWi+ZWVlbFu3bqUvqbWaPjax7TwD0OjR49OCYouWLBAWBIAAAAAAAAAAABaoUPDkkuXLk1p77777i2av8suu6S0//73v7e5poiIbt26xS677NJo/eb4y1/+EnV1dSl9gwYNSmlXV1fHihUrUvqGDRvWon2GDh2a0m6v1w4AAAAAAAAAAABdTXZHLt7wyuuGocKtGThwYEq7uLg45frrdHjkkUdS2mPGjInevXun9K1evTolUJmXlxc77LBDi/Zp+F6tXLmyhZUCAAAAAAAAAAAAER0clmx4XXX//v1bNL9v376RnZ1a4vr169tcV2vNmTMnZs+endJ32GGHNRr32WefpbT79esXWVlZLdqrX79+Ke10vm4AAAAAAAAAAADYnnVYWLK8vDyqq6tT+goLC1u0RlZWVvTo0SOlb8OGDW2urTVKSkriqquuSunLz8+Pk08+udHY4uLilHZLX3dERM+ePRvtDwAAAAAAAAAAALRcbkctXFVV1aivYfCxOQoKClKu3q6srGxTXa1RV1cXl112WSxfvjyl/+yzz250VXhE49femtfdcE5T72dnWrJkSaNTPgHYspqamuSv8+fPT3M1AND5/CwEoKvzsxCArqq8sq5R36JFi6Jn95w0VANdj88gbBv8mRCgberr69t9zQ4LS37xTT9ls9yWb5eTk/ofbLW1ta2uqTUSiURcccUV8corr6T077HHHnHeeec1OafhiZqted0N5zT1fnamurq6qKtr/B/VADRPur+PA0C6+VkIQFfnZyEAXUlNTeO/U6qpqYmanPb/y06gMZ9B2Pb4MyHAtqHDwpJNBetaczJhwzkdkRjdnEQiEddcc008/fTTKf1FRUVx5513Rrdu3Zqc17DG1rzurKysJutpqr8z5OTkOFkSoIU2/UNPXl5eGisBgPTwsxCArs7PQgC6qry6xn+nlJeXF3l5TrWDzuAzCNsGfyYEaJv6+vp2P9yvw8KSTZ2mWFdX1+JTFhum6zvrB0hdXV1Mnjw5nnnmmUb7/+IXv4hhw4Ztdm7D19ia/9ManqCZm5ubtqBkRMSIESOisLAwbfsDbI/mz58fNTU1kZeXF/vss0+6ywGATudnIQBdnZ+FAHRVJWVVEbEspW/06NHRuzA/PQVBF+MzCNsGfyYEaJuysrJYvHhxu67ZYUcFNnXqYmuOFW4YGtzcaY7tqbKyMi688MJGQcnc3Ny444474sADD9zi/IY1bi+vGwAAAAAAAAAAADJRh4Uli4qKGp2EWF5e3uJ1Gs7p2bNnm+ramnXr1sUZZ5wRM2fOTOnPy8uL22+/PY444oitrlFUVJTSrqioaHEdnf26AQAAAAAAAAAAIFN12DXcOTk50atXrygpKUn2bdiwIQYNGtTsNSorK6O6ujqlb4cddmi3Ghv66KOP4pxzzolly1KPJM/Pz48777wzDj300Gat07dv35T2pu9BczWc069fvxavAQAAAAAAAJ3l0/JP4+43747K6tpYnL8k5dlNr78Z3bvlxqSvTIqBPQemqcJO9OmnEXffveUxkyZFDOwC7wUAAGwjOiwsGRGx4447poT+1q5dGyNHjmz2/DVr1qS0u3XrFr179263+jb19ttvx3nnnRfFxcUp/YWFhXH33XfHAQcc0Oy1dtppp5R2SUlJ1NbWRm5u89/utWvXprQHDBjQ7LkAAAAAAADQ2daUr4lr/3zt54381Gf/d87nv540+qSuEZZcsybi2mu3POakk4QlAQCgE3XYNdwREUOHDk1pr1ixokXzG47fbbfd2lpSk2bPnh1nnXVWo6DkgAED4uGHH25RUDIionfv3tGrV69ku76+Pj7++OMWrdFZrx0AAAAAAAAAAAAyXYeGJUeNGpXSXrp0aYvmf/jhhynt4cOHt7mmhmbOnBmTJk2KysrKlP7ddtstpk+fHl/60pdatW7D175kyZLNjGxaw/eqI147AAAAAAAAAAAAdAUdGpbcZ599Utrz589v0fx58+altPfff/+2lpTi1VdfjYsvvjhqampS+vfdd9+YPn16o5MxW2LvvfdOabf0tTccP3bs2FbXAgAAAAAAAAAAAF1Zh4Ylv/KVr0ReXl6y/be//S1KSkqaNbeuri5ee+21lL4JEya0W23vv/9+XHTRRY2CkgcffHA89NBD0a9fvzatf/DBB6e0Z8+e3aLaVq1alWz369ev0UmVAAAAAAAAAAAAQPN0aFiyZ8+e8dWvfjXZrq2tjSeffLJZc2fOnBmfffZZsj1y5MgYOXJku9RVXV0dl112WZSXl6f0H3bYYXHvvfdGQUFBm/cYP3589OnTJ9leuHBhLFy4sFlzH3vssZT2xIkTIysrq801AQAAAAAAAAAAQFfUoWHJiIgTTzwxpX3vvffGxx9/vMU5GzZsiFtvvTWl7+STT263mu644454//33U/rGjx8f06ZNi27durXLHt26dYtjjz02pe/666+P6urqLc5buHBh/Pa3v03pa8/XDgAAAAAAAAAAAF1Nh4clDz/88Nhzzz2T7eLi4jj33HNj7dq1TY4vLy+Piy++OJYtW5bs22mnneKUU07Z7B5PPvlkjBo1KuV/b7zxRpNjV65cGb/+9a9T+gYNGhR33nlnuwUlv3D22WdHfn5+sv3OO+/EFVdc0ejq7y/84x//iEmTJqU8P+qoo1LePwAAAAAAAAAAAKBlcjt6g6ysrJgyZUqcdtppUV9fHxERixcvjuOOOy4uvvjimDhxYhQWFkZVVVXMmjUrpk2bFh9++GHKGldddVVK6LAt/uu//itqa2tT+saOHRszZsxo9ZoHHHBA7L777o36Bw0aFBdeeGH89Kc/TfY9++yz8Y9//CMuuOCCmDBhQuTl5cX69evjmWeeiV/84hdRWlqaHNurV6+4/PLLW10XAAAAAAAAAAAA0AlhyYiI/fffP6ZMmRJXX311sm/NmjVx5ZVXxpVXXhlFRUVRVlYWiUSi0dzvfe97cfjhh7dLHTU1NfHUU0816n/hhRfihRdeaPW6N910U5NhyYjPT5d8//334/e//32yb/78+fHd7343srOzo6CgIMrKyhrNy8vLi1tuuSUGDx7c6roAAAAAAAAAAACATriG+wunnHJKXHfdddG9e/dGz0pLSxsFJbOzs+OCCy6ISy+9tN1qWLhwYZSXl7fbes2RnZ0dN998c5PXiNfX1zcZlCwqKopp06bFN77xjc4oEQAAAAAAAAAAADJap4UlIz4PTD733HMxceLEJkOTXzj44IPjkUceiQsvvLBd91+1alW7rtdcOTk5cd1118VDDz0U48aNi+zspt/2bt26xfHHHx/PPvtsu52mCQAAAAAAAAAAAF1dp1zDvamhQ4fGz372s6ioqIg333wzPvnkk1i3bl107949Bg8eHGPHjo3+/fu3aM3jjz8+jj/++K2OmzhxYkycOLG1pbfZQQcdFAcddFB8+umnMW/evFizZk2UlpZGUVFR7LbbbrHffvtFz54901YfAAAAAAAAAAAAZKJOD0t+oaCgIA455JB0bZ9WAwcOjCOPPDLdZQAAAAAAAAAAAECX0KnXcAMAAAAAAAAAAAB0NmFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMlpvuAgAAAAAAAIDt35BeQ+KxEx+LisqauPOxeSnPLjp5vyjonhdDeg1JT3GdbciQiMce2/oYAACg0whLAgAAAAAAAG3Wu3vvOGnMSVFSVhVP1PZMeXbcqKOjd2F+mipLg969I046Kd1VAAAAm3ANNwAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQAAAAAAAAAAAGQ0YUkAAAAAAAAAAAAgowlLAgAAAAAAAAAAABlNWBIAAAAAAAAAAADIaMKSAAAAAAAAAAAAQEYTlgQAAAAAAAAAAAAymrAkAAAAAAAAAAAAkNGEJQEAAAAAAAAAAICMJiwJAAAAAAAAAAAAZLTcdBcAAAAAAAAAbP9KKkvipaUvRUVlTXycOy/l2dOLy6Oge14cOfzI6N29d3oK7EwlJREvvbTlMUceGdG7C7wXAACwjRCWBAAAAAAAANpsxYYVcfITJ3/eKEh9duZzn/+64LwFXSMsuWJFxMknb3nMggXCkgAA0Ilcww0AAAAAAAAAAABkNGFJAAAAAAAAAAAAIKMJSwIAAAAAAAAAAAAZTVgSAAAAAAAAAAAAyGjCkgAAAAAAAAAAAEBGE5YEAAAAAAAAAAAAMpqwJAAAAAAAAAAAAJDRhCUBAAAAAAAAAACAjCYsCQD8f+zdfZTWdZ34/9c198wMDAqM4AHTBsJlwFVKzZs1W46uN7tqBpipbZ1TqVjbap7Kjgmm4ne3Mre2tLOntqyWEiU92R6jWjePN6mVhgM1NpM3ECoMyN1Mcz+/P/g56wUIDHPdMO95PM7xzHl/bt7zmqtD1wGeXB8AAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApJUVewAAAAAAAABg5JtUMykWv2txdHb3xor/bck6d+Hp06Oqoiwm1Uwq0nQFNmlSxOLF+74GAAAoGLEkAAAAAAAAMGz1NfWx5PQlsXVHV6z+6YNZ5647+ayoq60s0mRFUF8fsWRJsacAAADewGO4AQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICklRV7AAAAAAAAAGDk6+ztjNbNrbG9ozu2l7yUde73bWtibEdFNBzaEFVlVUWasIA6OyNaW/d+TUNDRNUoeC0AAOAgIZYEAAAAAAAAhq11c2vMvmP2zkVt9rmTvrPza9OVTdFY31jYwYqhtTVi9uy9X9PUFNE4Cl4LAAA4SHgMNwAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQNLEkAAAAAAAAAAAAkDSxJAAAAAAAAAAAAJA0sSQAAAAAAAAAAACQtLJiDwAAAAAAAACMfOMqx8X8WfOjp7c/nlz9Sta5ExonR3lZSYyrHFek6Qps3LiI+fP3fQ0AAFAwYkkAAAAAACApHZ090bblL9HZ3RdVFaUxcfyYqK4qL/ZYkLxpddNi+YLlsXVHV1z66wezzn3nH86KutrKIk1WBNOmRSxfXuwpAACANxBLAgAAAAAAI97AwEA829oWP3n0+fhV0yvR3z8weK6kJBMnzZ4S55xyZMxpmBiZTKaIkwIAAADFIJYEAAAAAABGtJZ1W+LLy34bL72yfY/n+/sH4tFV6+PRVevjiMlj4+qL58b0qeMLOyQAAABQVCXFHgAAAAAAAOBAPd28Ia772iNvGkru6qVXtsd1X3sknm7ekOfJAAAAgIOJWBIAAAAAABiRWtZtiaXffjI6u/uGdF9nd18s/faT0bJuS34GAwAAAA46YkkAAAAAAGDEGRgYiC8v++2QQ8nXdXb3xe3LfhsDAwM5ngwAAAA4GIklAQAAAACAEefZ1rb9fvT2m3nxle3R1LopRxMBAAAABzOxJAAAAAAAMOL896Mv5GSfnzz2fE72AQAAAA5uYkkAAAAAAGBE6ejsicebXs7JXo8/+3J0dPbkZC8AAADg4CWWBAAAAAAARpS2LX+J/v6BnOzV3z8Qm7Z25mQvAAAA4OAllgQAAAAAAEaUzu6+nO73l67enO4HAAAAHHzEkgAAAAAAwIhSVVGa0/3GVJbldD8AAADg4COWBAAAAAAARpSJ48dESUkmJ3uVlmRiQl1VTvYCAAAADl7+qSQAAAAAADCiVFeVx0mzp8Sjq9YPe693zpkS1VXlOZgKWL1hdcy+Y/bOxbjsc+O/tPNr05VN0VjfWNjBimH16ojZs/d+TVNTROMoeC0AAOAg4ZMlAQAAAACAEeecU47MyT7nnnxUTvYBAAAADm5iSQAAAAAAYMSZ0zAxjpg8dlh7vGXy2JjdMCFHEwEAAAAHM7EkAAAAAAAw4mQymbj64rlRVVF6QPdXVZTGP188NzKZTI4nAwAAAA5GYkkAAAAAAGBEmj51fHz2gycMOZisqiiNz37whJg+dXx+BgMAAAAOOmJJAAAAAABgxDpuZn3cetWp+/1I7rdMHhu3XnVqHDezPs+TAQAAAAeTsmIPAAAAAAAAMBzTp46Pf7/23dHUuinu+2VLPLnm1azzpSWZeOecKXHuyUfF7IYJHr0NAAAAo5BYEgAAAAAAGPEymUzMmT4xjpg8Ni5d/GDWuTs+PS+mTKwp0mQAAADAwcBjuAEAAAAAgKRVV/nsCAAAABjtxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSyoo9AAAAAAAAADDyVZZVxqxJs6K/fyDWbdiRdW5qfW2UlGSisqyySNMVWGVlxKxZ+74GAAAoGLEkAAAAAAAAMGzTD50eqxetjq07uuLSxQ9mnfveB8+KutpRFAdOnx6xenWxpwAAAN7AY7gBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICklRV7AAAAAAAAAGDka9ncEuf/4Pzo7x+IdTU7ss6989u1UVKSifvfd39MP3R6kSYsoJaWiPPP3/s1998fMX0UvBYAAHCQEEsCAAAAAAAAw9bV2xVrNq7ZuSjNPveHTf93zajQ1RWxZs2+rwEAAArGY7gBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApJUVewAAAAAAAAAAAEhFR2dPbNjSHe1/6YmaMQPR0dkT1VXlxR4LYNQTSwIAAAAAAAAAwDAMDAzEs61t8ZNHn49fNb0S/f0Dg+e++uP1cdLsKXHOKUfGnIaJkclkijgpwOgllgQAAAAAAAAAgAPUsm5LfHnZb+OlV7bv8Xx//0A8ump9PLpqfRwxeWxcffHcmD51fGGHBCBKij0AAAAAAAAAAACMRE83b4jrvvbIm4aSu3rple1x3dceiaebN+R5MgB2JZYEAAAAAAAAAIAhalm3JZZ++8no7O4b0n2d3X2x9NtPRsu6LfkZDIA9EksCAAAAAAAAAMAQDAwMxJeX/XbIoeTrOrv74vZlv42BgYEcTwbAmxFLAgAAAAAAAADAEDzb2rbfj95+My++sj2aWjflaCIA9kUsCQAAAAAAAAAAQ/Dfj76Qk31+8tjzOdkHgH0TSwIAAAAAAAAAwH7q6OyJx5tezslejz/7cnR09uRkLwD2TiwJAAAAAAAAAAD7qW3LX6K/fyAne/X3D8SmrZ052QuAvRNLAgAAAAAAAADAfurs7svpfn/p6s3pfgDsmVgSAAAAAAAAAAD2U1VFaU73G1NZltP9ANgzsSQAAAAAAAAAAOyniePHRElJJid7lZZkYkJdVU72AmDvpOkAAAAAAADAsDXWN8bA4oHYuqMrLl38YNa57914VtTVVhZpsiJobIwYGCj2FADkSXVVeZw0e0o8umr9sPd655wpUV1VnoOpANgXnywJAAAAAAAAAABDcM4pR+Zkn3NPPion+wCwb2JJAAAAAAAAAAAYgjkNE+OIyWOHtcdbJo+N2Q0TcjQRAPsilgQAAAAAAAAAgCHIZDJx9cVzo6qi9IDur6oojX++eG5kMpkcTwbAmxFLAgAAAAAAAADAEE2fOj4++8EThhxMVlWUxmc/eEJMnzo+P4MBsEdiSQAAAAAAAAAAOADHzayPW686db8fyf2WyWPj1qtOjeNm1ud5MgB2VVbsAQAAAAAAAAAAYKSaPnV8/Pu1746m1k1x3y9b4sk1r2adLy3JxDvnTIlzTz4qZjdM8OhtgCIpSizZ2toa9957bzz11FOxdu3a2L59e1RWVsbUqVNj7ty5cd5558XcuXOLMdpurr/++li+fHlERNx1111x4oknDnmPq666Kn7+858f8AynnnpqfPOb3zzg+wEAAAAAAAAAyJ9MJhNzpk+MIyaPjUsXP5h17o5Pz4spE2uKNBkArytoLLljx45YunRprFixIgYGBrLO9fb2RnNzczQ3N8eyZcvijDPOiFtuuSXq6uoKOWKW3/zmN7FixYph79Pc3JyDaQAAAAAAAAAAGGmqqzz4FeBgUFKob7R58+Z4//vfH/fee+9uoeSe/OxnP4vzzz8/XnjhhfwPtwdtbW1x7bXXRl9f37D2aW9vj3Xr1uVoKgAAAAAAAAAAAGCoCpKu9/b2xqJFi3b7hMUZM2bE6aefHhMnToy2trZ46KGHoqWlZfD8yy+/HIsWLYq77747amtrCzFqRERs3749PvrRj8b69euHvddzzz2XFYeeeOKJcfbZZw9pj8MPP3zYcwAAAAAAAAAAAMBoVZBY8s4774ynn356cF1eXh433HBDLFy4MOu6a6+9NpYvXx433XRTdHV1RUREa2trLF26NJYuXVqIUaOtrS0uv/zyWL16dU722zUQnTdvXlx88cU52RsAAAAAAAAAAADYt7w/hrutrS2++c1vZh27+eabdwslX7dgwYL44he/GJlMZvDYfffdFy+++GJe54yIePrpp+M973lPNDU15WzPXWPJt73tbTnbGwAAAAAAAAAAANi3vH+y5LJly6Kjo2Nwfdppp8UFF1yw13vOPPPMuPTSS+O73/1uRET09fXFN77xjbx9umR/f39873vfi3/913+Nnp6enO793HPPZa3FkgAAAAAAAKRo7da1cc3Ka6Kntz9+M+aVrHP/+OO7orysJG4787aYVjetSBMW0Nq1Eddcs/drbrstYtooeC0AAOAgkfdY8kc/+lHW+kMf+tB+3feRj3wk/uu//iv6+voiImLlypVx4403Rnl5eU7ne/LJJ+PWW2+NNWvWZB2vrq6Ompqa2Lhx47D2f2MsOWHChJgwYcKw9gMAAAAAAICD0baubXHPmnt2Lnb5K737//+/MlvyriUFnalotm2LuOeevV+zZElBRgEAAHbK62O4//jHP8af//znwfX48ePjxBNP3K97DzvssDj22GMH19u3b4/HH388p/MtXrw4Lrvsst1CySlTpsSyZcviqKOOGtb+69evj23btg2uZ8yYMaz9AAAAAAAAAAAAgKHLayz5xBNPZK3f/va3R2lp6X7ff8IJJ2StH3744ZzM9bpnnnlmt2PnnXde3H///XH00UcPe//m5uastUdwAwAAAAAAAAAAQOHl9THcf/jDH7LWs2bNGtL9u17f1NQ07JnezJFHHhmf+cxn4t3vfnfO9hRLAgAAAAAAAAAAQPHlNZZsbW3NWr/1rW8d0v1HHHFE1vr5558f9ky7mjRpUnz4wx+OSy65JMrLy3O6995iyW3btkVTU1Ns3LgxBgYGYtKkSTF9+vQ47LDDcjoDAAAAAAAAAAAAjHZ5jSXXr1+ftR5qCFhfX5+13rJlS7S3t0dNTc2wZ4uI+NSnPhXHH398VFRU5GS/Xb0xlsxkMtHQ0BA/+clPYtmyZfHrX/86BgYGsq7PZDLR2NgYl112WZx//vmRyWTyMhcAAAAAAAAAAACMJiX53Hzz5s1Z64kTJw7p/kMOOSRKSrJHfO2114Y91+tOOeWUvIWS3d3d8eKLLw6ux4wZEx/4wAfimmuuiaeeemq3UDIiYmBgIJqamuLTn/50zJ8/f7fYFAAAAAAAAAAAABi6vMWS7e3t0d3dnXWstrZ2SHtkMpkYM2ZM1rFt27YNe7ZCaGlpid7e3sF1R0dHrF69er/vb2pqioULF8Yf/vCHfIwHAAAAAAAAAAAAo0beHsPd1dW127Fdw8f9UV1dHe3t7YPrzs7OYc1VKG98BPcb1dfXx0UXXRTz5s2LqVOnRklJSbzyyivx6KOPxl133RVr164dvHbjxo1x5ZVXxr333huHHnpooUbfo5aWlt0+5ROAvevp6Rn8umrVqiJPAwCF570QgNHOeyEUR3tn327H1qxZEzVVpUWYBkaXlm0t+7ym+bnm6Htl91+nqalsaYmZ+7imubk5uvrSfy0oPO+FUFx+DQLkRn9/f873zFss+fofBGZ9s7Khf7vS0uw3izd+WuPBbE+x5Lnnnhs33XRT1NTUZB1vaGiIhoaGeN/73he33HJL/OAHPxg8t379+li8eHF89atfzfvMe9PX1xd9frMGcMD29L4IAKOJ90IARjvvhVA4PT27/1l2T09P9JTm/i9ZgGz78/d4vb29o+J9sdRrQRF5L4Ti8msQ4OCVt1hyT2HdgXwy4a735KMYzYcdO3ZEVVXV4Cdh/v3f/3186Utf2us9FRUVceONN0Z3d3esWLFi8PjKlStjzZo1MWvWrLzOvDelpaU+WRJgiN74h1zl5eVFnAQAisN7IQCjnfdCKI7yvt3/LLu8vDzKy32SD+Tb/nxwSllZ2ah4X/RaUEzeC6G4/BoEyI3+/v6cf7hf3mLJPf0GoK+vb8ifLrnrv6YaKb9huPnmm+Omm26KjRs3xtq1a4cUOn7uc5+Lhx56KF577bXBY8uWLYubbropH6Pul+nTp0dtbW3Rvj/ASLRq1aro6emJ8vLyOOaYY4o9DgAUnPdCAEY774VQHFt3dEXES1nHZs2aFXW1lcUZCEaR0g2lEb/Y+zUz3zYzGusbCzNQMZXuO4iZOXNmROMoeC0oOO+FUFx+DQLkxo4dO/b4dOfhyNtHBVZUVOx27EA+Rn7Xj+vf074Hq0wmE/X19fH2t789xowZs9/3VVdXx0UXXZR17LHHHsv1eAAAAAAAAAAAADAq5C2WHDt2bGQymaxj7e3tQ95n13tqamqGNddIcfLJJ2et161bF5s3by7SNAAAAAAAAAAAADBy5S2WLC0tjXHjxmUd27Zt25D26OzsjO7u7qxjEyZMGPZsI8H06dN3OyaWBAAAAAAAAAAAgKHLWywZETF58uSsdVtb25Du37hxY9a6oqIi6urqhj3XSLBraBox9NgUAAAAAAAAAAAAyHMsOW3atKz1unXrhnT/rtcfeeSRwx1pxOjq6trtWG1tbREmAQAAAAAAAAAAgJEtr7HkzJkzs9atra1Duv9Pf/pT1rqhoWHYMxVCf39/bN68Of74xz/Gr371q/jVr3415D329CmchxxySC7GAwAAAAAAAAAAgFGlLJ+bH3PMMVnrVatWDen+Z555Jmt93HHHDXekgli2bFl8/vOfH1xPmDAhHnvssSHtsetrNWnSpJg0aVJO5gMAAAAAAAAAAIDRJK+fLHn88cdHeXn54Pp3v/tdbN26db/u7evri0cffTTr2Mknn5zT+fLlbW97W9Z606ZN8dxzzw1pj//5n//JWh9//PHDngsAAAAAAAAAAABGo7zGkjU1NXHqqacOrnt7e2PFihX7de8vfvGL2LRp0+B6xowZMWPGjJzPmA9z5syJmpqarGPLly/f7/tffPHFWLlyZdaxCy64IBejAQAAAAAAAAAAwKiT11gyImL+/PlZ6zvvvDPWr1+/13u2bdsWX/jCF7KOLVy4MOez5UtVVVX83d/9XdaxH/zgB9Ha2rrPe3t6euJTn/pU9PX1DR476qij4rTTTsv5nAAAAAAAAAAAADAa5D2WnDdvXhx99NGD6y1btsQVV1wRbW1te7y+vb09PvGJT8RLL700eGzKlClx0UUXven3WLFiRcycOTPrvyeeeCJ3P8QBuPzyy7MeQd7d3R2XX3551s+1q/b29li0aFE888wzWccXL14cmUwmX6MCAAAAAAAAAABA0vIeS2YymViyZEmUlPzft2pubo4LLrggli9fHjt27IiIiK6urnjwwQdj/vz58dhjj2Xt8bnPfS4qKyvzPWpOHXnkkXHllVdmHVu7dm1ceOGF8Y1vfCPr0zU3b94cP/jBD+Kcc86Jhx9+OOueyy67LE466aSCzAwAAAAAAAAAAAApKivENznuuONiyZIlccMNNwwe27hxY1x//fVx/fXXx9ixY2PHjh0xMDCw272XX355zJs3rxBj5txVV10Va9eujR/96EeDx7Zv3x633XZb3HbbbVFdXR0RER0dHXu8/6yzzorrrruuILMCAAAAAAAAAABAqvL+yZKvu+iii+Lzn/98VFVV7XZu+/btu4WSJSUl8bGPfSyuueaaQo2YF7feemtcffXVUVpautu5jo6OPYaSJSUlccUVV8SXv/zlPd4HAAAAAAAAAAAA7L+CxZIRO4PJBx54IM4+++w9RpOvO+WUU+L73/9+fPzjHy/gdPmRyWTiiiuuiB//+Mdx4YUXxpgxY9702oqKijj33HPjvvvui6uvvjrr0eUAAAAAAAAAAADAgSnIY7jfaNq0aXH77bdHR0dHPPXUU/Hqq6/G5s2bo6qqKg4//PCYO3duTJw4cUh7XnjhhXHhhRfmfNbvfve7OduroaEhbr311rjxxhtj1apV8cILL8Rrr70WfX19MW7cuDjqqKPi2GOP3WtMCQAAAAAAAAAAAAxdwWPJ11VXV8e73vWuYn37oqmoqIh3vOMd8Y53vKPYowAAAAAAAAAAAMCo4DnPAAAAAAAAAAAAQNKK9smSAAAAAAAAQDoaDm2IpiubYntHd3zma49knft/V50aY6srouHQhiJNV2ANDRFNTfu+BgAAKBixJAAAAAAAADBsVWVV0VjfGFt3dMXY/peyzv3VxFlRV1tZpMmKoKoqorGx2FMAAABv4DHcAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSyoo9AAAAAAAAADDybWjfEF9/6uvR2d0bzZUtWedufeypqKooi0XHL4r6mvoiTVhAGzZEfP3re79m0aKI+lHwWgAAwEFCLAkAAAAAAAAM28b2jXHjL2/cuajMPvcvj+/8umDWgtERS27cGHHjjXu/ZsECsSQAABSQx3ADAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkrK/YAAAAAAAAAwMg3ddzUuHv+3dHR2RNfufuZrHP/tPDYqK4qj6njphZnuEKbOjXi7rv3fQ0AAFAwYkkAAAAAAABg2Oqq6mJB44LYuqMr7umtyTp3wcyzoq62skiTFUFdXcSCBcWeAgAAeAOP4QYAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAklZW7AEAAAAAAACAkW9r59ZY2boyOjp7Yn3ZM1nn7mtuj+qq8jiz4cyoq6orzoCFtHVrxMqVe7/mzDMj6kbBawEAAAcJsSQAAAAAAAAwbOu2rYuF9yzcuajOPvfBB3Z+bbqyaXTEkuvWRSxcuPdrmprEkgAAUEAeww0AAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJK2s2AMAAAAAAAAAI9+kmkmx+F2Lo7O7N1b8b0vWuQtPnx5VFWUxqWZSkaYrsEmTIhYv3vc1AABAwYglAQAAAAAAgGGrr6mPJacvia07umL1Tx/MOnfdyWdFXW1lkSYrgvr6iCVLij0FAADwBh7DDQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkrazYAwAAAAAAAAAjX2dvZ7Rubo3tHd2xveSlrHO/b1sTYzsqouHQhqgqqyrShAXU2RnR2rr3axoaIqpGwWsBAAAHCbEkAAAAAAAAMGytm1tj9h2zdy5qs8+d9J2dX5uubIrG+sbCDlYMra0Rs2fv/ZqmpojGUfBaAADAQcJjuAEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApIklAQAAAAAAAAAAgKSJJQEAAAAAAAAAAICkiSUBAAAAAAAAAACApJUVewAAAAAAAABg5BtXOS7mz5ofPb398eTqV7LOndA4OcrLSmJc5bgiTVdg48ZFzJ+/72sAAICCEUsCAAAAAAAAwzatblosX7A8tu7oikt//WDWue/8w1lRV1tZpMmKYNq0iOXLiz0FAADwBh7DDQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJK2s2AMAAAAAAAAAI9/qDatj9h2zdy7GZZ8b/6WdX5uubIrG+sbCDlYMq1dHzJ6992uamiIaR8FrAQAABwmfLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJK2s2AMAAAAAAAAAI19lWWXMmjQr+vsHYt2GHVnnptbXRklJJirLKos0XYFVVkbMmrXvawAAgIIRSwIAAAAAAADDNv3Q6bF60erYuqMrLl38YNa5733wrKirHUVx4PTpEatXF3sKAADgDTyGGwAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASJpYEgAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASJpYEgAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASJpYEgAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASFpZsQcAAAAAAAAARr6WzS1x/g/Oj/7+gVhXsyPr3Du/XRslJZm4/333x/RDpxdpwgJqaYk4//y9X3P//RHTR8FrAQAABwmxJAAAAAAAADBsXb1dsWbjmp2L0uxzf9j0f9eMCl1dEWvW7PsaAACgYDyGGwAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASJpYEgAAAAAAAAAAAEiaWBIAAAAAAAAAAABImlgSAAAAAAAAAAAASJpYEgAAAAAAAAAAAEhaWTG+aWtra9x7773x1FNPxdq1a2P79u1RWVkZU6dOjblz58Z5550Xc+fOLcZou7n++utj+fLlERFx1113xYknnnjAe/X398cvfvGLWLlyZaxatSo2btwY3d3dMW7cuGhoaIi/+Zu/ife+970xYcKEXI0PAAAAAAAAAAAAo15BY8kdO3bE0qVLY8WKFTEwMJB1rre3N5qbm6O5uTmWLVsWZ5xxRtxyyy1RV1dXyBGz/OY3v4kVK1bkZK9nn302PvOZz0RLS8tu5zZt2hSbNm2KJ598Mr72ta/Fpz/96Xj/+9+fk+8LAAAAAAAAAAAAo13BHsO9efPmeP/73x/33nvvbqHknvzsZz+L888/P1544YX8D7cHbW1tce2110ZfX9+w93rooYfi4osv3mMouavOzs648cYb45Of/OR+vU4AAAAAAAAAAADA3hXkkyV7e3tj0aJF0dzcnHV8xowZcfrpp8fEiROjra0tHnrooayg8OWXX45FixbF3XffHbW1tYUYNSIitm/fHh/96Edj/fr1w95r9erV8U//9E/R09MzeKy8vDxOO+20mD17dlRWVkZra2s8+OCD0d7ePnjNAw88EFOnTo2rr7562DMAAAAAAAAAAADAaFaQWPLOO++Mp59+enBdXl4eN9xwQyxcuDDrumuvvTaWL18eN910U3R1dUVERGtrayxdujSWLl1aiFGjra0tLr/88li9evWw9+rp6YlPfvKT0d3dPXhsxowZ8W//9m/R0NCQde11110Xn/3sZ2PlypWDx+6888449dRT4/jjjx/2LAAAAAAAAAAAADBa5f0x3G1tbfHNb34z69jNN9+8Wyj5ugULFsQXv/jFyGQyg8fuu+++ePHFF/M6Z0TE008/He95z3uiqakpJ/v98Ic/jOeff35wfdhhh8W3vvWt3ULJiIixY8fGV77ylTjjjDOyjn/lK1/JySwAAAAAAAAAAAAwWuU9lly2bFl0dHQMrk877bS44IIL9nrPmWeeGZdeeunguq+vL77xjW/ka8To7++Pu+66Ky677LLYsGFDTvYcGBiI//zP/8w69pnPfCbq6+vf9J5MJhP/8i//EpMmTRo89uSTT8avf/3rnMwEAAAAAAAAAAAAo1HeY8kf/ehHWesPfehD+3XfRz7ykSgtLR1cr1y5Mnp6enI6W8TOGPG9731v3HLLLVn7V1dXZ0WLQ/XEE0/EunXrBtdTpkyJs846a5/31dTUxAc+8IGsYw888MABzwEAAAAAAAAAAACjXV5jyT/+8Y/x5z//eXA9fvz4OPHEE/fr3sMOOyyOPfbYwfX27dvj8ccfz+l8ixcvjssuuyzWrFmTdXzKlCmxbNmyOOqoow5471/+8pdZ6zPOOCNKSvbv5d41qvz5z38eAwMDBzwLAAAAAAAAAAAAjGZ5jSWfeOKJrPXb3/72rE+L3JcTTjgha/3www/nZK7XPfPMM7sdO++88+L++++Po48+elh77/qz728kGhFxxBFHxOTJkwfXGzdujN///vfDmgcAAAAAAAAAAABGq7zGkn/4wx+y1rNmzRrS/bte39TUNOyZ3syRRx4Zd955Z3zhC1+Iurq6Ye3V19cXLS0tWceG+rP/1V/9VdY6nz87AAAAAAAAAAAApKwsn5u3trZmrd/61rcO6f4jjjgia/38888Pe6ZdTZo0KT784Q/HJZdcEuXl5TnZc926ddHV1TW4rqqqiilTpgxpj0L87AAAAAAAAAAAADAa5DWWXL9+fdb6sMMOG9L99fX1WestW7ZEe3t71NTUDHu2iIhPfepTcfzxx0dFRUVO9nvdnn7uTCYzpD12fa3+/Oc/D3suAAAAAAAAAAAAGI3y+hjuzZs3Z60nTpw4pPsPOeSQKCnJHvG1114b9lyvO+WUU3IeSkZEbNq0KWs9YcKEIe9x6KGHZq1z+XMDAAAAAAAAAADAaJK3WLK9vT26u7uzjtXW1g5pj0wmE2PGjMk6tm3btmHPlm9btmzJWg/1546I3T49c+vWrcMZCQAAAAAAAAAAAEatvD2Gu6ura7dju4aP+6O6ujra29sH152dncOaqxB2/dkP5Ofe9Z49vZ6F1NLSstunfAKwdz09PYNfV61aVeRpAKDwvBcCMNp5L4TiaO/s2+3YmjVroqaqtAjTwOjSsq1ln9c0P9ccfa/s/us0NZUtLTFzH9c0NzdHV1/6rwWF570QisuvQYDc6O/vz/meeYslX/+DwKxvVjb0b1damv1m0dvbe8AzFcqun6h5ID/3rvfs6fUspL6+vujzmzWAA1bs/x8HgGLzXgjAaOe9EAqnp2f3P8vu6emJntLc/yULkG1//h6vt7d3VLwvlnotKCLvhVBcfg0CHLzyFkvuKaw7kE8m3PWefBSjubbrz34gP3cmk8laDwwMDGum4SotLfXJkgBD9MY/5CovLy/iJABQHN4LARjtvBdCcZT37f5n2eXl5VFe7pN8IN/25wNEysrKRsX7oteCYvJeCMXl1yBAbvT39+f8w/3yFkvu6TcAfX19Q/6UxV3/NdVI+A3DrjMeyP9ou/7Lu2L/3NOnT4/a2tqizgAw0qxatSp6enqivLw8jjnmmGKPAwAF570QgNHOeyEUx9YdXRHxUtaxWbNmRV1tZXEGglGkdENpxC/2fs3Mt82MxvrGwgxUTKX7DmJmzpwZ0TgKXgsKznshFJdfgwC5sWPHjmhubs7pnnn7qMCKiordjh3Ix8jvGg3uad+Dza4zjpafGwAAAAAAAAAAAA5GeYslx44du9ujpNvb24e8z6731NTUDGuuQhg7dmzWuqOjY8h7jMSfGwAAAAAAAAAAAA5GeYslS0tLY9y4cVnHtm3bNqQ9Ojs7o7u7O+vYhAkThj1bvh1yyCFZ661btw55j13vOfTQQ4c1EwAAAAAAAAAAAIxWZfncfPLkyVnRX1tbW8yYMWO/79+4cWPWuqKiIurq6nI2X75MmTIla71p06Yh79HW1pa1njRp0rBmAgAAAAAAgHxqrG+MgcUDsXVHV1y6+MGsc9+78ayoq60s0mRF0NgYMTBQ7CkAAIA3yNsnS0ZETJs2LWu9bt26Id2/6/VHHnnkcEcqiF1/7g0bNuz2CZn7MlJ/dgAAAAAAAAAAADjY5DWWnDlzZta6tbV1SPf/6U9/ylo3NDQMe6ZCGDt2bBx++OGD676+vnj++eeHtMeur9VI+dkBAAAAAAAAAADgYJPXWPKYY47JWq9atWpI9z/zzDNZ6+OOO264IxXMnDlzstZD+dk7Ozujubl5cF1SUhLHHntsrkYDAAAAAAAAAACAUSWvseTxxx8f5eXlg+vf/e53sXXr1v26t6+vLx599NGsYyeffHJO58unU045JWv98MMP7/e9jz/+ePT09AyuZ82aFXV1dTmbDQAAAAAAAAAAAEaTvMaSNTU1ceqppw6ue3t7Y8WKFft17y9+8YvYtGnT4HrGjBkxY8aMnM+YL/PmzYuysrLB9UMPPRQbNmzYr3t/+MMfZq3POeecnM4GAAAAAAAAAAAAo0leY8mIiPnz52et77zzzli/fv1e79m2bVt84QtfyDq2cOHCnM+WTxMnTozTTz99cN3T0xM333zzPu976KGH4qGHHhpcV1ZWxgUXXJCHCQEAAAAAAAAAAGB0yHssOW/evDj66KMH11u2bIkrrrgi2tra9nh9e3t7fOITn4iXXnpp8NiUKVPioosuetPvsWLFipg5c2bWf0888UTufogDdOWVV0Ymkxlc//SnP40vfvGLMTAwsMfrV61aFddee23WsUsuuSQmTJiQ1zkBAAAAAAAAAAAgZXmPJTOZTCxZsiRKSv7vWzU3N8cFF1wQy5cvjx07dkRERFdXVzz44IMxf/78eOyxx7L2+NznPheVlZX5HjXnZs+eHe973/uyjv3Hf/xHfPjDH47f/OY30dfXFxERr776anz1q1+NSy65ZPD1iIiYOnVqLFq0qKAzAwAAAAAAAAAAQGrKCvFNjjvuuFiyZEnccMMNg8c2btwY119/fVx//fUxduzY2LFjxx4/cfHyyy+PefPmFWLMvLjuuuvihRdeiMcff3zw2COPPBKPPPJIlJWVRUVFRXR0dOx2X01NTdx+++0xduzYQo4LAAAAAAAAAAAAycn7J0u+7qKLLorPf/7zUVVVtdu57du37xZKlpSUxMc+9rG45pprCjViXlRWVsbXv/71+Nu//dvdzvX29u4xlKyvr49vfetbMWfOnEKMCAAAAAAAAAAAAEkrWCwZsTOYfOCBB+Lss8/eYzT5ulNOOSW+//3vx8c//vECTpc/1dXVcccdd8Ttt98ejY2Nb3pdbW1t/OM//mP8+Mc/jmOPPbZwAwIAAAAAAAAAAEDCCvIY7jeaNm1a3H777dHR0RFPPfVUvPrqq7F58+aoqqqKww8/PObOnRsTJ04c0p4XXnhhXHjhhTmf9bvf/W5O9zv77LPj7LPPjrVr18azzz4bGzdujM7Ozhg3blxMnz49/vqv/zoqKipy+j0BAAAAAAAAAABgtCt4LPm66urqeNe73lWsb19U06ZNi2nTphV7DAAAAAAAAMiZtVvXxjUrr4me3v74zZhXss7944/vivKykrjtzNtiWt0o+HuytWsjrrlm79fcdluEvzMEAICCKVosCQAAAAAAAKRjW9e2uGfNPTsX5dnn7n9u59cl71pS0JmKZtu2iHvu2fs1S5YUZBQAAGCnkmIPAAAAAAAAAAAAAJBPYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWJJAAAAAAAAAAAAIGliSQAAAAAAAAAAACBpYkkAAAAAAAAAAAAgaWXFHgAAAAAAAAAY+RoObYimK5tie0d3fOZrj2Sd+39XnRpjqyui4dCGIk1XYA0NEU1N+74GAAAoGLEkAAAAAAAAMGxVZVXRWN8YW3d0xdj+l7LO/dXEWVFXW1mkyYqgqiqisbHYUwAAAG/gMdwAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLKij0AAAAAAAAAMPJtaN8QX3/q69HZ3RvNlS1Z52597KmoqiiLRccvivqa+iJNWEAbNkR8/et7v2bRooj6UfBaAADAQUIsCQAAAAAAAAzbxvaNceMvb9y5qMw+9y+P7/y6YNaC0RFLbtwYceONe79mwQKxJAAAFJDHcAMAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASRNLAgAAAAAAAAAAAEkTSwIAAAAAAAAAAABJE0sCAAAAAAAAAAAASSsr9gAAAAAAAADAyDd13NS4e/7d0dHZE1+5+5msc/+08NioriqPqeOmFme4Qps6NeLuu/d9DQAAUDBiSQAAAAAAAGDY6qrqYkHjgti6oyvu6a3JOnfBzLOirraySJMVQV1dxIIFxZ4CAAB4A4/hBgAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSVlbsAQAAAAAAAICRb2vn1ljZujI6OntifdkzWefua26P6qryOLPhzKirqivOgIW0dWvEypV7v+bMMyPqRsFrAQAABwmxJAAAAAAAADBs67ati4X3LNy5qM4+98EHdn5turJpdMSS69ZFLFy492uamsSSAABQQB7DDQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJE0sCQAAAAAAAAAAACRNLAkAAAAAAAAAAAAkTSwJAAAAAAAAAAAAJK2s2AMAAAAAAKSmo7MnNmzpjva/9ETNmIHo6OyJ6qryYo8FAAAAAKOWWBIAAAAAIAcGBgbi2da2+Mmjz8evml6J/v6BwXNf/fH6OGn2lDjnlCNjTsPEyGQyRZwUAAAAAEYfsSQAAAAAwDC1rNsSX17223jple17PN/fPxCPrlofj65aH0dMHhtXXzw3pk8dX9ghAQAAAGAUKyn2AAAAAAAAI9nTzRviuq898qah5K5eemV7XPe1R+Lp5g15ngwAAAAAeJ1YEgAAAADgALWs2xJLv/1kdHb3Dem+zu6+WPrtJ6Nl3Zb8DAYAAAAAZBFLAgAAAAAcgIGBgfjyst8OOZR8XWd3X9y+7LcxMDCQ48kAAAAAgF2JJQEAAAAADsCzrW37/ejtN/PiK9ujqXVTjiYCAAAAAN6MWBIAAAAA4AD896Mv5GSfnzz2fE72AQAAAADenFgSAAAAAGCIOjp74vGml3Oy1+PPvhwdnT052QsAAAAA2DOxJAAAAADAELVt+Uv09w/kZK/+/oHYtLUzJ3sBAAAAAHsmlgQAAAAAGKLO7r6c7veXrt6c7gcAAAAAZBNLAgAAAAAMUVVFaU73G1NZltP9AAAAAIBsYkkAAAAAgCGaOH5MlJRkcrJXaUkmJtRV5WQvAAAAAGDPxJIAAAAAAENUXVUeJ82ekpO93jlnSlRXledkLwAAAABgz8SSAAAAAAAH4JxTjszJPueefFRO9gEAAAAA3pxYEgAAAADgAMxpmBhHTB47rD3eMnlszG6YkKOJAAAAAIA3I5YEAAAAADgAmUwmrr54blRVlB7Q/VUVpfHPF8+NTCaT48kAAAAAgF2JJQEAAAAADtD0qePjsx88YcjBZFVFaXz2gyfE9Knj8zMYAAAAAJBFLAkAAAAAMAzHzayPW686db8fyf2WyWPj1qtOjeNm1ud5MgAAAADgdWXFHgAAAAAAYKSbPnV8/Pu1746m1k1x3y9b4sk1r2adLy3JxDvnTIlzTz4qZjdM8OhtAAAAACgwsSQAAAAAQA5kMpmYM31iHDF5bFy6+MGsc3d8el5MmVhTpMkAAAAAAI/hBgAAAADIs+oq/24dAAAAAIpJLAkAAAAAAAAAAAAkzT9nBgAAAAAAAIZtUs2kWPyuxdHZ3Rsr/rcl69yFp0+PqoqymFQzqUjTFdikSRGLF+/7GgAAoGDEkgAAAAAAAMCw1dfUx5LTl8TWHV2x+qcPZp277uSzoq62skiTFUF9fcSSJcWeAgAAeAOP4QYAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAklZW7AEAAAAAAACAka+ztzNaN7fG9o7u2F7yUta537etibEdFdFwaENUlVUVacIC6uyMaG3d+zUNDRFVo+C1AACAg4RYEgAAAAAAABi21s2tMfuO2TsXtdnnTvrOzq9NVzZFY31jYQcrhtbWiNmz935NU1NE4yh4LQAA4CDhMdwAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLEkgAAAAAAAAAAAEDSxJIAAAAAAAAAAABA0sSSAAAAAAAAAAAAQNLKij0AAAAAAAAAMPKNqxwX82fNj57e/nhy9StZ505onBzlZSUxrnJckaYrsHHjIubP3/c1AABAwYglAQAAAAAAgGGbVjctli9YHlt3dMWlv34w69x3/uGsqKutLNJkRTBtWsTy5cWeAgAAeAOP4QYAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJJWVuwBAAAAAAAAgJFv9YbVMfuO2TsX47LPjf/Szq9NVzZFY31jYQcrhtWrI2bP3vs1TU0RjaPgtQAAgIOET5YEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaWBAAAAAAAAAAAAJImlgQAAAAAAAAAAACSJpYEAAAAAAAAAAAAkiaW/P/au/PwKss7f/yfJGQhC/uqgAsgLkCVUqvi2KpTWqed6qhodZyp1qG21mq1tmq1Sl2wjlrt1AVn1GpnWqwL3bRj9auMVqFKBWSxBcEFkN0QCMQsJPn94Y9TTxIgyzk5cPJ6XReX/dzPc9/P5xyvx1OS97kfAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZLVumbjo8uXL44knnog5c+bEypUro7KyMgoLC2PIkCExbty4+OIXvxjjxo3r1J7Ky8tjxowZMWvWrFi6dGlUVFREXl5eDBgwIEaPHh2f/exn4zOf+Uzk5eW1ee2pU6fGww8/3O7eDjjggHj66afbPR8AAAAAAAAAAAC6sk4NS27dujWmTp0aM2bMiMbGxqRj27dvjyVLlsSSJUti+vTp8ZnPfCZuuumm6NmzZ1p7amxsjIcffjjuuOOOqK6uTjpWV1cXK1asiBUrVsTvf//7GDlyZPzoRz+Kgw46qE3XWLJkSSpbBgAAAAAAAAAAANqg0x7DXV5eHmeffXY88cQTzYKSLXn22Wfj5JNPjnfeeSdtPTU0NMQVV1wRN998c7OgZEvefPPNmDRpUjz77LNtus7SpUvb2yIAAAAAAAAAAADQQZ2ys+T27dvjwgsvbLbD4siRI+PTn/509OvXLzZu3BgzZ86MZcuWJY6vWbMmLrzwwnj00UejtLQ05X3deuut8Zvf/CZprF+/fjFx4sQYNmxYbN26NV577bWYPXt24nh1dXV85zvfiUceeSQOPvjg3V5j/fr1UV5enqhHjRoVZ511Vpv6TPfumgAAAAAAAAAAAJDNOiUsOW3atJg3b16izs/Pj2uvvTbOOOOMpPMuv/zyeOyxx+KGG26ImpqaiIhYvnx5TJ06NaZOnZrSnl599dX46U9/mjR21llnxVVXXRWFhYVJ43Pnzo1LL7001q5dGxERH3zwQVxyySXx1FNPRbduu34LmwZEjzrqqDaHJQEAAAAAAAAAAID2S/tjuDdu3BgPPPBA0tiNN97YLCi5w6RJk+K2226LnJycxNivf/3rePfdd1Pa1y233JL0OPDTTjstpkyZ0iwoGRExbty4+O///u/o1atXYuydd95ptitlS5qGJQ866KD2Nw0AAAAAAAAAAAC0WdrDktOnT4+qqqpEfdxxx8Upp5yyyzkTJ06Mc845J1HX19fHfffdl7KeXnnllVi0aFGi7tu3b1x99dW7nDNs2LC44YYbksamTZuWFLhsydKlS5NqYUkAAAAAAACyUWG3wji0/6FxcN9DorR+aNKfg/seEof2PzQKuzXfuCQrFRZGHHrorv+0sIkLAACQPml/DPevfvWrpPq8885r1bzJkyfHL37xi6ivr4+IiGeeeSZ+8IMfRH5+fod7mjFjRlI9adKkKCkp2e28iRMnxoEHHhhvvfVWRESsWLEiFi5cGGPHjt3pnI/uLJmTkxMjRoxoZ9cAAAAAAACw5xrRZ0QsvnBxbN5aE+dc93TSsf8593PRs7QLhQNHjIhYvDjTXQAAAB+R1p0l33zzzXjvvfcSda9eveKTn/xkq+YOHDgwDj/88ERdWVkZs2fP7nBPjY2N8eKLLyaNfe5zn2v1/M9+9rNJ9TPPPLPTc7dv3x7Lly9P1EOGDIni4uJWXwsAAAAAAAAAAADouLSGJV955ZWk+uMf/3jk5eW1ev6RRx6ZVDcNObbHm2++GeXl5Ym6R48ecfDBB7d6ftOw5656euutt6Kuri5RewQ3AAAAAAAAAAAAdL60hiX/+te/JtWHHnpom+Y3PX/RokUp7+mQQw6JnJycVs8/5JBDkuply5ZFdXV1i+d+9BHcEREjR45s9XUAAAAAAAAAAACA1OiWzsU/+gjqiIgDDzywTfOHDRuWVL/99tsp7+mAAw5o0/xevXpFjx49YsuWLRERUV9fHytWrGhx18imYclRo0Yl/ndVVVUsWrQo1q1bF9u3b4++ffvGAQccEEOHDm1TPwAAAAAAAAAAAMCupTUsuXr16qR64MCBbZo/YMCApLqioiK2bdsWJSUlKetp0KBBbV5j4MCBibDkjjVbE5YcOXJkvPjii/Hzn/88Xnrppdi+fXuzOSNGjIgzzjgjzj777MjPz29zbwAAAAAAAAAAAECytD6Gu7y8PKnu169fm+b37t07cnOTW9y0aVNGe9rR167W3GHp0qVJ9fXXXx+TJ0+O//u//2sxKBnx4WO9p06dGp///OebPTIcAAAAAAAAAAAAaLu0hSW3bdsWtbW1SWOlpaVtWiMnJye6d++eNPbRHR3bo2nYsj27VDad01JPmzdvjrVr1yaNvfrqq62+xrvvvhtnn312zJo1q839AQAAAAAAAAAAAH+Ttsdw19TUNBtrGnxsjeLi4ti2bVuirq6u7lBfTQOcxcXF7erpo1rqqekjuHfo2bNnnHbaaXHSSSfFkCFDori4ONatWxevvvpq/M///E/SbpLbtm2Liy++OJ544onYb7/92twnAAAAAAAAAAAAkMawZF1dXfOLdWv75fLy8pLqnT2+urWahiWbrp+qnloKSx511FFx++23N3v093777Rf77bdfnHbaaXHvvffGf/zHfySOVVZWxmWXXRaPP/545OTktLnXVFm2bFmzR6IDsGs7Pgvr6upiwYIFGe4GADqfz0IAuqpt1fXNxt54440oKWr7zyKBtnMPQua5DyGz3IOQWe5BgNRoaGhI+ZppC0vW1zf/j397wnZN53T0TWjaV3vCkq3pafPmzVFcXBxVVVURETF+/Pi4//77Iz8/f5frfuMb34jGxsb4yU9+khhftGhRPPfcc/H3f//3be41Verr61v8dwpA67T0JQIA6Ep8FgLQldTVNf85Wl1dXdTlpf4HvEBz7kHIPPchZJZ7EDLLPQiw50pbWLKlXSTr6+vbvLtk01+o7Sps2J6+2rNTZdM5LfV00UUXxUUXXRTl5eWxcuXKGDZsWKt7v/DCC+MPf/hDLF26NDH2i1/8IqNhyby8PDtLArTRRz/DOvr5BQB7I5+FAHRV+fXNf46Wn58f+fl2EYHO4B6EzHMfQma5ByGz3IMAqdHQ0JDyzf3SFpYsKChoNlZXVxeFhYVtWqdpMLGldTvSV3t2N2k6Z1c99enTJ/r06dOm9XNzc+Nf/uVf4vvf/35i7LXXXova2toOv/72GjFiRJSWlmbk2gB7qwULFkRdXV3k5+fH2LFjM90OAHQ6n4UAdFWbt9ZExIqksUMPPTR6lrbtZ6NA+7gHIfPch5BZ7kHILPcgQGps3bo1lixZktI10xaWLCsri5ycnGhsbEyMbdu2rc2Bu23btiXVJSUlHeqrR48eSfWOx2RnsqeWHHPMMUl1dXV1LFmyJMaMGZPyawEAAAAAAEBHLStfFic/cnI0NDTGqpKtSceOeqg0cnNz4jdf+k2M6DMiQx12omXLIk4+edfn/OY3ESO6wHsBAAB7iLSFJfPy8qJHjx6xefPmxNiWLVti4MCBrV6juro6amtrk8b69u3bob569+6dVG/ZsqXNazSd09GeWjJkyJAoKiqK6urqxFh5eXnKrwMAAAAAAACpULO9Jt7Y8MaHRZMnjf71/b+d0yXU1ES88cbuzwEAADpNbjoXHzRoUFK9cePGNs3fsGFDUl1QUBA9e/bMaE8tzenXr1+HetqZprtgtifYCQAAAAAAAAAAAF1dWsOSQ4cOTapXrVrVpvlNz99///072lKHe6qrq4t169YljaWir5bUNPk2WVsfYQ4AAAAAAAAAAACkOSw5atSopHr58uVtmv/WW28l1cOHD894T++8807U19cn6r59+zZ7tHdjY2NUVFTE8uXLY86cOfHCCy+0uc/a2tpmO0k2vQ4AAAAAAAAAAACwe93SufjYsWOT6gULFrRp/vz585PqI444oqMtxejRoyMvLy8ReFy6dGlUV1dHUVFRynp68cUX46tf/Wqizs3NjT//+c9RUlLS6j4XLlwYjY2Nibpbt25x0EEHtXo+AAAAAAAAAAAA8KG07iz5iU98IvLz8xP166+/Hps3b27V3Pr6+nj55ZeTxo455pgO91RaWpoU4qyrq4tZs2a1ev4f//jH3fY0cuTIpLqhoSFeffXVNvX5/PPPJ9WHHXZYFBcXt2kNAAAAAAAAAAAAIM1hyZKSkjj22GMT9fbt22PGjBmtmvvcc8/F+++/n6hHjhzZLITYXhMnTkyqH3300VbNW79+fVKIsVu3bs3WiojYZ599Yr/99ksae+yxx1rd3+bNm5udf/LJJ7d6PgAAAAAAAAAAAPA3aQ1LRkScfvrpSfW0adNi9erVu5yzZcuWuPXWW5PGzjjjjJT1dPLJJ0dBQUGinjlzZrOdHFty4403Rl1dXaI+/vjjo3///i2e+8UvfjGpfu6552L27Nm7vUZjY2N8//vfT9qBs1evXnHKKafsdi4AAAAAAAAAAADQXNrDkieeeGIcfPDBibqioiK+9rWvxcaNG1s8f9u2bXHJJZfEihUrEmODBw+OM888c6fXmDFjRowaNSrpzyuvvLLT8/v27dtsvcsvvzxef/31Fs9vbGyM22+/Pf7whz8kxnJzc+Ob3/zmTq9xzjnnRK9evZLGvvWtb8XChQt3Oqeuri6uvvrqpOtERHz3u9+NkpKSnc4DAAAAAAAAAAAAdi7tYcmcnJyYMmVK5Ob+7VJLliyJU045JR577LHYunVrRETU1NTE008/HaeffnrMmjUraY3vf//7UVhYmNK+Lr744hgwYECi3rZtW/zzP/9z/PjHP461a9dGRER9fX3MnTs3Jk+eHP/5n/+ZNP/LX/5yjBo1aqfr9+rVK6666qqksYqKijj77LPj1ltvjbfeeisxXllZGb/73e/i5JNPjieeeCJpzoknnhinnXZau18nAAAAAAAAAAAAdHXdOuMiRxxxREyZMiWuvfbaxNiGDRvimmuuiWuuuSbKyspi69at0djY2GzuBRdcECeeeGLKe+rRo0fcc889ce655yYCm3V1dXHPPffEPffcE8XFxVFXV5f02O0djjzyyLjssst2e41TTjklVqxYEXfffXdirLa2Nu6///64//77o7CwMAoKCqKysrLF+ePHj4/bbrutna8QAAAAAAAAAAAAiOiEnSV3OPPMM+P666+PoqKiZscqKyubBSVzc3PjoosualUosb3GjBkT999/fwwaNKjZsaqqqhaDkscff3zcd999UVBQ0KprXHzxxXHjjTe2+Lpramp2GpQ8/fTT44EHHoji4uJWXQcAAAAAAAAAAABoWaeFJSM+DEw++eSTcdJJJ7UYHtxhwoQJ8fOf/zy++c1vpr2nI444Ip566qn4yle+En379t3peSNHjoxbbrklpk2b1uYA46RJk+Lpp5+Of/mXf4mysrKdnpeXlxef/vSn4xe/+EXcdNNNu3yPAAAAAAAAAAAAgNbplMdwf9TQoUPjzjvvjKqqqpgzZ06sW7cuysvLo6ioKPbZZ58YN25c9OvXr01rnnrqqXHqqae2u6fS0tK44oor4vLLL4958+bFypUrY8OGDZGXlxd9+/aNsWPHxoEHHtju9SMiBg8eHNdcc01cddVV8cYbb8Sbb74ZFRUVUVNTE2VlZTFs2LA44ogjdhmmBAAAAAAAAAAAANqu08OSOxQXF8enPvWpTF2+RXl5eTF+/PgYP358Wq8xZsyYGDNmTNquAQAAAAAAAAAAAPxNpz6GGwAAAAAAAAAAAKCzCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArNYt0w0AAAAAAAAAe7/DBhwWjdc1xuatNXHOdU8nHfufH3wuepYWZqizDDjssIjGxkx3AQAAfISwJAAAAAAAAAAAAFmjqrouNlZ8ENW19VFUkBf9enWP4qL8TLdFhglLAgAAAAAAAAAAsFdrbGyMhcs3xlMvvx1/WrQ2Ghr+ttN3bm5OHD16cPzDhP1jzPB+kZOTk8FOyRRhSQAAAAAAAAAAAPZay1ZVxB3T58aKtZUtHm9oaIyXF6yOlxesjmGDyuLSs8bFiCG9OrdJMi430w0AAAAAAAAAAABAe8xbsj6uuvulnQYlm1qxtjKuuvulmLdkfZo7Y08jLAkAAAAAAAAAAMBeZ9mqipj60KtRXVvfpnnVtfUx9aFXY9mqivQ0xh5JWBIAAAAAAAAAAIC9SmNjY9wxfW6bg5I7VNfWx53T50ZjY2OKO2NPJSwJAAAAAAAAAADAXmXh8o2tfvT2zry7tjIWLX8/RR2xpxOWBAAAAAAAAAAAYK/y+5ffSck6T816OyXrsOcTlgQAAAAAAAAAAGCvUVVdF7MXrUnJWrMXromq6rqUrMWeTVgSAAAAAAAAAACAvcbGig+ioaExJWs1NDTG+5urU7IWezZhSQAAAAAAAAAAAPYa1bX1KV3vg5rtKV2PPZOwJAAAAAAAAAAAAHuNooK8lK7XvbBbStdjz+TfMgAAAAAAANBhKzevjMueuSzqtjfEa93XJh378u9+FvndcuNHE38UQ3sOzVCHnWjlyojLLtv1OT/6UcTQLvBeAACkQb9e3SM3Nyclj+LOy82Jvj2LUtAVezphSQAAAAAAAKDDttRsicffePzDIj/52G+WfvjPKZ+a0qk9ZcyWLRGPP77rc6ZM6ZRWAACyUXFRfhw9enC8vGB1h9c6aszgKC7K3/2J7PU8hhsAAAAAAAAAAIC9yj9M2D8l63z+mANSsg57PmFJAAAAAAAAAAAA9ipjhveLYYPKOrTGfoPKYvTwvinqiD2dsCQAAAAAAAAAAAB7lZycnLj0rHFRVJDXrvlFBXnxrbPGRU5OToo7Y08lLAkAAAAAAAAAAMBeZ8SQXvG9c49sc2CyqCAvvnfukTFiSK/0NMYeSVgSAAAAAAAAAACAvdIRowbEzd84ttWP5N5vUFnc/I1j44hRA9LcGXuabpluAAAAAAAAAAAAANprxJBecdflx8ei5e/Hr19YFq++sS7peF5uThw1ZnB8/pgDYvTwvh693UUJSwIAAAAAAAAAALBXy8nJiTEj+sWwQWVxznVPJx2794oTY3C/kgx1xp7CY7gBAAAAAAAAAADIWsVF9hREWBIAAAAAAAAAAADIcsKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArNYt0w0AAAAAAAAAe7/hfYbHoq8visqq2rjy7peSjv3wG8dGWXFBDO8zPEPddbLhwyMWLdr9OQAAQKcRlgQAAAAAAAA6rKhbURw24LDYvLUmyhpWJB07pN+h0bO0MEOdZUBRUcRhh2W6CwAA4CM8hhsAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALJat0w3AAAAAAAAAOz91m9bH/fMuSeqa7fHksJlScdunjUnigq6xYWfuDAGlAzIUIedaP36iHvu2fU5F14YMaALvBcAALCHEJYEAAAAAAAAOmzDtg3xgxd+8GFRmHzsltkf/nPSoZO6Rlhyw4aIH/xg1+dMmiQsCQAAnchjuAEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhq3TLdAAAAAAAAALD3G9JjSDx6+qNRVV0X//Ho/KRjF59xeBQX5ceQHkMy01xnGzIk4tFHd38OAADQaYQlAQAAAAAAgA7rWdQzJh02KTZvrYnHt5ckHTtl1OeiZ2lhhjrLgJ49IyZNynQXAADAR3gMNwAAAAAAAAAAAJDVhCUBAAAAAAAAAACArOYx3AAAAABZpqq6LjZWfBDVtfVRVJAX/Xp1j+Ki/Ey3BQAAAAAAGSMsCQAAAJAFGhsbY+HyjfHUy2/HnxatjYaGxsSx3NycOHr04PiHCfvHmOH9IicnJ4OdAgAAAABA5xOWBAAAANjLLVtVEXdMnxsr1la2eLyhoTFeXrA6Xl6wOoYNKotLzxoXI4b06twmAQAAAAAgg3Iz3QAAAAAA7Tdvyfq46u6XdhqUbGrF2sq46u6XYt6S9WnuDAAAAAAA9hzCkgAAAAB7qWWrKmLqQ69GdW19m+ZV19bH1IdejWWrKtLTGAAAAAAA7GGEJQEAAAD2Qo2NjXHH9LltDkruUF1bH3dOnxuNjY0p7gwAAAAAAPY8wpIAAAAAe6GFyze2+tHbO/Pu2spYtPz9FHUEAAAAAAB7LmFJAAAAgL3Q719+JyXrPDXr7ZSsAwAAAAAAezJhSQAAAIC9TFV1XcxetCYla81euCaqqutSshYAAAAAAOypumW6AQAAAADaZmPFB9HQ0JiStRoaGuP9zdVRXJSfkvUAAOi6NldvjmeWPxNV1XWxutv8pGO/XrItiovyY+LwidGzqGdmGuxMmzdHPPPMrs+ZODGiZxd4LwAAYA8hLAkAAACwl6murU/peh/UbE/pegAAdE2rtqyKMx4/48OiOPnYuU9++M9FX1/UNcKSq1ZFnHHGrs9ZtEhYEgAAOpHHcAMAAADsZYoK8lK6XvdC36cFAAAAACC7CUsCAAAA7GX69eoeubk5KVkrLzcn+vYsSslaAAAAAACwpxKWBAAAANjLFBflx9GjB6dkraPGDI7iovyUrAUAAAAAAHsqYUkAAACAvdA/TNg/Jet8/pgDUrIOAAAAAADsyYQlAQAAAPZCY4b3i2GDyjq0xn6DymL08L4p6ggAAAAAAPZcwpIAAAAAe6GcnJy49KxxUVSQ1675RQV58a2zxkVOTk6KOwMAAAAAgD2PsCQAAADAXmrEkF7xvXOPbHNgsqggL7537pExYkiv9DQGAAAAAAB7GGFJAAAAgL3YEaMGxM3fOLbVj+Teb1BZ3PyNY+OIUQPS3BkAAAAAAOw5umW6AQAAAAA6ZsSQXnHX5cfHouXvx69fWBavvrEu6Xhebk4cNWZwfP6YA2L08L4evQ0AAAAAQJcjLAkAAACQBXJycmLMiH4xbFBZnHPd00nH7r3ixBjcryRDnQEAAAAAQOZ5DDcAAABAlisu8n1ZAAAAAAC6NmFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWa1bphsAAAAAAAAA9n79S/rHdZ+6Lqprt8eM/1uWdOzUT4+IooJu0b+kf4a662T9+0dcd93uzwEAADqNsCQAAAAAAADQYQNKBsSUT0+JzVtrYvEfnk46dtUxn4uepYUZ6iwDBgyImDIl010AAAAf4THcAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1bplugEAAAAAAABg71e9vTqWly+PyqraqMxdkXTsLxvfiLKqghjeZ3gUdSvKUIedqLo6YvnyXZ8zfHhEURd4LwAAYA8hLAkAAAAAAAB02PLy5TH63tEfFqXJx45++MN/Lvr6ojhswGGd21gmLF8eMXr0rs9ZtCjisC7wXgAAwB7CY7gBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGS1bpluAAAAgOxTVV0X6ytqY9sHdVHSvTGqquuiuCg/020BAAAAAADQRQlLAgAAkBKNjY2xcPnGeOrlt+NPi9ZGQ0Nj4thPfrc6jh49OP5hwv4xZni/yMnJyWCnAAAAAAAAdDXCkgAAAHTYslUVccf0ubFibWWLxxsaGuPlBavj5QWrY9igsrj0rHExYkivzm0SAAAAAACALktYEgAAgA6Zt2R9TH3o1aiurW/V+SvWVsZVd78U3zv3yDhi1IA0dwcAAEBn6VHYI04/9PSo294Qry5em3TsyMMGRX633OhR2CND3XWyHj0iTj999+cAAACdRlgSAACAdlu2qqJNQckdqmvrY+pDr8bN3zjWDpMAAABZYmjPofHYpMdi89aaOOfPTycde/gfPxc9Swsz1FkGDB0a8dhjme4CAAD4iNxMNwAAAMDeqbGxMe6YPrfNQckdqmvr487pc6OxsTHFnQEAAAAAAEAyYUkAAADaZeHyjbFibWWH1nh3bWUsWv5+ijoCAAAAAACAlglLAgAA0C6/f/mdlKzz1Ky3U7IOAAAAAAAA7IywJAAAAG1WVV0XsxetSclasxeuiarqupSsBQAAAAAAAC0RlgQAAKDNNlZ8EA0NjSlZq6GhMd7fXJ2StQAAAAAAAKAlwpIAAAC0WXVtfUrX+6Bme0rXAwAAAAAAgI8SlgQAAKDNigryUrpe98JuKV0PAAAAAAAAPiojv41avnx5PPHEEzFnzpxYuXJlVFZWRmFhYQwZMiTGjRsXX/ziF2PcuHGd2lN5eXnMmDEjZs2aFUuXLo2KiorIy8uLAQMGxOjRo+Ozn/1sfOYzn4m8vI79QnD27Nnx1FNPxbx582LdunXxwQcfRGlpaRxwwAFx9NFHx2mnnRZDhgxJ0asCAABIj369ukdubk5KHsWdl5sTfXsWpaArAAAAAAAAaFmnhiW3bt0aU6dOjRkzZkRjY/Iv1LZv3x5LliyJJUuWxPTp0+Mzn/lM3HTTTdGzZ8+09tTY2BgPP/xw3HHHHVFdXZ10rK6uLlasWBErVqyI3//+9zFy5Mj40Y9+FAcddFCbr/Puu+/GlVdeGXPnzm12rKKiIubNmxfz5s2L++67L772ta/FN77xjQ4HMwEAANKluCg/jh49OF5esLrDax01ZnAUF+WnoCsAAAAAAABoWac9hru8vDzOPvvseOKJJ5oFJVvy7LPPxsknnxzvvPNO2npqaGiIK664Im6++eZmQcmWvPnmmzFp0qR49tln23SdBQsWxOmnn95iULKp+vr6uPvuu+Pcc8+NmpqaNl0HAACgM/3DhP1Tss7njzkgJesAAAAAAADAznTKzpLbt2+PCy+8MJYsWZI0PnLkyPj0pz8d/fr1i40bN8bMmTNj2bJlieNr1qyJCy+8MB599NEoLS1NeV+33npr/OY3v0ka69evX0ycODGGDRsWW7dujddeey1mz56dOF5dXR3f+c534pFHHomDDz54t9dYs2ZNTJ48ObZs2ZIYy8nJiaOOOirGjx8fpaWl8e6778bTTz8d5eXliXNeffXVuOaaa+LWW29NwSsFAABIvTHD+8WwQWWxYm1lu9fYb1BZjB7eN4VdAQAAAAAAQHOdEpacNm1azJs3L1Hn5+fHtddeG2eccUbSeZdffnk89thjccMNNyR2VVy+fHlMnTo1pk6dmtKeXn311fjpT3+aNHbWWWfFVVddFYWFhUnjc+fOjUsvvTTWrl0bEREffPBBXHLJJfHUU09Ft267fguvvPLKqKioSNSDBg2KO+64I8aNG5d03lVXXRU333xz/OIXv0iM/fa3v40JEybEKaec0o5XCAAAkF45OTlx6Vnj4qq7X4rq2vo2zy8qyItvnTUucnJy0tAdAAAAAAAA/E3aH8O9cePGeOCBB5LGbrzxxmZByR0mTZoUt912W9Ivy37961/Hu+++m9K+brnllqTHgZ922mkxZcqUZkHJiIhx48bFf//3f0evXr0SY++8806zXSmbmjlzZvzpT39K1CUlJXH//fc3C0pGRBQUFMR1110X//qv/5o0fvfdd8f27dtb+7IAAIiIquq6WLF2SyxdsSlWrN0SVdV1mW4JstaIIb3ie+ceGUUFeW2aV1SQF98798gYMaRXehoDAACg0y1evzhyfpATvW4viid7nJL0p9ftRZHzg5xYvH5xptvsHIsXR+Tk7PrP4i7yXgAAwB4i7WHJ6dOnR1VVVaI+7rjjdrtT4sSJE+Occ85J1PX19XHfffelrKdXXnklFi1alKj79u0bV1999S7nDBs2LG644YaksWnTpiUFLpt68MEHk+qvf/3rMXLkyF1e58orr4xDDjkkUa9YsSKefPLJXc4BACCisbExFizbEDc//Gqc9f3/jW/cOjO+/eMX4xu3zoyzvv+/8cOH58SCZRt2+f/fgPY5YtSAuPkbx8awQWWtOn+/QWVx8zeOjSNGDUhzZwAAAAAAAPChtIclf/WrXyXV5513XqvmTZ48OfLy/rYzyTPPPBN1danZEWjGjBlJ9aRJk6KkpGS38yZOnBgHHnhgol6xYkUsXLiwxXNXrlwZc+bMSdTdu3ePs846a7fXyMvLi8mTJyeNPfXUU7udBx9lNy3IvKrqulhfURurNtbG+opa9yGk2bJVFXHRbTPj6ntnxawFa6KhITkQ2dDQGC8vWB1X3zsrLrptZixbVZGZRiGLjRjSK+66/PiY+vUJceShA5sdz8vNiQkf2yemfn1C/OTy4+0oCQAAAAAAQKfqls7F33zzzXjvvfcSda9eveKTn/xkq+YOHDgwDj/88HjttdciIqKysjJmz54dxx13XId6amxsjBdffDFp7HOf+1yr53/2s5+Ne++9N1E/88wzMXbs2Gbnvfjii0m7Fh1zzDFRWlraqmuccMIJUVBQELW1tRERMXv27Ni6dWur59M1NTY2xsLlG+Opl9+OPy1amxQSyc3NiaNHD45/mLB/jBneL+kx90Dq7Oo+/MnvVrsPIU3mLVkfUx96Napr61t1/oq1lXHV3S/F98490q52kGI5OTkxZkS/GDaoLM657umkY/decWIM7rf7L6kBAAAAAABAOqR1Z8lXXnklqf74xz+etFvk7hx55JFJddOQY3u8+eabUV5enqh79OgRBx98cKvnNw177qynpq+96WvZle7du8eYMWMSdV1dXcyePbvV8+l67KYFmec+hMxYtqqiTUHJHapr62PqQ6+6F6ETFRel9bt6AAAAAAAAsEtpDUv+9a9/TaoPPfTQNs1vev6iRYtS3tMhhxzSpt29DjnkkKR62bJlUV1dvdvrHHbYYW3oMj2vnew0b8n6uOrul2LF2spWnb9jN615S9anuTPoOtyHkBmNjY1xx/S5bQ5K7lBdWx93Tp+btBs4AAAAAAAAANkprWHJ5cuXJ9UHHnhgm+YPGzYsqX777bdT3tMBBxzQpvm9evWKHj16JOr6+vpYsWJF0jm1tbWxatWqDl1n6NChSXUqXjvZx25akHnuQ8ichcs3tjqkvDPvrq2MRcvfT1FHAAAAAAAAAOyp0hqWXL16dVI9cODANs0fMGBAUl1RURHbtm1LaU+DBg1q8xpNX0fTNdeuXRv19X8LzeTn50ffvn07dI333nuvjV2S7eymBZnnPoTM+v3L76Rknadm+VIKAAAAAAAAQLZLa1iyvLw8qe7Xr1+b5vfu3Ttyc5Nb3LRpU0Z72tHXrtZ8//3k3Yn69OnTpkd975jzUR193WQfu2lB5rkPIXOqquti9qI1KVlr9sI1UVVdl5K1AAAAAAAAANgzdUvXwtu2bYva2tqksdLS0jatkZOTE927d0/aTXLLli0d6qtp6LCkpKTNazSd07SnioqKpLqtr7ula2zevLnNa5DddrebVk5jQxQ11O7ynIiIZ2YujoP7H56apqCLefb5N6J7fXWH13EfQtutW18ZhXUfpGax+oj1q9bHvv3b/v/ZgJZt31bb7DNy+5YtUVdfkKGOoGtxD0LmuQ8hs9yDkDl1W3f/5fK6rZVRV9gFfu9VWRn5uzmlrrIywu8ASQOfhZBZ7kHIvI/eh9W5BdGYk9b9BNmLpC0sWVNT02yse/fubV6nuLg4KSxZXd2xUErTAGdxcXG7evqopj01fe3ted1N57T0ftJ17W43rVFb34mJG16NktaEuN6OePXJFDYHXchR//+fDnMfQrtcksK13vv2o/FeCtcDmt+jf/36oxnpA7oq9yBknvsQMss9CJnxVtGWiEN3fc7Cq74f26p7dE5DGdR9y5YYt5tzFl71/figR/a/F2SGz0LILPcgZN6O+3BbXlE80//IjPbCniNtYcm6uuaPMuzWre2Xy8vLS6q3b9/e7p4imoclm66fip6aXqM9r7vpnJbez860bNmyZo9EJ3PWV9RGQ0PjTo+ftH52FDV4nCgAAAAAAAAAAF1XSX11nLR+drzxxnFRUtT2nBiZ09DQkPI10xaWrK+vbzbWnrBd0zkdfROa9tWesOTuempat+d15+TkNBtrbGxscbwz1NfXt/jvlMzY9oEgJAAAAAAAAAAA7E5Rfm4U5DVEXV3qw3fsXdIWlmxpN8X6+vo277LYdEfF/Pz8lPbVnp0qm85p2lPTa7QnZNj0Gt26dctYUDLiw1CpnSX3HCXdd76rZETE/w44uvWP4QYAAAAAAAAAgCyUU1IShV84qcOZMzpfQ0NDyjf3S1tYsqCgoNlYXV1dFBYWtmmdpqHBltbtSF/tebx10zlN10zFNVL9ujtqxIgRUVpamtEe+Juq6rr4ye9W7/RR3EtK94+lJcOiqKG2xeMflZeTE9OuOjGKC9P2nwPISlU12+OCm5+LhsZdh5dbw30I7bP47fdj6kNzOrzO1eceGYce0CcFHQFNLX7jjdheVxfd8vPjsEMPzXQ7ANDpfBYC0NWUvP+XiP/+f7s8Z8zNN8RhfQ/ppI4y6C9/iTh69+9FHNIF3guALsrfCWHP0K20NHLa8eRhMm/r1q2xZMmSlK6ZtlRGWVlZ5OTkRONHQiTbtm1rc+Bu27ZtSXVJSUmH+urRo0dSXVVV1eY1dtdTWVlZ2q9B11ZclB9Hjx4cLy9YvdNzGnNy44O8ot2uNeFj+0TPAX1T2R50CT0j4vDDD9jlfdha7kNon499rEf03/edWLG2st1r7DeoLMZ+bP+M7uAN2Sy3pCRy6uoiNz8/8nv2zHQ7ANDpfBYC0NXk15Tt/pzSsq7xuVjWiveirCyiK7wXAF2UvxMC7HnS9lzlvLy8ZsHELVu2tGmN6urqqK1N3hmvb9+OhUl69+7doZ5amtO0p6bX2Lx5c5uv0XROnz52OyLZP0zYPyXrfP6YA1KyDnRF7kPIrJycnLj0rHFRVNC+b4IVFeTFt84aJygJAAAAAAAA0AWkLSwZETFo0KCkeuPGjW2av2HDhqS6oKAgenYwbd/Rnlqa069fv6R68ODBSfXmzZubPVa7rdfo379/m+aT/cYM7xfDBu3+W4m7st+gshg93G520F7uQ8i8EUN6xffOPbLNgcmigrz43rlHxoghvdLTGAAAAAAAAAB7lLSGJYcOHZpUr1q1qk3zm56///77d7SlDvdUV1cX69atSxpr2lfPnj2TdtVsaGiI1avb9pjWdLx2sovdtCDz3IewZzhi1IC4+RvHtjq8vN+gsrj5G8fGEaMGpLkzAAAAAAAAAPYUaQ1Ljho1Kqlevnx5m+a/9dZbSfXw4cMz3tM777wT9fX1ibpv377NHrvd0nWWLVvWpus07SsVr53sYzctyDz3IewZRgzpFXddfnxM/fqEmDB2n8jNTQ4h5+XmxISP7RNTvz4hfnL58e49AAAAAAAAgC6mWzoXHzt2bFK9YMGCNs2fP39+Un3EEUd0tKUYPXp05OXlJQKPS5cujerq6igqKkppT2PGjIk5c+Yk6gULFsQJJ5zQ6j6bvlfjxo1r9Vy6lh27ad0xfW6sWFu52/P3G1QW3zprnJAIpJD7EPYMOTk5MWZEvxgzol9UVdfF+5ur44Oa7dG9sFv07VkUxUX5mW4RAAAAAAAAgAxJa1jyE5/4ROTn50ddXV1ERLz++uuxefPm6Nmz527n1tfXx8svv5w0dswxx3S4p9LS0hg7dmzMmzcvIj58rPasWbNaHWT84x//2KqeJkyYEA8++GCifvHFF+Nb3/pWq66xdOnSWLNmTaLu06dPs50q4aN27Ka1aPn78dTLb8fsRWuioaExcTwvNyeOGjM4Pn/MATF6eF+P/IU0cB/CnqW4KF84EgAAAAAAAICEtIYlS0pK4thjj42ZM2dGRMT27dtjxowZcd555+127nPPPRfvv/9+oh45cmSMHDkyJX1NnDgxEZaMiHj00UdbFZZcv359PP/884m6W7duMXHixBbPPfLII6NXr15RUVERERGLFy+OxYsXx2GHHbbb6zz66KNJ9UknnSRUw27ZTQsyr+l9OOvV12PbB3VR0j0/jjnyY+5DAAAAAAAAAIAMyU33BU4//fSketq0abF69epdztmyZUvceuutSWNnnHFGyno6+eSTo6CgIFHPnDkzKQS5MzfeeGNil8yIiOOPPz769+/f4rkFBQVx8sknJ43dcMMNUVtbu8trLF68OB555JGksVS+drqG4qL8GDqwLA4a1juGDiwT0IIMKC7KjwG9CmJIv4IY0KvAfQgAAAAAAAAAkEFpD0ueeOKJcfDBByfqioqK+NrXvhYbN25s8fxt27bFJZdcEitWrEiMDR48OM4888ydXmPGjBkxatSopD+vvPLKTs/v27dvs/Uuv/zyeP3111s8v7GxMW6//fb4wx/+kBjLzc2Nb37zmzu9RkTE+eefH4WFhYl63rx58b3vfS8pcPlR7777blx44YVJxz/72c8mvX8AAAAAAAAAAABA26Q9LJmTkxNTpkyJ3Ny/XWrJkiVxyimnxGOPPRZbt26NiIiampp4+umn4/TTT49Zs2YlrfH9738/KXSYChdffHEMGDAgUW/bti3++Z//OX784x/H2rVrIyKivr4+5s6dG5MnT47//M//TJr/5S9/OUaNGrXLawwcOLBZoPJ3v/tdnH322fHCCy8kQpGbNm2Khx56KE477bTEtSMievToEVdeeWWHXicAAAAAAAAAAAB0dd064yJHHHFETJkyJa699trE2IYNG+Kaa66Ja665JsrKymLr1q3R2NjYbO4FF1wQJ554Ysp76tGjR9xzzz1x7rnnJgKbdXV1cc8998Q999wTxcXFUVdX1+IukEceeWRcdtllrbrO+eefH0uXLo3f/va3ibEFCxbEV7/61cjNzY3i4uLE9T8qPz8//v3f/z322Wefdr5CAAAAAAAAAAAAIKITdpbc4cwzz4zrr78+ioqKmh2rrKxsFpTMzc2Niy66qNWhxPYYM2ZM3H///TFo0KBmx6qqqloMSh5//PFx3333RUFBQauukZubGz/84Q9bfIx4Q0NDi0HJsrKy+PGPfxzHH398q64BAAAAAAAAAAAA7FynhSUjPgxMPvnkk3HSSSe1GJrcYcKECfHzn/+82SOs0+GII46Ip556Kr7yla9E3759d3reyJEj45Zbbolp06ZFcXFxm66Rl5cX119/fTz00EMxfvz4pEeSf1RBQUGceuqp8bvf/S4tu2kCAAAAAAAAAABAV9Qpj+H+qKFDh8add94ZVVVVMWfOnFi3bl2Ul5dHUVFR7LPPPjFu3Ljo169fm9Y89dRT49RTT213T6WlpXHFFVfE5ZdfHvPmzYuVK1fGhg0bIi8vL/r27Rtjx46NAw88sN3r73D00UfH0UcfHevXr4/58+fHhg0borKyMsrKymL//fePww8/PEpKSjp8HQAAAAAAAAAAAOBvOj0suUNxcXF86lOfytTlW5SXlxfjx4+P8ePHp/U6AwYMiIkTJ6b1GgAAAAAAANCZCrsVxqH9D03U1dXVEY0RkROJp84VdivMUHedrLAw4tBDd38OAADQaTIWlgQAAAAAAACyx4g+I2LxhYsT9YIFC6Kuri7y8/Nj7NixGewsA0aMiFi8ePfnAQAAnSY30w0AAAAAAAAAAAAApJOwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZLVumW4AAAAAAAAA2PstK18WJz9ycqKurq6OaIyInIiil4oiIuI3X/pNjOgzIkMddqJlyyJOPnnX5/zmNxEjusB7AQAAewhhSQAAAAAAAKDDarbXxBsb3mj5YOXfzukSamoi3tjJe/HRcwAAgE7jMdwAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1bplugH2TPX19Ul1VVVVhjoB2Hs1NDQk/rl169YMdwMAnc9nIQBdnc9CALqahpqG+Fjvj+32nC7xudjQEPGxXb8X0dAQ0RXeC4Auyt8JATqmaV6taZ6tPXIaGxsbO7wKWWf9+vWxcuXKTLcBAAAAAAAAAABAFzd06NAYMGBAh9bwGG4AAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFmtW6YbYM/Uq1evpLqwsDDy8vIy0wwAAAAAAAAAAABdRn19fdTU1CTqpnm29shpbGxs7PAqAAAAAAAAAAAAAHsoj+EGAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZrVumGwAAAGDv19DQEC+88EL88Y9/jHnz5sWGDRuioqIiCgsLo3fv3jFixIg46qij4qSTToqBAwdmul0A6HTnn39+vPTSSxERse+++8bzzz+f4Y4AAAAAoGvJaWxsbMx0EwCQLZYvXx5PPPFEzJkzJ1auXBmVlZVRWFgYQ4YMiXHjxsUXv/jFGDduXKbbBICUeu655+Lf//3f45133tntuYWFhXHmmWfGZZddFt27d09/cwCwB3jsscfimmuuSdTCkgBks4aGhvjzn/8cTz/9dMyfPz/Wr18fFRUVUVpaGoMHD45PfOIT8cUvfjFGjx6d6VYBIC3mzZsXTz/9dMyZMyfWrl0bW7ZsiZKSkujbt28cfvjh8alPfSo+85nPRG6uh8ECdDZhSQBIga1bt8bUqVNjxowZsbuP1s985jNx0003Rc+ePTupOwBIn1tuuSUefPDBNs875JBDYtq0aTFo0KA0dAUAe461a9fGF77whaisrEyMCUsCkK0WLVoU1157bSxevHi3555wwglx0003RZ8+fTqhMwBIv9WrV8fVV18ds2bN2u25BxxwQEyZMiWOOuqoTugMgB2EJQGgg8rLy+Pcc8+NJUuWtHrO4MGD46GHHor9998/fY0BQJrddddd8ZOf/CRpLDc3N8aPHx/jxo2Lvn37xgcffBBLly6NF198MbZs2ZJ07kEHHRSPPPJIlJSUdGbbANCpJk+eHC+++GLSmLAkANnokUceieuvvz7q6+tbPWfgwIHx85//PIYOHZrGzgAg/RYsWBBf/epXY9OmTa2ek5eXF9dcc02cffbZaewMgI8SlgSADti+fXucc845MW/evKTxkSNHxqc//eno169fbNy4MWbOnBnLli1LOmf48OHx6KOPRmlpaWe2DAApsXDhwpg0aVLSjsqHHnpo/PCHP4xRo0Y1O7+ysjJuv/32mD59etL4GWecETfccEPa+wWATJgxY0ZcddVVzcaFJQHINo8//nhcc801SX9HzM/Pj+OPPz7GjBkTBQUFsXLlynj22Wdj3bp1SXP322+/+NWvfuWLdADstVavXh2nn356vP/++0nj+++/f5xwwgkxePDg2Lp1a/z5z3+OWbNmJX1e5uTkxF133RV///d/39ltA3RJwpIA0AFNd9TKz8+Pa6+9Ns4444xm5z722GNxww03RE1NTWLstNNOi6lTp3ZKrwCQSl/+8pfjT3/6U6I+5JBD4he/+EUUFxfvct4dd9wR06ZNS9R5eXnx5JNPxoEHHpi2XgEgE9atWxdf+MIXmu2sHCEsCUB2Wbx4cZx55plRV1eXGBs3blzceuutMWTIkKRza2pq4s4774wHH3wwafz888+P7373u53SLwCk2kUXXRTPPvtsos7Ly4vvfOc78eUvfzlyc3OTzp0/f35cfPHFSV8e6N27dzz77LNRVlbWaT0DdFW5uz8FAGjJxo0b44EHHkgau/HGG1sMSkZETJo0KW677bbIyclJjP3617+Od999N619AkCqrV69OikomZOTE7fccstug5IREZdccknSzpP19fXx29/+Ni19AkAmXXfddYmg5Ef/HggA2ea6665LCkoec8wx8fDDDzcLSkZEFBYWxhVXXBFf+cpXksanT58e27ZtS3uvAJBqb775ZlJQMiLiyiuvjPPOO69ZUDIi4vDDD4+f/vSnSTsqb9q0KX72s5+lvVcAhCUBoN2mT58eVVVVifq4446LU045ZZdzJk6cGOecc06irq+vj/vuuy9dLQJAWvy///f/kupPfvKTLT56uyW5ublx1llnJY299NJLKesNAPYEv/71r2PmzJmJ+swzz8xgNwCQPjNnzoyFCxcm6v79+8edd94ZBQUFu5x38cUXR58+fRJ1VVVVs79rAsDeoOlTAw466KD4l3/5l13OGT58eJx33nlJY00DlwCkh7AkALTTr371q6S66V9qdmby5MmRl5eXqJ955pmkb14DwJ7ujTfeSKqPOuqoNs0fO3ZsUr1q1aoO9wQAe4r169fH1KlTE/Xo0aPj/PPPz2BHAJA+v/zlL5Pqyy+/PHr27Lnbed27d4/Pf/7zSWPz589PZWsA0Cn++te/JtUTJ05s1dMFTjrppGbr+H0hQPp1y3QDALA3evPNN+O9995L1L169YpPfvKTrZo7cODAOPzww+O1116LiIjKysqYPXt2HHfccWnpFQBSbc2aNUl1S49W25Xu3bsn1TseUQoA2eC6666LzZs3R0REfn5+TJ06tcVHrwHA3q6ysjL++Mc/JurBgwfHF77whVbP/9znPhfr1q2L3r17R58+feKwww5LR5sAkFbl5eVJ9cCBA1s1b+jQoUl1Y2NjlJeXt3o+AO0jLAkA7fDKK68k1R//+MeTdovcnSOPPDIRloyIePHFF4UlAdhrPPzww7F169ZYu3ZtrF27NkaOHNmm+U3DlmVlZalsDwAy5re//W3SI9guuOCCGDVqlF2UAchKs2bNiu3btyfqk046Kbp1a/2vHsePHx/jx49PR2sA0Gny8/OT6srKylbNq6mpaTbWlt81AtA+vtIMAO3QdEv9Qw89tE3zm56/aNGiDvcEAJ2ptLQ0RowYEccee2ybv+380ksvJdWDBg1KZWsAkBEbN26Mm266KVEfdNBBccEFF2SwIwBIr3nz5iXVRx99dIY6AYDM2X///ZPqj26Wsivz589PqsvKyqJv374p6gqAnRGWBIB2WL58eVJ94IEHtmn+sGHDkuq33367wz0BwN7ggw8+iBkzZiSN+YUaANlgypQpUVFREREf7gYyderUKCgoyGxTAJBGixcvTqrb+oVyAMgGxx9/fFL9wgsvxFtvvbXbeQ888EBSfdxxx0VOTk5KewOgOY/hBoB2WL16dVLd1h21BgwYkFRXVFTEtm3boqSkpMO9AcCe7L777ksESXY48cQTM9MMAKTIU089Fc8++2yiPvfcc2PMmDEZ7AgA0u/dd99N/O/i4uLo169fot60aVP85je/iRdeeCGWLl0amzdvjtLS0hg8eHAce+yx8Y//+I9x0EEHZaJtAEipY445JsaMGRMLFy6MiIjt27fHxRdfHD/96U+jf//+Lc65/fbb409/+lOizsvLi69+9aud0i9AVycsCQDtUF5enlR/9AeBrdG7d+/Izc2NhoaGxNimTZuEJQHIagsWLIj7778/aeyQQw6JT3ziExnqCAA67v33348bbrghUe+///5xySWXZLAjAEi/2traWL9+faLeEQZpaGiI//qv/4p77703Pvjgg6Q5mzZtik2bNsUbb7wR999/f5x++unx3e9+N8rKyjq1dwBIpZycnLj99tvjS1/6UuL3h2+++WaccsopMXny5DjxxBNj4MCBUV1dHfPnz4+f/vSnMWvWrKQ1vvvd78bBBx+cifYBuhxhSQBoo23btkVtbW3SWGlpaZvWyMnJie7du8e2bdsSY1u2bElJfwCwJ9qwYUN885vfjLq6uqTxK664IkMdAUBq/OAHP4hNmzZFxId/17vpppuisLAww10BQHpt2rQpGhsbE3VpaWnU1NTEN7/5zXjhhRd2O7+hoSEeffTReP311+P+++9v9iQeANib7LfffvHoo4/G5ZdfHvPnz4+IiI0bN8bNN98cN998807nlZWVxTXXXBOnnHJK5zQKgLAkALRVTU1Ns7Hu3bu3eZ3i4uKksGR1dXWH+gKAPdXmzZvj/PPPj7Vr1yaNn3nmmXH00UdnqCsA6Ljf//738Yc//CFRn3322TF+/PgMdgQAnaOioiKpLigoiO985ztJQcl99tknjj/++Bg6dGjU1dXF0qVLY+bMmbF169bEOUuWLInzzjsvHn/88Xb9jBUA9hRDhw6NRx55JKZNmxb/8R//kfR0uZaMHj067rnnnhg4cGAndQhAhLAkALRZ0x2xIiK6dWv7R2peXl5SvX379nb3BAB7qi1btsS//du/xZIlS5LGDzvssLj66qsz1BUAdFx5eXnS47f33Xff+Pa3v53BjgCg8zT94veiRYsSPzfNz8+P73znO3HOOec0+xloRUVF3HTTTfHb3/42MbZs2bK4/vrrd7nzFgDs6ebPnx+33HJLzJ07t1XnL1q0KCZNmhSXXnpp/NM//VOauwNgB2FJAGij+vr6ZmO5ubltXqfpnN19wwwA9jbvv/9+nH/++fGXv/wlaXzfffeNe++91yNKAdirXX/99VFeXp6ob7jhhigpKclgRwDQeZp+oXxHnZeXF/fee2/83d/9XYvzevXqFbfeemt07949fvnLXybGf/WrX8X5558fI0aMSF/TAJAm//M//xNTp05N+h1iXl5ejB8/Pj7+8Y9H7969o7KyMv7yl7/Eyy+/HFVVVRERsW7durjyyivjpZdeih/+8IeRn5+fqZcA0GUISwJAG7W0i2R9fX2bd5ds+gNFfwECIJusXLkyJk+eHG+//XbSeP/+/eOBBx7weBkA9mrPPPNM/O///m+iPu2002LChAkZ7AgA9gxf//rXdxqU/Khrrrkm5syZE2+99VZERDQ2NsaDDz4YU6dOTXeLAJBSTz31VNJTByIiDj/88Ljxxhtj5MiRzc4vLy+P22+/PR5//PHE2JNPPhmFhYU+BwE6Qdu3wQKALq6goKDZWEuP5t6dpo/dbmldANgbLVy4ML70pS81C0oOGDAgfvazn8UBBxyQoc4AoOM2bdoUU6ZMSdQDBgyIK6+8MnMNAUAGtPTF8bKysjjvvPNaNb+goCC+8pWvJI29+OKLKekNADrLpk2b4vrrr08aO+qoo+JnP/tZi0HJiIg+ffrETTfdFJdddlnS+BNPPBH/93//l65WAfj/CUsCQBuVlZVFTk5O0ti2bdvavE7TOR7XBkA2eP755+Nf//VfY+PGjUnj++67b/z85z+PAw88MEOdAUBq3HDDDfH+++8n6ilTpkSPHj0y2BEAdL6ioqJmYxMmTIjS0tJWr3HiiScm1Rs2bIh33nmno60BQKd59NFHo6KiIlH37Nkz7rzzzigsLNzt3AsuuKDZZ+Fdd92V6hYBaMJjuAGgjfLy8qJHjx6xefPmxNiWLVva9DjR6urqqK2tTRrr27dvynoEgEz4xS9+ETfeeGPU19cnjY8YMSIeeOCBGDRoUIY6A4DUmD17djz11FOJet99943169fH9OnTdznvo788i/jwy3NN53zyk5/0pQIA9hq9e/duNjZ69Og2rdGnT58YPHhwrFmzJjG2Zs2a2H///TvaHgB0imeeeSapPvvss1v8jNyZb33rW/Hcc88l6oULF8aKFSti2LBhKesRgGTCkgDQDoMGDUoKS27cuHGn2+m3ZMOGDUl1QUFB9OzZM2X9AUBnu+uuu+InP/lJs/Ejjjgi7rvvPp9zAGSFj4Y5IiLee++9pEdyt1ZFRUWzeTfffLOwJAB7jT59+kRubm40NDQkxnr16tXmdXr37p30+bpp06ZUtAcAabd9+/ZYsmRJ0tgJJ5zQpjUOOuig2G+//eLdd99NjM2fP19YEiCNPIYbANph6NChSfWqVavaNL/p+b4tDcDe7LbbbmsxKHnCCSfEQw89JCgJAACQZfLz82Pw4MFJY9XV1W1eJzc3+VeVjY2NHeoLADrL5s2bo66uLmlsv/32a/M6Tb80t27dug71BcCuCUsCQDuMGjUqqV6+fHmb5r/11ltJ9fDhwzvcEwBkwl133RX/9V//1Wz8zDPPjLvuuiuKiooy0BUAAADpdtBBByXV69evb/MaW7ZsSap92Q6AvcVHd1feIS8vr83rlJSUJNW1tbXt7gmA3fMYbgBoh7FjxybVCxYsaNP8+fPnJ9VHHHFER1sCgE73q1/9qsUdJb/2ta/FpZdemoGOACC9Tj311Dj11FPbPG/VqlVx4oknJup99903nn/++VS2BgCd7mMf+1jMnDkzUTf9mefuVFVVxXvvvZc05gk8AOwtevfuHTk5OUm7Iq9ZsyZGjhzZpnXKy8uT6r59+6akPwBaZmdJAGiHT3ziE5Gfn5+oX3/99di8eXOr5tbX18fLL7+cNHbMMcektD8ASLd33nknrr/++mbj3/72twUlAQAAuoBjjz02qX7ttdeaBT525c9//nPU19cn6v79+8eQIUNS1h8ApFO3bt1i3333TRr705/+1KY1tm/fHgsXLkwaGzZsWId7A2DnhCUBoB1KSkqSfhi4ffv2mDFjRqvmPvfcc/H+++8n6pEjR7b5W2YAkEn19fXxne98J6qqqpLGL7jggvjqV7+aoa4AAADoTKNHj04KdNTX18dDDz3U6vnTp09Pqk844YRUtQYAneLv/u7vkuoZM2Yk7TS5O88880xUVlYm6uLi4hg/fnzK+gOgOWFJAGin008/PameNm1arF69epdztmzZErfeemvS2BlnnJHy3gAgnX7/+9/HggULksb+7u/+zo6SAAAAXUhOTk788z//c9LYgw8+GMuWLdvt3JkzZ8bzzz+fNPalL30ppf0BQLqdfPLJSfUbb7zR6i8ObNq0KW677baksc9+9rNRUFCQqvYAaEFOY1ti7QBAQmNjY5xyyinx17/+NTE2atSoePDBB6Nfv37Nzt+2bVtcdNFFMWvWrMTY4MGD4w9/+EMUFhZ2Ss8AkAr/+I//GEuXLk0a+/rXvx4DBw7s0JqlpaUdbQ0A9kirVq2KE088MVHvu+++zQIiALA3qq2tjZNOOilWrVqVGOvfv3/cf//9cfDBB7c4Z+7cuTF58uTYunVrYuzv//7v4+677057vwCQal/72tdi5syZiTo/Pz+uvvrqOOuss3Y6Z8OGDXHhhRcmfSG9oKAgnn766WaP9gYgtYQlAaAD5s2bF2effXY0NDQkxvr37x+XXHJJnHTSSVFaWho1NTUxc+bM+PGPfxxvvfVW0vx77rkn6RdmALCne/3119OyK/Jzzz0XQ4YMSfm6ALAnEJYEIJvNnTs3vvzlL0dtbW1irLi4OM4777z4p3/6pxg6dGhERKxcuTJ++ctfxkMPPRR1dXWJc3v16hUzZswQDgFgr7R27do4/fTTY8OGDUnjEyZMiLPPPjs++clPRllZWUR8+Fn4v//7v/HAAw9ERUVF0vk/+MEP7LIM0AmEJQGgg375y1/Gtdde2+KxsrKy2Lp1a7T0cXvBBRfEZZddlu72ACCl/vM//zNuv/32lK8rLAlANhOWBCDbvfDCC/HNb34zampqmh0rKSmJxsbGqKqqanassLAw7rvvvjj66KM7o00ASIsFCxbE5MmTmwUgdygtLY3a2tqkLxZ81Fe/+tX49re/ncYOAdghN9MNAMDe7swzz4zrr78+ioqKmh2rrKxsFpTMzc2Niy66SFASgL3SmjVrMt0CAAAAe5hPfepT8cADD8SwYcOaHdu2bVuLQcmBAwfGgw8+KCgJwF5v7Nix8fjjj8chhxzS4vGtW7e2GJTs3r173HzzzYKSAJ3IzpIAkCIrV66M22+/PWbOnBnV1dUtnjNhwoS46KKLYty4cZ3cHQAAAABAetXU1MQDDzwQv/71r+Pdd99t8Zy+ffvGpEmT4t/+7d8SjyUFgGzQ0NAQTz75ZDz00EPxxhtvtPjkuYiIPn36xBe/+MWYPHly9OvXr5O7BOjahCUBIMWqqqpizpw5sW7duigvL4+ioqLYZ599Yty4cf7CAwAAAAB0CX/961/jrbfeivXr10dNTU306tUrRo0aFaNHj45u3bpluj0ASKvy8vKYO3dubNiwITZv3hxFRUXRu3fvGDVqVIwaNSpycnIy3SJAlyQsCQAAAAAAAAAAAGS13Ew3AAAAAAAAAAAAAJBOwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVvv/ACkZD6oHq2i5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 747, + "width": 1317 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "n, p = 9, 0.7\n", + "x = np.arange(-1, 10)\n", + "y = sts.binom(n, p).pmf(x)\n", + "\n", + "fig, ax = plt.subplots(figsize=(16,9))\n", + "ax.stem(x, y, label=\"PMF\")\n", + "ax.axvline(n * p, ls=\"--\", linewidth=3, color=\"red\", label=\"E[X]\")\n", + "ax.axvline(x[np.argmax(y)], ls=\"--\", linewidth=3, color=\"green\", label=\"mode\")\n", + "ax.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "occupational-campbell", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Expectation of a function of a random variable (LOTUS)\n", + "\n", + "Consider discrete r.v. $X$ and $Y = \\varphi(X)$, then expectation of $Y$ is\n", + "$$\n", + "\\mathbb{E}\\left[Y\\right] = \\sum_n \\varphi(n) \\mathbb{P}\\left(X = n\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "caroline-scoop", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Variance\n", + "\n", + "We call **variance** the following quantity of a r.v. $X$ with finite expectation:\n", + "$$\n", + "\\mathbb{V}\\text{ar}(X) = \\mathbb{E}\\left[\\left(X - \\mathbb{E}[X]\\right)^2\\right]\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "governing-ethiopia", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 7\n", + "\n", + "We flip a non-symmetric coin and $X$ is the r.v. for heads, $X \\sim Be(p)$. What is $\\mathbb{V}\\text{ar}\\left(X\\right)$?" + ] + }, + { + "cell_type": "markdown", + "id": "oriented-nirvana", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 7\n", + "\n", + "1. We know the formula\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(X\\right) = \\mathbb{E}\\left[\\left(X - \\mathbb{E}\\left[X\\right]\\right)^2\\right]\n", + " $$\n", + "2. We know $\\mathbb{E}\\left[X\\right]$\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(X\\right) = \\mathbb{E}\\left[\\left(X - p\\right)^2\\right] = \\mathbb{E}\\left[X^2 - 2 p X + p^2\\right]\n", + " $$\n", + "3. We know that expectation is linear\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(X\\right) = \\mathbb{E}\\left[X^2\\right] - 2 p \\mathbb{E}\\left[X\\right] + p^2 = \\mathbb{E}\\left[X^2\\right] - p^2\n", + " $$\n", + "4. For $Y = X^2$ we can compute\n", + " $$\n", + " \\mathbb{E}\\left[Y\\right] = 0 \\cdot \\mathbb{P}(Y = 0) + 1 \\cdot \\mathbb{P}(Y = 1) = \\mathbb{P}(Y = 1) = \\mathbb{P}(X^2 = 1) = \\mathbb{P}(X = 1) = p\n", + " $$\n", + "5. Finally,\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(X\\right) = p - p^2 = p (1 - p)\n", + " $$" + ] + }, + { + "cell_type": "markdown", + "id": "israeli-instruction", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Properties of variance\n", + "\n", + "1. $\\mathbb{V}\\text{ar}\\left(X\\right) \\geqslant 0$ and $\\mathbb{V}\\text{ar}\\left(X\\right) = 0$ if and only if $X = const$ a.s.\n", + "2. If holds\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(X\\right) = \\mathbb{E}\\left[X^2\\right] - \\left(\\mathbb{E}\\left[X\\right]\\right)^2\n", + " $$\n", + "3. It holds\n", + " $$\n", + " \\mathbb{V}\\text{ar}\\left(aX + b\\right) = a^2 \\mathbb{V}\\text{ar}\\left(X\\right)\n", + " $$\n", + "4. If $X \\perp Y$, it holds\n", + "$$\n", + "\\mathbb{V}\\text{ar}\\left(X + Y\\right) = \\mathbb{V}\\text{ar}\\left(X\\right) + \\mathbb{V}\\text{ar}\\left(Y\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "casual-happiness", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 8\n", + "\n", + "Consider $X$ with binomial distribution $X \\sim Bi(n, p)$. What is $\\mathbb{V}\\text{ar}\\left(X\\right)$?" + ] + }, + { + "cell_type": "markdown", + "id": "caroline-execution", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 8\n", + "\n", + "- We know that $X = \\sum_{k=1}^n X_k$, where $X_k \\sim Be(p)$\n", + "- We know that $\\mathbb{V}\\text{ar}\\left(X_k\\right) = p(1-p)$\n", + "- Then, $\\mathbb{V}\\text{ar}\\left(X\\right) = \\mathbb{V}\\text{ar}\\left(\\sum_{k=1}^n X_k\\right) = \\sum_{k=1}^n \\mathbb{V}\\text{ar}\\left(X_k\\right) = np(1-p)$" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "64169f26-1dfe-4d5b-88f8-80dfee6e1294", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACksAAAXXCAYAAADifdvxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5iV1bk/7mcKDAy9iAUQUCxHVKzowZPYBWMDlMSSeDD5mtiiBiIGUARRQLCcJBpNooknatREPRZULIhRIwdiCwKxoCEg0hQpw1Cm7N8f/tzHlxmG6Rs2931dcznred+13mfGKW75sFZOKpVKBQAAAAAAAAAAAECWys10AwAAAAAAAAAAAAANSVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWS0/0w2wbdq0aVOsWrUqPS4oKIi8vLzMNQQAAAAAAAAAAMAOoaysLDZu3Jget23bNpo2bVqnNYUlqdSqVati0aJFmW4DAAAAAAAAAAAAolOnTnWa7xhuAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZzTHcVKqgoCAx7tq1axQWFmaoG4Dt0/z586OsrCzy8vKiZ8+emW4HABqd34UA7Oj8Lmxg//xnxPe+V/U9990X0aNH4/QDQAV+F0asXr06/vM//zNR++///u9o06ZNhjoCoLFsy78H//nFP+N7/1P166n7Bt4XPdp5PQVkTnFxcSxatCg93jzPVhvCklQqLy8vMS4sLIyWLVtmqBuA7VNubm6UlZVFbm6un6EA7JD8LgRgR+d3YQPLzY34+9+3fo/PPUDG+F0YsXHjxvjHP/6RqDVr1myH/XwA7Ei25d+DucW58fcvqn49lVuw7fUN7Ng2z7PVhmO4AQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFktP9MNAAAAAABAjRUUROy339bvAYAMys3Njb333rtCDQAyqSC/IPbbqerXUwX5Xk8B2UdYEgAAAACA7U/PnhFz52a6CwCoUrt27WL69OmZbgMAEnq27xlzL/F6Ctjx+GtLAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNWEJQEAAAAAAAAAAICslp/pBuArqVQqNm7cGGvWrIni4uIoLy+PsrKyTLcFUGulpaXpf3744YcZ7obK5ObmRl5eXjRt2jRatWoVLVq0iNxcf5cEAAAAAAAAALKNsCQZl0ql4rPPPovVq1dHSUlJptsBqDd5eXnp978KTrJtWr9+faxevTpycnKisLAw2rdvHy1btsx0WwAAAADAdq64uDjuvPPORO3iiy+OwsLCDHUEAAA7LmFJMiqVSsXixYtj7dq1Fa7l5OQkgkYA25ucnJz0+36ebZvKy8ujvLw8PU6lUrFu3bpYt25d7LrrrtG2bdvMNQcAAAAAbPfWr18ft956a6I2ZMgQYUkAAMgAYUkyprKgZIsWLaJVq1bRqlWryM/35Qls34qLiyOVSqV3K2TbVF5eHsXFxbF27dooKipK7wK6ZMmSKC0tjQ4dOiSCrwAAAAAAAADA9kcajYz57LPP0kHJnJyc6NKliyNPAWh0ubm50bJly2jZsmWkUqlYvnx5rFy5MiIiVqxYEU2aNIk2bdpkuEsAAAAAAAAAoC5yM90AO6ZUKhWrV69OjwUlAdgW5OTkxM477xydOnVK11atWpW5hgAAAAAAAACAeiEsSUZs3LgxSkpKIuLLo7cFJQHYlrRv3z6aNm0aEV8ep75p06YMdwQAAAAAAAAA1IWwJBmxZs2a9PutWrXKYCcAUFFOTk7i6O2v74YMAAAAAAAAAGx/8jPdADum4uLi9PvCkgBsi9q0aRMrVqyIiOTvLQAAALYR8+dHnHFG1fc88UREz56N0w8AAMB2Yv7K+XHGQ1W/nnri7CeiZ3uvp4DsIixJRpSXl0fElzt35ef7MgRg25Ofnx85OTmRSqWirKws0+0AAACwuY0bI+bN2/o9AAAAJGws3RjzVlT9empjqddTQPZxDDcZ8VXoJC8vL8OdAEDlcnJyIjf3y/9UEpYEAAAAAAAAgO2bsCQAwBbk5ORkugUAAAAAAAAAoB4ISwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAslp+phsAAAAAAAAAyEY5OTnRvn37CjUAAKDxCUsCAAAAAAAANID27dvHu+++m+k2AACAcAw3AAAAAAAAAAAAkOXsLAlklcceeyxGjBjRYOtPmDAhBg0alKjNnDkzzj///CrnDRw4MCZOnBgREddff3088MADietnn312jB07tk69TZs2LS655JJEbfTo0XHeeefFJ598Escff3yV8/v06RP33XdfnXoAAAAAAAAAAIBtkZ0lARrZVVddFd27d0/UHnrooXj11VdrvebSpUtj5MiRidqxxx4b5513Xq3XBAAAAAAAAACAbCEsCdDImjdvHpMmTYq8vLxEfdSoUbFmzZoar1dWVhbDhg2LVatWpWs77bRTjB8/vq6tAgAAAAAAAABAVnAMN5D1xowZU29rHXTQQVu9p3v37jFkyJBErUePHolx796948ILL4y77rorXVu2bFmMHTs2brnllhr1dMcdd8Qbb7yRHufk5MSkSZOiffv26Vrbtm0rfB4WLFgQ9957b42eBQAAAAAAAAAA2yNhSSDrnXPOOY36vE6dOlXrmZdddlm88sorMW/evHRtypQpceKJJ0b//v2r9axZs2bFnXfemahdcMEF0bdv30StZcuWFXqaOXOmsCQAAAAAADSg9evXx8MPP5yofec734nmzZtnqCMAANhxCUsCZEiTJk1i0qRJMWjQoNi0aVO6PmbMmDjssMOiY8eOVc5fuXJl/PSnP43y8vJ0rVevXvGTn/ykwXoGAAAAAACqr7i4OEaNGpWonXbaacKSAACQAbmZbgBgR7bXXntVCDd+8cUXcc0112x17siRI2PZsmXpcWFhYdxyyy3RtGnTeu8TAAAAAAAAAAC2Z8KSABk2ZMiQOPzwwxO16dOnxyOPPLLFOffee29Mnz49URs1alT06NGjQXoEAAAAAAAAAIDtmbAkQIbl5ubGxIkTo0WLFon6hAkTYvHixRXunzt3btx8882JWv/+/eOss85q0D4BAAAAAAAAAGB7JSwJsA3o0qVLjBgxIlErKiqKUaNGRSqVStfWr18fQ4cOjZKSknRtt912i3HjxjVarwAAAAAAAAAAsL0RlgTYRgwePDiOPfbYRG3GjBnx0EMPpccTJkyIBQsWpMd5eXkxefLkaN26dWO1CQAAAAAAAAAA2x1hSYBtyA033BDt2rVL1G6++eZYvnx5vP766/Hwww8nrv3oRz+Kww47rDFbBAAAAAAAAACA7U5+phsA4P907Ngxxo4dG5dffnm6VlRUFDfeeGPMmzcvce/BBx8cl112WWO3CAAAAAAAW1W8oSSWr9oU69aXRIvmqSjeUBKFzZpkui3YYRRvKInPVq2PDZvKolnTvOjYtrnvQQBghycsCbCN6devX5xxxhnxxBNPpGtTp05N3NOyZcuYPHly5OXlNXZ7AAAAAABQqVQqFe9+9Fk8/dd/xv/OWRrl5an0tV8+9Wn8+/67xreO6h4H7NkxcnJyMtgpZKeqvgdzc3N8DwIAOzxhSYBt0LXXXhuzZs2KJUuWVHp97Nix0bVr10buCgAAAAAAKjf/k1Vx24NvxcKlayu9Xl6eir/O/jT+OvvT2H2XVvGTcw6Jnl3aNm6TkMV8DwIAbJ2wJNu9zz//vNZzCwsLo3nz5pVeW7lyZaRSqUqvbU3z5s2jsLCw0mtffPFFlJeX12rdgoKCaNmyZaXXVq9eHaWlpbVat0mTJtG6detKr61ZsyZKSkrS4w4dOtTqGZm0zz771Ms606ZNiy5dutTLWlvTqlWrmDBhQlxwwQUVvg4HDBgQp556aqP0AQAAAAAAW/P2+8tj/L2zYsOmsmrdv3Dp2hhxx2sxckifOHifTg3cHWQ/34MAANUjLMl278ADD6z13BtvvDGGDBlS6bWjjz46Vq5cWat1hw4dGsOGDav02qBBg+KDDz6o1br/+Z//GePHj6/02g9+8IOYMWNGrdY95ZRT4je/+U2l137605/G008/nR4vXry4Vs+g5g4++ODo1KlTLFu2LFFv1apVhjoCAAAAAICk+Z+sqlFI6ysbNpXF+HtnxYRL/8PudlAHvgcBAKovN9MNAFC58ePHVwhKRkTcf//98frrr2egIwAAAAAA+D+pVCpue/CtGoe0vrJhU1n814Nv1fqkL9jR+R4EAKgZO0sCWW/MmDH1sk7btm3rZZ3qePHFF+Phhx+u9FoqlYoRI0bEk08+GW3atGm0ngAAAAAA4Ove/eizWLh0bZ3W+NfStTHno8/jgJ4d66kr2HH4HgQAqBlhSSDrnXPOOZluoUaWLVsWo0aNStR22mmnWLFiRXq8dOnSuP766+OWW25p7PYAAAAAACAiIp7564J6Wefp1/8pqAW14HsQAKBmhCXZ7s2ePbvWcwsLC7d47S9/+Uutt5xv3rz5Fq899thjUV5eXqt1CwoKtnjtnnvuidLS0lqt26RJky1eu/nmm2PChAm1WpeaS6VScfXVV8eqVavStcLCwnjwwQfjiiuuiLlz56brU6ZMieOPPz6+9a1vZaBTAAAAgAzr1SvCkZEAGVO8oSRmzFlSL2vNeHdJFG8oicJmW/7ziu1Vhw4dYvHixZlugyzkexCoi16dekXqOq+ngB2PsCTbvQ4dOjTIuu3bt2+Qddu1a9cg6zbUccytW7dukHWp3N133x0zZsxI1C699NLo2rVrjBs3LgYPHhxlZWXpa2PHjo1DDz00dt5558ZuFQAAAACAHdhnq9ZHeXn9hCzKy1Px+eoNglpQA74HAQBqLjfTDQDwpTlz5sTPf/7zRO2ggw6KCy64ICIievXqFRdeeGHi+qpVq2LkyJGN1iMAAAAAAEREbNhUtvWbamD9xtqdngU7Kt+DAAA1JywJsA0oLi6OYcOGRUlJSbpWWFgYkyZNiry8vHTt0ksvjX333Tcx97XXXosHHnig0XoFAAAAAIBmTfO2flMNNC9wIB7UhO9BAICaE5YE2AbccMMNsWDBgkTt6quvjm7duiVqTZs2jZtuuimaNEkegzB58uT45z//2dBtAgAAAABARER0bNs8cnNz6mWtvNyc6NCmWb2sBTsK34MAADUnLAmQYVOnTo1HH300UTvmmGPi7LPPrvT+fffdNy677LJEbf369TF8+PAoLXVEAgAAAAAADa+wWZP49/13rZe1jjxg1yhs1mTrNwJpvgcBAGpOWBIgg5YsWRKjR49O1Nq1axc33nhjlfMuvPDC6N27d6I2e/bsuOuuu+q9RwAAAAAAqMy3jupeL+uc0rdHvayzLdq4cWM89dRTibeNGzdmui2yhO9BAICayc90AwA7qvLy8hg+fHisXr06UR83blx07Nixyrl5eXkxceLEGDhwYGzYsCFdv/POO+Poo4+OAw44oEF6BgAAAACArxywZ8fYfZdWsXDp2lqv0W2XVrH/nh3qsattS1FRUVx00UWJ2uzZs6OgoCBDHZFNfA8CANSMnSUBMuTXv/51zJo1K1EbNGhQnHjiidWav8cee8TQoUMTtdLS0hg+fHgiQAkAAAAAAA0hJycnfnLOIdGsaV6t5jdrmhdXnnNI5OTk1HNnsGPwPQgAUDPCkgAZMHv27Lj99tsTtc6dO8eoUaNqtM75558fffr0SdQ+/vjjuPnmm+vcIwAAAAAAbE3PLm1j5JA+NQ5rNWuaFyOH9ImeXdo2TGOwg/A9CABQfY7hBrLegw8+WK/rnXbaadGyZctazy8qKophw4ZFaWlpupabmxuTJk2q8bo5OTkxYcKEOP3002PdunXp+v333x/HHXdc9O3bt9Z9AgAAAABAdRy8T6eYcOl/xG0PvlWt44C77dIqrjznECEtqCe+BwEAqkdYEsh6Y8aMqdf1vvGNb9QpLDlu3LhYuHBhovb9738/DjvssFqt16VLlxgxYkRcc8016VoqlYoRI0bEU089Fa1bt651rwAAAAAAUB09u7SN2396bMz56PN4/C/zY9a8ZYnrebk5ceQBu8YpfXvE/nt2cOwv1DPfgwAAW+cYboBG9PTTT8fjjz+eqO27775xxRVX1GndwYMHx9FHH52oLV26NMaOHVundQEAAAAAoLpycnLigJ4d4/LvHFzh2p1XHx8/O//wOKBnRyEtaCC+BwEAqmZnSYBGsnjx4rjuuusStaZNm8bkyZOjadOmdV7/hhtuiNNOOy1WrVqVrk2ZMiWOP/74+Na3vlXn9QEAAAC2KYsWRQwdWvU9t94a0bVr4/QDQJUKm/ljScgk34PA1y1avSiGPl/166lbT7o1urbxegrILv6LCMgqgwYNikGDBmW6jUp17tw53njjjQZbv1OnTjFz5swGWx8AAABgm7JmTcQjj1R9z5gxjdIKAADA9mTNxjXxyLyqX0+NOXpM4zQD0Igcww0AAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGr5mW4AINssX748HnzwwUStR48eceSRR2aoo4iioqJ46qmnErUFCxZkphkAAAAAAAAAAGhkwpIA9WzBggUxZsyYRG3gwIEZDUuuWrWqQk8AAAAAAAAAALCjcAw3AAAAAAAAAAAAkNXsLAkAAAAAAADQANq1axezZ8+uUAMAABqfsCRAHR1xxBHx/vvvZ7qNKnXp0mWb7xEAAAAAALJNbm5udOjQIdNtAAAA4RhuAAAAAAAAAAAAIMsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWy890AwAAAAAAAADZaNOmTfHGG28kaocddlg0bdo0Qx0BAMCOS1gSAAAAAAAAoAGsXbs2Bg8enKjNnj07OnTokKGOAABgx+UYbgAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDV8jPdAAAAAAAA1Niee0bMmbP1ewAgg9q0aRMvvfRShRoAZNKe7feMORdX/Xpqz/ZeTwHZR1gSAAAAAIDtT7NmEb16ZboLAKhSfn5+7LPPPpluAwASmuU3i16dvJ4CdjzCkkDWeOyxx2LEiBENtv6ECRNi0KBBFeozZ86M888/v8q5AwcOjIkTJ0ZExPXXXx8PPPBA4vrZZ58dY8eOrVN/06ZNi0suuSRRGz16dJx33nnxySefxPHHH1/l/D59+sR9991Xpx4a06effhrHHXdcpFKpdO28886L0aNH1+tzTjjhhFi0aFF6/P3vfz+uvvrqen1GfavO98Jll10WP/7xjyMi4qKLLorp06cnrg8bNix++MMf1qmPP/zhD3HjjTcmanfddVcce+yxNf6+AQAAAAAAAACoi9xMNwCwo7nqqquie/fuidpDDz0Ur776aq3XXLp0aYwcOTJRO/bYY+O8886r9Zrbut122y2OOOKIRO25556LsrKyenvGm2++mQhKRkSceeaZ9bb+tmLcuHHRrl27RO0Xv/hFvP/++7Vec968eTF58uRE7bvf/W4ce+yxtV4TAAAAAAAAAKC2hCUBGlnz5s1j0qRJkZeXl6iPGjUq1qxZU+P1ysrKYtiwYbFq1ap0baeddorx48fXtdVt3sCBAxPjzz77LGbOnFlv6z/55JOJ8YEHHhg9e/ast/W3FTvttFOMGTMmUSspKYmrr746SkpKarzeunXr4ic/+Uls2rQpXdt7771j+PDhdW0VAAAAAAAAAKBWHMMNZLXNA2B1cdBBB1Xrvu7du8eQIUMStR49eiTGvXv3jgsvvDDuuuuudG3ZsmUxduzYuOWWW2rU1x133BFvvPFGepyTkxOTJk2K9u3bp2tt27at8LlYsGBB3HvvvTV61ramX79+cf3118e6devStSlTpkTfvn3rvHZJSUlMnTo1Uds8nLm9OOigg2LAgAGJ2v77758Y9+/fP0477bR46qmn0rV//OMfcfvtt8dPfvKTGj3v+uuvjwULFqTHBQUFceutt0ZBQUG61r179wpfk++88048/vjjNXoWAAAAAAAAAEB1CEsCWe2cc85p9Gd26tSpWs+97LLL4pVXXol58+ala1OmTIkTTzwx+vfvX61nzZo1K+68885E7YILLqgQFmzZsmWFnmbOnLndhyWbN28e/fv3j0cffTRde/HFF2PMmDHRtGnTOq39l7/8JbFbZ0FBQZx66ql1WjNTevToUa2vydGjR8ff/va3WLp0abr229/+No477rjo3bt3tZ71xBNPVAg8Xn311bHXXnslajvvvHOFngoKCoQlAQAAAICsUlpaGh999FGitueee0Z+vj+mBQCAxuYYboAMadKkSUyaNKlCqG/MmDHx2WefbXX+ypUr46c//WmUl5ena7169arxLoDbu813e1y9enW8+uqrdV538yO4TzjhhGjdunWd192WtW7dOsaPHx85OTnpWllZWQwfPjw2bNiw1fkLFiyosFvkscceG+edd159twoAAAAAsF1YvXp1HHfccYm31atXZ7otAADYIQlLAmTQXnvtVSHc+MUXX8Q111yz1bkjR46MZcuWpceFhYVxyy231HlHxe3NYYcdFl27dk3UnnnmmTqtuXbt2nj55ZcTte31CO6aOuqooyqEGxcsWBA333xzlfM2bdoUQ4cOjeLi4nRtp512ivHjxzdInwAAAAAAAAAANSEsCZBhQ4YMicMPPzxRmz59ejzyyCNbnHPvvffG9OnTE7VRo0ZFjx49GqTHbVlOTk4MGDAgUXvppZdi/fr1tV5z6tSpsXHjxvR4l112iaOOOqrW621vrrrqqujevXuidv/998eMGTO2OGfy5Mkxd+7c9DgnJycmTZoU7du3b6g2AQAAAAAAAACqTVgSIMNyc3Nj4sSJ0aJFi0R9woQJsXjx4gr3z507t8Iuf/3794+zzjqrQfvclg0YMCBxdHRxcXGFMGlNbH4E94ABAyI3d8f5ldmsWbOYNGlS5OXlpWupVCpGjBgRa9eurXD/9OnT4w9/+EOi9v3vfz/69u3b4L0CAAAAAAAAAFTHjpP8ANiGdenSJUaMGJGoFRUVxahRoyKVSqVr69evj6FDh0ZJSUm6tttuu8W4ceMarddtUZcuXSrszjllypRarbV06dL429/+lqhV5wjuVCoV7733XkydOjUeeuih+PWvfx333HNPPPTQQ/HSSy/FokWLatVPZWbPnh333Xdf/Pa3v40XX3yx0gBjXfXu3Tt++MMfJmpLliypcKz2ihUrKnzt9urVq8Lx8gAAAAAAAAAAmZSf6QYA+NLgwYNj2rRpiR0RZ8yYEQ899FCcc845EfHlbpMLFixIX8/Ly4vJkydH69atG7vdbc6gQYNi1qxZ6fGrr74aa9eujVatWtVonSeffDIRUD3kkEMqHEn9da+99lr86U9/ipkzZ8aqVauqXLtbt27xne98J84777xo1qxZlfd+73vfS388PXr0iKlTp8bKlStj6NChFY7DbtasWQwYMCBGjRoVTZs2rfoDrIFLL700XnnllcTx2o899licfPLJ8c1vfjO92+QXX3yRvl5YWBi33HJLNGnSpN76AAAAAAAAAACoK2FJgG3IDTfcEKeeemoifHbzzTfH8ccfH/Pnz4+HH344cf+PfvSjOOywwxq7zW1Sv3794vrrr4/i4uKIiNi0aVM8//zzceaZZ9ZonaeeeioxHjRoUKX3ffbZZ3H11VfHa6+9Vu21//Wvf8WkSZPiT3/6U/zmN7+Jbt26VXvupk2b4v/9v/+XCC5+ZcOGDTFz5sx6DUpGRDRp0iRuuummGDRoUGzatCldHzNmTDz99NMxZcqUePXVVxNzRo0aFT169KjXPgAAAKBSy5dH/OpXVd9zySURnTo1Tj8AAADbieXrlsev/lb166lLDr8kOrXwegrILsKSANuQjh07xtixY+Pyyy9P14qKiuLGG2+MefPmJe49+OCD47LLLmvsFrdZhYWF0b9//3jsscfStWeeeaZGYcn33nsvPvjgg/S4efPmcfLJJ1e474svvojzzjsvscvnV3Jzc6NFixaRm5sbRUVFUVZWVuGeBQsWxKWXXhr/8z//U+0dGG+77bZKg5Jf2VKos6722muv+MlPfhI33XRTurZ48eKYOHFiPPvss4l7+/fvH2eddVaD9AEAAAAVrFgRMXZs1fcMHiwsCQAAsJkV61bE2L9U/Xpq8H6DhSWBrCMsyfavivBQgyooiOjZs+bz5s+P2Lix/vupjl69aj5n0aKINWvqtgY10q9fvzjjjDPiiSeeSNemTp2auKdly5YxefLkyMvLa+z2tmkDBgxIhCVnzJgRK1eujPbt21dr/tc/5xERJ510UrRs2bLCfZMnT04EJXNzc+PMM8+MM888M/bbb78oKCiIiIg1a9bERx99FM8991w89NBDsX79+vScDz/8MB5//PEYPHjwVvtasWJF/Pd//3d6fOihh8aBBx4YRUVF8fbbb8c///nPOOOMM6r1MdbGkCFDYvr06Yljzh966KHEPbvttluMGzeuwXoAAAAAAAAAAKgLYUm2f/vvn5nn7rdf7YKaZ5wRsdkOgY0mlar5nKFDIx55pG5rUGPXXnttzJo1K5YsWVLp9bFjx0bXrl0buattX58+faJLly7xySefREREWVlZPPvss3HeeedtdW55eXk8/fTTiVpluzW+//77iUBmRMSECRNiwIABFe7Nz8+PvffeO/bZZ58466yz4txzz43Vq1enrz///PPVCksWFRVFxJfHYt92221x4oknJq7PnTs3dt55562uU1u5ubkxYcKEOP3002PdunUVrufl5cXkyZOjdevWDdYDAAAAAAAAAEBdCEsCWW2fffapl3WmTZsWXbp0qZe1qqNVq1YxYcKEuOCCCyK1WUB1wIABceqppzZaL9uTnJycGDBgQNx+++3p2jPPPFOtsOTMmTNj2bJl6XHnzp3jiCOOqHDfM888k/h3csIJJ1QalNxcz549Y8iQIfHzn/88XXvvvfe2Ou/rrrrqqgpByYiIXo2w42uXLl1i5MiRMWrUqArXLrroojjssMMavAcAAAAAAAAAgNrKzXQDAFTu4IMPjk6dOlWot2rVKgPdbD8GDBgQOTk56fGbb74ZS5cu3eq8J598MjEeOHBgYp2vvPXWW4nx+eefX+3ejjzyyMR41apV1Z7bunXrOPvss6t9f0M45phj0keMf52vSQAAAAAAAABgWycsCbCNGj9+fGKnw6/cf//98frrr2ego+1D165d4/DDD0+PU6lUPPPMM1XO2bBhQzz//PPp8Vc7VFbmvvvuizfffDP+53/+J37xi1/UaEfFDh06JMabNm2q9tyDDjqo0qBiY0mlUjFixIjYuHFjhWu33nprfPjhhxnoCgAAAAAAAACgehzDDWS1MWPG1Ms6bdu2rZd1quvFF1+Mhx9+uNJrX4XWnnzyyWjTpk2j9rW9GDBgQMyaNSs9njJlSnz/+9/f4v0vvfRSFBUVpcd9+vSJrl27bvH+li1bxn777Rf77bdfjfpasWJFhVpZWVnk5eVtdW7v3r1r9Kz69oc//CFeeeWVSq9t2rQprrrqqvjzn/8cTZo0aeTOAAAAAAAAAAC2LiNhyY8++igeffTR+Nvf/haLFi2KtWvXRkFBQXTp0iUOOeSQOP300+OQQw5p1J7mzJkTL7zwQrz55puxaNGiWL16daRSqWjXrl107tw5+vTpEyeddFL827/9W43XHj9+fPz3f/93rXvr0aNHTJ06tdbzYUd2zjnnZLqFGlu2bFmMGjUqUdtpp50SQbulS5fG9ddfH7fccktjt7dd6N+/f9xwww1RXFwcERFz586Nf/3rX9GtW7dK79/8CO5BgwbV6fnl5eWxfPny+Mc//hHz58+Pf/zjHzF79uxYtGhRhXtTqVS11uzcuXOdeqqL9957L26++eZEbfOvyX/84x/xy1/+MoYOHdrY7QEAAAAAAAAAbFWjhiWLiopi/Pjx8dhjj1UIh5SWlsb7778f77//fjz44INx4oknxo033tjgu6Z99NFHMWbMmMQOZF+3ZMmSWLJkSbzxxhvxq1/9Ko499ti45pprokuXLtV+xvvvv19f7QJZLpVKxdVXXx2rVq1K1woLC+PBBx+MK664IubOnZuuT5kyJY4//vj41re+lYFOt2yfffap0f0TJkyoczhxcy1atIiTTjopHn/88XRtypQpcemll1a4d+XKlfHaa68l5vbr16/azyoqKopXX301Zs+eHR9//HH861//isWLF9foiO3qaN26db2uV10bNmyIYcOGJT6eTp06xSOPPBLf/va3Y+nSpen63XffHcccc0yj/4UHAAAAAIBtVatWreLPf/5zhRoAAND4chvrQStXroxzzz03Hn300WrtovXCCy/EGWecEQsWLGiwnp599tk488wztxiUrMz06dPjzDPPjJkzZ1Z7zgcffFCb9oAd0N133x0zZsxI1C699NLo2rVrjBs3rsJxzWPHjo1ly5Y1ZovbjYEDBybGzzzzTKX3Pfvss1FSUpIen3zyydG8efOtrr9s2bIYOXJkHHXUUXHllVfG7373u3j55Zfjn//85xaDkk2bNq3BR5DUsmXLWs+ti4kTJ8b8+fMTtZEjR8bOO+8co0ePTtTLysri6quvTu/oCQAAAACwo2vatGn07ds38VaX/1cMAADUXqPsLFlaWhqXXHJJhR0W99prrzjmmGOiY8eO8dlnn8X06dMTgYwlS5bEJZdcEn/605/qPSQyY8aMuOqqqxIBma966tu3b+y2225RVlYWixYtildeeSUWL16cvmfVqlVx8cUXx8MPPxx77bVXlc9Zvnx5rFy5Mj3eZ599anwscEPvrrndmzMnM88tKKjdvCeeiNi4sX57aUi33hoxZkymu9ghzJkzJ37+858nagcddFBccMEFERHRq1evuPDCC+Ouu+5KX1+1alWMHDky7rnnnkbtdXtwxBFHROfOndM/v+fPnx/vvfde7Lvvvon7anME91/+8pe48sortxoKzM/Pjz333DN69+4d3/jGN2LPPffc5nYCrcq0adPiwQcfTNT69esXJ598ckREHH/88XHqqafGlClT0tcXLlwYEydOjOuvv75RewUAAAAAAAAAqEqjhCXvuuuuePvtt9PjJk2axOjRo+Pb3/524r6f/vSn8ec//znGjRsXG///MNlHH30U48ePj/Hjx9dbP8XFxRWCkm3bto0bb7wxTjjhhAr3l5WVxcMPPxwTJkxI7xa2bt26uOKKK+Kpp56qsNPb120eED3yyCNrHJZkK3r1ynQHNdOzZ6Y7qJmuXTPdwQ6huLg4hg0blvi5VFhYGJMmTUr8jLn00kvj5Zdfjvfeey9de+211+KBBx6I8847r1F73tbl5OTEGWecEb/61a/StWeeeSYRlly4cGG888476XH37t3j0EMPrXLdv//973HJJZdEaWlpot6hQ4c49NBDY999940999wz9thjj+jUqVM0adIkcnJyorCwMBYtWlQ/H1wjWL58eYwaNSpR22mnnSqEIEePHh2zZs2K5cuXp2sPP/xwHHfccXHMMcc0RqsAAAAAAAAAAFvV4GHJzz77rMKOZzfccEMMGDCg0vsHDx4cbdq0icsvvzx9XPfjjz8eP/rRj6Jbt2710tPvf//7WLFiRXrcokWL+OMf/xh77rlnpffn5eXFueeeG126dImLLrooysrKIuLLIOdjjz0WgwcP3uKzNg9L7r333vXwEQDZ5oYbbogFCxYkaldffXWFn3tNmzaNm266Kc4666xEsHLy5MnRt2/f6NGjR2O0W6XNf+5l0sCBA+POO+9M/z55+umnY+jQoenrm+8qufnR3ZtLpVLxs5/9LBGU7NChQ4wePTpOOumkyM3NTdxfXFycfnZExPr162v9sTSmVCoVV199dXzxxReJ+vjx46Nt27aJWps2beLGG2+MCy+8MFG/5ppr4sknn4z27ds3dLsAAAAAAAAAAFuVu/Vb6ubBBx9MHFP6zW9+c4tBya+cdNJJ8d3vfjc9Lisri1//+tf11tP//M//JMbDhg3bYlDy6775zW9W2BVy87U298EHHyTGwpLA5qZOnRqPPvpoonbMMcfE2WefXen9++67b1x22WWJ2vr162P48OEVdjvc0e2+++6JnSI/+eSTePfdd9Pjp59+Ov1+bm7uVn8/zZw5Mz7++OP0OCcnJ+66667o379/haBkZZYtW1ah9vUw5bbid7/7Xbz++uuJ2rnnnhvf/OY3K73/m9/8ZoXdolesWBHXXXddg/UIAAAAAAAAAFATDR6W3DxMeMEFF1Rr3oUXXpg4evb5559P7KJWW++9917iGNTCwsI488wzqz3/3HPPTYzfeeedKCoq2uL9X99hLScnJ3pub0cwAw1qyZIlMXr06EStXbt2ceONN1Y578ILL4zevXsnarNnz4677rqr3nvc3m0egHzuueci4svfB18PPvbt2zd22WWXKtd64403EuNDDjkkDjzwwGr3Mnv27Aq1bS0sOXfu3LjtttsSte7du8fw4cOrnPezn/0sOnfunKg9//zz8fjjj9d3iwAAAAAA243y8vL4/PPPE2/l5eWZbgsAAHZIDRqW/PDDD2Px4sXpcdu2beOII46o1tydd945DjrooPR47dq1MWPGjDr3NG/evMT4oIMOimbNmlV7/p577hktWrRIj8vKymLJkiWV3ltaWhofffRRetylS5coLCysYcdAtiovL4/hw4fH6tWrE/Vx48ZFx44dq5ybl5cXEydOrPDz684770zsnEjEySefHM2bN0+Pn3/++Yj4ckfPrxs0aNBW11q+fHlivOuuu1a7j+Li4njssccq1OvjLwLUl/Xr18ewYcMSPeXn58fkyZMTn8PKtGjRIiZOnBg5OTmJ+g033BCffvppg/QLAAAAALCt++KLL+LAAw9MvH3xxReZbgsAAHZIDRqWnDlzZmJ86KGHJnaL3Jo+ffokxq+88kqde9o8sNGlS5car7F54HHzoNNXPv7440TgxBHcwNf9+te/jlmzZiVqgwYNihNPPLFa8/fYY48YOnRoolZaWhrDhw+PDRs21Fuf27uWLVsmPqf/+te/4uOPP47p06ena61bt44TTjhhq2t9PSwfEfHBBx9Uu4+JEyfGJ598UqG+adOmaq/R0G688cb45z//mahdfPHF1d49s0+fPnH++ecnamvXro2f/exn29wOmgAAAAAAAADAjqVBw5LvvfdeYrzffvvVaP7m98+ZM6fOPV122WXx7rvvxgsvvBD33XdfnHfeeTWav2HDhli5cmWi1rp160rv/foR3BERe+21V82aBbLW7Nmz4/bbb0/UOnfuHKNGjarROueff36FYPnHH38cN998c517zCab7xr58MMPJ35HnXLKKVFQULDVdfbZZ5/E+IMPPohHH320yjkbNmyI6667Lh5++OFKr69fv36rz20Mzz//fPz5z39O1A488MC46KKLarTO0KFDo0ePHonazJkz4957761riwAAAAAAAAAAtZbfkIt//QjqiC93QauJ3XffPTHefLer2mratGnsvvvuFdavjv/93/+NsrKyRG3nnXeu9N7Nw5JfD9kUFxfHnDlzYtmyZVFaWhodOnSIHj16RNeuXWvcE7BlDz74YL2ud9ppp0XLli3rtEZRUVEMGzYsSktL07Xc3NyYNGlSjdfOycmJCRMmxOmnnx7r1q1L1++///447rjjom/fvnXqNVscccQRseuuu8aSJUsiIuKBBx5IXK/OEdwREccee2y0aNEi8bm+9tprY/78+fHtb387HRLctGlTLFq0KJ588sl4/PHHY+nSpVtcc9WqVbHbbrvV9EOqV0uXLo1rr702UWvevHlMnjw58vNr9p8KzZo1i0mTJsXZZ5+d+H156623xn/8x3/4iwMAAAAAAAAAQEY0aFhy8yOvtxQq3JJOnTolxqtWrYp169ZVOAa1MW0esOnVq1e0adOm0nsr21nylVdeiQceeCBee+21RFDqKz179oxvf/vbce6550aTJk3qr3HYQY0ZM6Ze1/vGN75R57DkuHHjYuHChYna97///TjssMNqtV6XLl1ixIgRcc0116RrqVQqRowYEU899dQWd7/dkeTm5sYZZ5wRd911V0RElJSUpK/17Nmz2sdMt2nTJi6//PKYMGFCulZWVha/+93v4ne/+100a9YsmjVrFqtWrap0/rnnnhtLlixJHAH+wQcf1Hjn5fpUXl4eV111VYWehw8fHt27d6/VmgceeGBceOGF6c93xJcB0uHDh8ef/vQnv98AAAAAAAAAgEbXoMdwb35cdceOHWs0v127dpGbm2zxiy++qHNftTVjxox45ZVXErXjjjtui/d/8MEHifH1118fF154Ybz88suVBiUjIubPnx/jx4+PU045pcIx5sD27+mnn47HH388Udt3333jiiuuqNO6gwcPjqOPPjpRW7p0aYwdO7ZO62aTLe0eWd1dJb8yZMiQGDJkSKXXNmzYUGlQsmPHjvHLX/4yrrvuuujdu3fi2quvvlqj59e33/72tzFr1qxE7Zvf/Gace+65dVr3sssui3333TdRmzdvXoXj5wEAAAAAAAAAGkODhSXXrVsXmzZtStRqc7xs8+bNE7U1a9bUubfaWL16dYUjSgsKCuLb3/72Fu/f/NjVzcMoVfnXv/4V5557brz++us1bxbYJi1evDiuu+66RK1p06YxefLkaNq0aZ3Xv+GGG6Jt27aJ2pQpU+KZZ56p89rZoFu3bnHIIYckavn5+XH66afXeK0RI0bEr371q9h///2rvG+PPfaIyy+/PJ544ok46aSTIiKiX79+iXuef/75WLFiRY17qA+zZ8+OX/7yl4la27ZtY/z48XVeu0mTJnHTTTdV2EXyt7/9bbz11lt1Xh8AAAAAAAAAoCYa7BjujRs3VqhtHnysjsLCwli3bl16vGHDhjr1VRtlZWUxbNiwWLRoUaL+gx/8oMJR4V/Z/Ajur7Rp0ybOPPPMOPnkk6NLly5RWFgYy5Yti1mzZsX999+f2E1y3bp1cfnll8ejjz4a3bp1q78PqBbmz59fYZfPuigtLY28vLzIycmJ4uLieluXHVv//v2jf//+Df6czb9mN/95V1ZWVunXdbt27SrsTrulNWujZcuWieOdt7Z+dfvOJvfcc0+l9dp83P/+7/8e//7v/x6ffvppvPvuu/HZZ5/F+vXro3Xr1tG+ffs44IADEr8jvnrGLrvsEm+//fZWe/j1r39d6z43/8sKpaWllc7t2bPnFoP89fG1sPvuu9do/er23ZjKyspi06ZNsX79+pg9e3ZGewHYHpWUlKT/6ecoADsivwsbVsH8+bHPVu55//33Y2NZWaP0A8D/Wbeh4s/eefPmRYtmeRnoJrMqO41o7ty5FTY/gPrkexC2Ddvya8L5a+Zv9Z73P3g/ypZ6PQVkTnl5eb2v2WBhya9+6Ccell/zx+XlJf+DbUvHVzeUVCoVI0eOrHBM6t577x0XX3zxFudVFpY88sgj45ZbbqlwHHm3bt2iW7duceaZZ8add94Zv/jFL9LX1q5dG0OHDo1HHnkkcnJy6vjR1F5ZWVmUNdD/VEylUg2yLjSWyr6Gt4ev6+21723NrrvuGrvuuutW72vMz+32+u92W+47lUpV+t82AFSfn6MA7Oj8Lqx/edX4f8WlpaU+9wAZUFJS8c+USkpKoiSv/v+wc1tX2Z9t+v1EQ/M9CNuebe3nfnWyN35fAdmowcKSlQXrarMz4eZzGiIxuiWpVCquu+66ePzxxxP1Vq1axS9+8Ysqj81dvXp1FBYWpnfEOuyww+Luu++ucBzp1+Xm5sall14aqVQqcSzqnDlzYtq0aXHCCSfU7QOqg7y8vHrfWfIrmQyBQn2o7Gt4e/i63l773p58PejXmJ/b7fXf7bbcd05OTq3+0gfAju7r/yOtqtdCAJCt/C5sWNV5nZafn+9zD5ABTcoq/plSkyZNokmTHW9Xu8p+X/n9REPzPQjbhm35NaHXU8D2oLy8vN4392uwP/Wv7AdrWVlZjYMGm6fUG+sHcVlZWYwYMSKeeOKJCs+//fbbo0ePHlXOv+yyy+Kyyy6LlStXxqJFi2L33Xevdu+XXHJJPPfcc/HBBx+ka3/84x8zGpbs2bNntGzZst7W+/DDD9NHcRcWFtbbupAJBQUFifH28nW9vfa9PSkuLo5UKhU5OTmN+rndPMyfn5+/Xfy73Rb7zsvLi6ZNm0Z+fn7stddeGe0FYHs0e/bsKCkpiSZNmsSBBx6Y6XYAoNH5XdjA8rb+h/377LNPRK9ejdAMAF+3umhjRCxM1Pbbb79o07Kg8glZ7PPPP69Q69WrV3To0CED3bCj8D0I24Zt+TVh3vK8iGlV37PP3vtEr05eTwGZU1RUVOnpznVRf1sFbqayXRdrsz3v5lv/VrWbY33ZsGFD/PjHP64QlMzPz4/bbrstjjzyyGqv1b59++jdu3e0a9eu2nNyc3Pje9/7XqL25ptvxqZNm6q9BgAAAAAAAAAAAPClBttZslWrVpGTk5M4gnTdunU13p1w3bp1iXGLFi3qpb8tWblyZVx00UXx97//PVFv0qRJ3HLLLXHiiSc26PO/0rdv38R4w4YN8f7778cBBxzQKM8Ham/58uXx4IMPJmo9evSoUdC6vhUVFcVTTz2VqC1YsCAzzdDo/vnPf1b4mtx///0z+jtl2bJl8dJLLyVq77zzTmaaAQAAAAAAAACyXoOFJfPy8qJ169axevXqdG3NmjWx8847V3uNDRs2VNhNsSG3pF+wYEFceOGFsXBhckvygoKC+MUvfhHHHHNMgz17c126dIlmzZrFhg0b0rWVK1c22vOB2luwYEGMGTMmURs4cGBGw5KrVq2q0BM7jnfeeadCEPGyyy7LaFiysu8TAAAAAAAAAICG0mDHcEdE7LLLLonxZ599VqP5K1asSIybNm0abdq0qXNflXnrrbfiO9/5ToWgZMuWLeO3v/1towYlv9K6devEeM2aNY3eAwAAAAAAAAAAAGzvGmxnyYiIrl27xvvvv58ef/LJJzWav/n93bt3r4+2KnjllVfixz/+cWIXx4iInXbaKX7729/Gv/3bvzXIc7dm48aNiXFNjzAHAAAAAMhaXbpE/OlPW78HADKoZcuWcdddd1WoAUAmdWndJf50VtWvp7q09noKyD4NGpbcZ5994sUXX0yPP/rooxrN//jjjxPjPffcs176+rpp06bFFVdcESUlJYl69+7d4+67746uXbvWeM1UKhWrV6+Ozz//PFauXBnFxcVx9NFH12iNTZs2VdhJsl27djXuBWh4RxxxRCIYvi3q0qXLNt8j9WfQoEExaNCgTLdRpe3h+wYAAIBtXJs2EYMHZ7oLAKhSQUFBnHbaaZluAwAS2jRrE4N7eT0F7HgaNCx54IEHJsazZ8+u0fx33nknMT744IPr2lLCa6+9VmlQsnfv3nHXXXdF+/bta7XuK6+8Ej/84Q/T49zc3HjjjTeiRYsW1V7j3XffjVQqlR7n5+fH3nvvXat+AAAAAAAAAAAAYEeW25CLH3744dGkSZP0+O9//3usXr26WnPLysrir3/9a6LWt2/feuvtgw8+iMsvv7xCUPKoo46Ke++9t9ZByYiIvfbaKzEuLy+PWbNm1WiNl156KTHu1atXFBYW1ronAAAAAAAAAAAA2FE1aFiyRYsW8R//8R/pcWlpaTz22GPVmjtt2rT4/PPP0+O99tqrQgixtjZt2hTDhg2LdevWJerHHXdc3HXXXXUOJe62227RrVu3RO3Pf/5zteevXr26wv1nnHFGnXoCAAAAAAAAAACAHVWDhiUjIs4666zE+K677opPP/20yjlr1qyJyZMnJ2rf/va3662n2267LT744INErU+fPvHzn/88mjZtWi/POP300xPjadOmxYwZM7Y6L5VKxbXXXpvYgbNt27YxYMCAeukLAAAAAAAAAAAAdjQNHpY8/vjjY999902PV61aFRdddFF89tlnld6/bt26uOKKK2LhwoXp2q677hrf+c53tviMxx57LPbZZ5/E28yZMyu9d/HixfGHP/whUdt5553jF7/4Rb0FJSMivvvd70bbtm0TtSuvvDLefffdLc4pKSmJUaNGxXPPPZeoDx8+PFq0aFFvvQEAAAAAAAAAAMCOJL+hH5CTkxNjxoyJc889N8rLyyMi4v33348BAwbEFVdcESeffHK0bNkyNm7cGNOnT4+f//zn8fHHHyfWuPbaa6OgoKBe+vnd734XpaWlidohhxwSU6dOrfWaRxxxROyxxx6JWtu2bWPEiBFx9dVXp2urVq2Kc889N84///w488wz03PWrl0bL7/8ctx5553x0UcfJdY5/vjj48wzz6x1bwAAAAAAAEBmfP7553HggQcmarNnz44OHTpkqCMAANhxNXhYMiLi4IMPjjFjxsTo0aPTtRUrVsQ111wT11xzTbRq1SqKiooilUpVmPujH/0ojj/++Hrpo6SkJP7nf/6nQv3ZZ5+NZ599ttbrTpgwoUJYMiJiwIABsXDhwrjjjjvStU2bNsXdd98dd999dxQUFETTpk1j7dq1la572GGHxc0331zrvgAAAAAAAAAAAIBGOIb7K9/5znfi+uuvj2bNmlW4tnbt2gpBydzc3Ljsssti6NCh9dbD3LlzY926dfW2XnVcfvnlccMNN1T6cW/cuHGLQcmzzjor7rnnnigsLGzoFgEAAAAAAAAAACCrNVpYMuLLwOSUKVPi5JNPrjQ8+JWjjjoqHnjggfjxj39cr89fsmRJva5XXYMHD46pU6fG9773vWjVqtUW78vLy4tjjjkm/vjHP8aNN95Y5ecIAAAAAAAAAAAAqJ5GOYb767p27Rr/9V//FcXFxfG3v/0tli1bFitXroxmzZrFbrvtFoccckh07NixRmsOGjQoBg0atNX7Tj755Dj55JNr23qd7LrrrnHNNdfEiBEjYt68efHhhx/GqlWrYuPGjdGqVavYfffd4+CDD64yTAkAAAAAAAAAAADUXKOHJb9SWFgYRx99dKYenzF5eXlxwAEHxAEHHJDpVgAAAAAAAAAAAGCHkLGwJAAAAAAA1Nrq1RHPP1/1PSedFNGmTeP0AwAAsJ1YvWF1PP9R1a+nTtrzpGjTzOspILsISwIAAAAAsP355JOIb3+76nvmzBGWBAAA2Mwnaz6Jbz9S9eupORfPEZYEsk5uphsAAAAAAAAAAAAAaEjCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgq+VnugEAAAAAAACAbFRYWBg33nhjhRoAAND4hCUBAAAAAAAAGkDz5s1jyJAhmW4DAAAIYUkgizz22GMxYsSIBlt/woQJMWjQoAr1mTNnxvnnn1/l3IEDB8bEiRMjIuL666+PBx54IHH97LPPjrFjx9apv2nTpsUll1ySqI0ePTrOO++8+OSTT+L444+vcn6fPn3ivvvuq1MP27IhQ4bEjBkz0uM2bdrEX//612jSpEm9PeP222+PX/7yl+lxx44d45lnnqnXZzSEffbZp8rrnTt3jpdeeikiIqZOnRpXXHFFhfmPPPJING3atNY9LF68OAYOHBirV69O1/r16xe/+MUvIiLiuOOOi8WLF1e5xvvvv1/r5wMAAAAAAAAA2S030w0A7Giuuuqq6N69e6L20EMPxauvvlrrNZcuXRojR45M1I499tg477zzar1mthkwYEBivHr16njttdfq9RlPPfVUYnzKKadEfn52/b2E/v37x2mnnZaovf/++3H77bfXes3S0tIYNmxYIii56667xg033FDrNQEAAAAAAAAAvk5YEqCRNW/ePCZNmhR5eXmJ+qhRo2LNmjU1Xq+srCyGDRsWq1atStd22mmnGD9+fF1bzSr9+vWLFi1aJGpPP/10va3/97//PRYsWJConX766fW2/rZk9OjRscsuuyRqd999d7zzzju1Wu8Xv/hFvP322+lxbm5uTJ48OVq3bl2XNgEAAAAAAAAA0rJruyuAzYwZM6be1jrooIOqdV/37t1jyJAhiVqPHj0S4969e8eFF14Yd911V7q2bNmyGDt2bNxyyy016uuOO+6IN954Iz3OycmJSZMmRfv27dO1tm3bVvhcLFiwIO69994aPWt71rx58+jfv388+uij6dq0adNiw4YN0axZszqv/+STTybGBx54YOyxxx6RSqXqvHZj2/xrZfOQaevWrWP8+PHxgx/8IP3xlZWVxdVXXx2PP/54NG/evNrPmjFjRvz2t79N1H70ox/F4YcfnqhdeeWVsW7duir7BAAAAAAAAADYEmFJIKudc845jf7MTp06Veu5l112Wbzyyisxb968dG3KlClx4oknRv/+/av1rFmzZsWdd96ZqF1wwQXRt2/fRK1ly5YVepo5c+YOFZaMiBg0aFAiLFlcXBzTp0+Pk08+uU7rlpaWxjPPPFPhWdur6nz9HnXUUXHuuefGAw88kK4tWLAgJk+eHKNHj67Wc1auXBlXXXVVlJeXp2sHHXRQXHbZZRXurWyXTmFJAAAAAAAAAKC6HMMNkCFNmjSJSZMmRdOmTRP1MWPGxGeffbbV+StXroyf/vSniaBZr1694ic/+Um995otDj300OjatWuiVh9Hcb/22muxcuXK9LigoCBOOeWUOq+7rbvqqquie/fuidof//jHeP3117c6N5VKxfDhw2PFihXpWsuWLePmm2+O/Hx/lwMAAAAAyA4rV66MAw44IPH29f+fDAAANB5hSYAM2muvvSqEG7/44ou45pprtjp35MiRsWzZsvS4sLAwbrnllgrhS/5PTk5ODBgwIFF75ZVXoqioqE7rbn4E9wknnBCtW7eu05rbg+bNm8ekSZMiLy8vXUulUjFy5MhYu3ZtlXN/97vfxauvvpqoXXfddRXCrAAAAAAA27NUKhUrV65MvKVSqUy3BQAAOyRhSYAMGzJkSBx++OGJ2vTp0+ORRx7Z4px77703pk+fnqiNGjUqevTo0SA9NoR99tkn/fa9732v0Z47cODAyMnJSY83btwYL7zwQq3XKyoqipdeeilR256P4K6p3r17xw9/+MNEbcmSJTFu3Lgtzpk9e3bcdtttidoZZ5xR6VHbAAAAAAAAAAD1QVgSIMNyc3Nj4sSJ0aJFi0R9woQJsXjx4gr3z507N26++eZErX///nHWWWc1aJ/ZonPnztGnT59ErS5Hcb/wwguxfv369HiXXXaJvn371nq97dGll14avXr1StSeeOKJSkOoRUVFMXTo0CgpKUnXdt999xg9enSD9wkAAAAAAAAA7LjyM90AABFdunSJESNGJI7fLioqilGjRsXvf//79E6I69evrxA022233arcxY+KBg4cGDNnzkyPZ8yYEStXroz27dvXeK3Nj+AeMGBA5OZu/e8ifPbZZzFnzpxYuXJlrFq1KjZs2BDNmjWL9u3bxx577BH77rtvvRyp/tlnn8Wrr74ay5cvjw4dOsShhx5a7zuQNmnSJG666aYYNGhQbNq0KV2/7rrr4tBDD018XseMGROLFi1Kj/Pz8+OWW26Jli1b1mtPAAAAAAAAAABfJywJsI0YPHhwTJs2LXG89owZM+Khhx6Kc845JyK+3G1ywYIF6et5eXkxefLkaN26dWO3u13r169fXH/99VFcXBwREaWlpfHcc8+lP8/VtXz58vjf//3fRK2qI7g//fTTeOCBB+Kll16Kjz/+uMq1W7RoEf369Ysf/vCHWw03PvbYYzFixIj0+OGHH46DDjoo7rrrrvjVr34VGzduTNx/8MEHx3XXXRf/9m//VuW6NbHXXnvFT37yk7jpppvStc8//zzGjRuXPnJ7ypQp8dRTTyXm/fjHP44DDzyw3voAAAAAAAAAAKiMY7gBtiE33HBDtGvXLlG7+eabY/ny5fH666/Hww8/nLj2ox/9KA477LDGbDErFBYWRv/+/RO12hzFPWXKlCgvL0+PDz300OjWrVuF+1KpVPzmN7+J/v37x913373VoGRExLp16+Kxxx6L0047Lf70pz/VuLd77rknbrvttgpByYiIt99+OzZs2FDjNbdmyJAhcfjhhydqzzzzTLz88svx+eefx/XXX5+41qdPn/jhD39Y730AAAAAAAAAAGxOWBJgG9KxY8cYO3ZsolZUVBQ33nhjXHfddYn6wQcfHJdddlljtpdVBg4cmBi/+eabsWzZshqtsfkR3FvaVfKWW26JW265pdLgYvPmzaNdu3ZRUFBQ6dySkpIYPXp0vPnmm9Xua968eXHrrbdu8foee+wRBx98cLXXq67c3NyYOHFitGjRIlG/8cYb4/rrr4/Vq1ena23bto3JkydX68hyAAAAAAAAAIC6cgw32725y+dm5LkF+QXRs33PGs+bv3J+bCytGJhqDL069arxnEWrF8WajWvqtAY1069fvzjjjDPiiSeeSNemTp2auKdly5YxefLkyMvLa+z2ssbhhx8eXbp0iU8++SQiIsrLy+OZZ56JCy64oFrz58+fH//4xz/S4+bNm1fYrTIi4q233ooHHnggUdtvv/3iwgsvjCOPPDLat2+fri9btiz++te/xu9+97v48MMP0/VUKhW33HJL/PGPf6xWbz//+c+jtLQ0IiJ23nnn+MY3vhGtWrWK+fPnx+uvv17lUeF11aVLlxg5cmSMGjUqXVu4cGEsXLgwcd+4ceNil112abA+AAAAAAAAAAC+TliS7d7+d+6fkefut9N+MfeSmgc1z3jojJi3Yl4DdLR1qetSNZ4z9Pmh8ci8R+q0BjV37bXXxqxZs2LJkiWVXh87dmx07dq1kbvKLjk5OTFgwIC4/fbb07Wnn3662mHJr4dZI74MubZs2bLCfZvv8PiNb3wjfvWrX0XTpk0r3LvzzjvHoEGD4tRTT40rrrgiXnrppfS1t956K1asWBE77bTTVntbtWpVREQMGDAgxo4dG82aNUtfW7x4cRQWFm51jbo466yzYtq0aYn+v+473/lOnHTSSQ3aAwAAAAAAAADA1wlLAlltn332qZd1pk2bFl26dKmXtaqjVatWMWHChLjgggsilUoGVAcMGBCnnnpqo/WSzQYMGBB33HFH+nP87rvvxsKFC2P33Xevcl4qlYopU6YkapXt1vivf/0r5s37v3B0s2bNYsKECZUGJb+uadOmMXr06Jg+fXq6t1QqFR988EG1wpIREb169Yrx48dX2H20c+fO1ZpfV+PGjYu33347vvjii0R9zz33jBEjRjRKDwAAAAAAAAAAXxGWBNhGHXzwwdGpU6dYtmxZot6qVasMdVR9NQ2pzpo1a6tzBg4cGBMnTqxLWxV07do1Dj/88Jg1a1a69vTTT8fFF19c5by//e1v8emnn6bHXbp0iT59+lS4780334y8vLwoKyuLiIiTTz652mHHXXfdNbp16xYLFixI177aMbI6fvCDH2T0mPaOHTvGYYcdFi+88EKi3qxZs8jP958fAAAAAAAAAEDjys10AwBUbvz48RWCkhER999/f7z++usZ6Cg7DRw4MDF+5plntjrnySefrLBGTk5OhfsGDRoUr7/+ejzxxBNx9913x49+9KMa9da+ffvEeOPGjdWee+SRR9boWfXtmWeeqRCUjIiYO3du3HHHHRnoCAAAAAAAAADYkdnaCchqY8aMqZd12rZtWy/rVNeLL74YDz/8cKXXUqlUjBgxIp588slo06ZNo/aVjfr16xfjxo2L4uLiiIj44IMP4oMPPoi999670vs3bdoUzz33XHqck5MTAwYM2OL6TZo0id133z323XffGvW1du3a2LBhQ6L21Q6VW9OlS5fo0KFDjZ5XnxYvXhyjR4/e4vXf/OY3ccwxx8RBBx3UeE0BAAAAAAAAADs0YUkgq51zzjmZbqHGli1bFqNGjUrUdtppp1ixYkV6vHTp0rj++uvjlltuaez2qqU6IdWv39O9e/cYMmRIlff36NGjbk1tQYsWLeKkk06Kxx9/PF17+umntxiWnD59eqxZsyY9PuKII6JLly516mHNmjWxcOHC+PDDD+O9996Lv//97zFnzpwoKSmp1Xq77bZbnfqpi7Kysrjqqqti7dq16VrHjh1j5cqVUV5enr5n+PDh8fjjj0dhYWGmWgUAAAAAAAAAdiDCkgDbkFQqFVdffXWsWrUqXSssLIwHH3wwrrjiipg7d266PmXKlDj++OPjW9/6VgY6rVp1QqpfD0t26tQpo8HWgQMHJsKSzzzzTPzkJz+p9N7KjuCurlQqFW+//Xb87W9/iw8++CAWLFgQixYtitWrV9eq7y3J5I6jd955Z7z55puJ2pgxY2LmzJlx3333pWv/+te/4qabboqxY8c2dosAAABki512irjuuq3fAwAZ1Lx58xg6dGiFGgBk0k4tdorrjq769dROLbyeArKPsCTANuTuu++OGTNmJGqXXnppdO3aNcaNGxeDBw9OHMU8duzYOPTQQ2PnnXdu7FazyhFHHBGdO3eOxYsXR0TEwoULY/bs2XHggQcm7lu9enX85S9/SY9btGgR/fr12+r6paWl8cADD8Q999yTfsbW5OTkRH5+fq12l2zZsmWN59SHt956K371q18lakcffXSceOKJ0bdv35g2bVp8+umn6WsPPfRQHH/88fHNb36zsVsFAAAgG3TqFFGN0y0AIJMKCwtj2LBhmW4DABI6tegUY44Zk+k2ABqdsCTbvTkXz8nIcwvyC2o174mzn4iNpRvruZuGc+tJt8aYo8dkuo0dwpw5c+LnP/95onbQQQfFBRdcEBERvXr1igsvvDDuuuuu9PVVq1bFyJEj45577mnUXrNNTk5OnHHGGYmg39NPP10hLPnss88mwovf+ta3tvo3gL/44ou48sor4913391qH7vuumsccMAB0adPnzjuuOPiZz/7WcyaNauGH01mFBUVxVVXXZUI87Zu3Tquv/76iPgyWDpu3Lj4wQ9+kJg3cuTImDJlSrRt27Yx2wUAAAAAAAAAdjDCkmz3enXqlekWaqRn+56ZbqFGurbpmukWdgjFxcUxbNiwRBCvsLAwJk2aFHl5eenapZdeGi+//HK899576dprr70WDzzwQJx33nmN2nO2GThwYNx5552RSqUi4stg5NVXXx25ubnpe2p6BHdJSUlceumliX9fERFNmjSJ3r17x/777x89e/aMPfbYI/bcc88KgcHy8vI6fESN67rrrotPPvmkQm2XXXZJj//jP/4jzjnnnHjwwQfTtRUrVsR1111XISgMAAAAAAAAAFCfcrd+CwAN7YYbbogFCxYkaldffXV069YtUWvatGncdNNN0aRJk0R98uTJ8c9//rOh28xqu+++exx66KHp8bJly+KNN95IjxcvXhxvvfVWety9e/fE/ZW57777KgQl//M//zP++te/xgMPPBAjRoyIwYMHx6GHHlrpzorr16+v5UfTuB5//PGYMmVKonbKKafEqaeeWuHe4cOHx+67756oTZ06NZ544okG7REAAAAAAAAA2LEJSwJk2NSpU+PRRx9N1I455pg4++yzK71/3333jcsuuyxRW79+fQwfPjxKS0sbrM8dweY7RU6dOjX9/tNPP53edTIiYtCgQVWulUql4pFHHknUzj333Bg5cmS0adOmWv0sX768wprbmkWLFqWP2v7KzjvvHNddd12l9xcWFsaECRMSO3ZGRIwbNy6WLFnSYH0CAAAAAAAAADs2YUmADFqyZEmMHj06UWvXrl3ceOONVc678MILo3fv3ona7Nmz46677qr3Hnck/fv3j+bNm6fHL7zwQuJY7q/k5ubGgAEDqlzr008/rRD+u+CCC6rdy5IlS2LFihWJ2rZ2LHdpaWn89Kc/jXXr1qVrOTk5MXHixCoDoYcddlgMGTIkUVu7dm2MGDFimwyEAgAAAAAAAADbP2FJgAwpLy+P4cOHx+rVqxP1cePGRceOHaucm5eXFxMnToxmzZol6nfeeWe8++679d7rjqJly5Zx4oknpsfLly+Pt956KxYuXBjz5s1L1/v27Rs777xzlWttHnSMiNhll12q3cv9999fobat7Rx6++23xzvvvJOoffe7342+fftude6VV14ZPXv2TNRmzJgRf/jDH+qzRQAAAACAjPriiy/i2GOPTbx98cUXmW4LAAB2SMKSABny61//OmbNmpWoDRo0KBHWq8oee+wRQ4cOTdRKS0tj+PDhsWHDhnrrc0ez+fHaL7/8crz00kuJ2plnnrnVdQoLCyvU3n///Wr18Oabb8bvf//7CvVNmzZVa35jeOONN+LXv/51orbnnnvGVVddVa35BQUFcdNNN0V+fn6ifsstt8RHH31Ub30CAAAAAGRSeXl5fPDBB4m3be0UIQAA2FEISwJkwOzZs+P2229P1Dp37hyjRo2q0Trnn39+9OnTJ1H7+OOP4+abb65zjw3t/fffT7/dd999mW4n7cgjj4zddtstPX755ZfjL3/5S3rcpk2bOOGEE7a6Trdu3Srs/HnLLbdsdXfIZ555Ji688MIoKyurcK24uHirz20Ma9asiauuuirxP/SaNGkSkydPjoKCgmqvs//++8ePfvSjRG3jxo1x1VVXRUlJSb31CwAAAAAAAACQv/VbALZfDz74YL2ud9ppp0XLli3rtEZRUVEMGzYsEZrLzc2NSZMm1XjtnJycmDBhQpx++umxbt26dP3++++P4447rlrHIZOUk5MTp59+etx1110REfHBBx/Exx9/nL7+rW99K5o2bbrVdQoKCuL444+Pp59+Ol2bMWNGfO9734sf//jHceihh0ZBQUGUl5fHZ599FrNmzYpHHnkkZsyYscU1V61aVfsPrB6NHj06Pv3000Tt0ksvjV69etV4rYsvvjhefvnlmDt3bro2d+7cuOOOO+LKK6+sa6sAAAAAAAAAABEhLAlkuTFjxtTret/4xjfqHJYcN25cLFy4MFH7/ve/H4cddlit1uvSpUuMGDEirrnmmnQtlUrFiBEj4qmnnorWrVvXqd8d0aBBg9JhyYhIBFs3P6a7Kpdcckn85S9/iaKionTtrbfeigsuuCDy8vKiVatWsW7dukp3UezZs2ecddZZMXHixHTtww8/rOmHUu8effTRePbZZxO1gw8+OH74wx/War0mTZrETTfdFIMGDUocM/6b3/wmjj322Ojdu3ed+gUAAAAAAAAAiHAMN0Cjevrpp+Pxxx9P1Pbdd9+44oor6rTu4MGD4+ijj07Uli5dGmPHjq3Tujuqbt26xSGHHFKhvtdee8WBBx5Y7XV22223uO2226JVq1YVrpWVlcWqVasqBCXz8vLiu9/9bjzyyCNx8sknJ6699dZbieBlY1uwYEHccMMNiVphYWFMmjQp8vLyar3uXnvtFZdffnmiVlZWFsOHD4/169fXel0AAAAAAAAAgK8ISwI0ksWLF8d1112XqDVt2jQmT55crWOdt+aGG26Itm3bJmpTpkyJZ555ps5r74gq20Fy4MCBNV7n0EMPjYcffjjOOOOMaNKkyRbva9u2bQwaNCgef/zxuPbaa6N58+axyy67xEEHHZS+Z9OmTfHII4/UuIf6UFJSEsOGDYvi4uJEfcSIEbH77rvXef0f/OAHFQKqCxYsSOysCQAAAAkbNkTMnVv124YNme4SAABgm7OhdEPMXT63yrcNpV5PAdnHMdxA1hg0aFCNjkhubJ07d4433nijwdbv1KlTzJw5s8HW39EMHjw4Bg8eXC9r7brrrjFp0qQYPXp0/P3vf48FCxbE2rVro6CgINq1axd77LFH7L///pGbW/HvMDz88MNbXb8xvvabNGkSjz76aIOtn5ubGw8++GCDrQ8AAEAW+uijiP33r/qeOXMievVqnH4AAAC2Ex+t/Cj2v7Pq11NzLp4TvTp5PQVkF2FJAGgkLVu2jKOOOiqOOuqoTLcCAAAAAAAAALBDcQw3AAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZLX8TDcAkG2WL18eDz74YKLWo0ePOPLIIzPUUURRUVE89dRTidqCBQsy0wzbvM2/flu0aBGnn356hrr50pNPPhnr1q3LaA8AAAAAAAAAwPZLWBKgni1YsCDGjBmTqA0cODCjYclVq1ZV6Am2ZPOvlc6dO2c8LPlf//VfsXjx4oz2AAAAAAAAAABsvxzDDQAAAAAAAAAAAGQ1O0sCAAAAAAAANICCgoL4z//8zwo1AACg8QlLAtTREUccEe+//36m26hSly5dtvkeyZzt4WvjpZdeynQLAAAAAAA11rJlyxg/fnym2wAAAMIx3AAAAAAAAAAAAECWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGS1/Ew3AAAAAAAAAJCNVq9eHT/4wQ8StXvuuSfatGmToY4AAGDHJSwJAAAAAAAA0ABKS0tjxowZFWoAAEDjcww3AAAAAAAAAAAAkNWEJQEAAAAAAAAAAICsJiwJAAAAAAAAAAAAZDVhSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABkNWFJAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZLT/TDQAAAAAAQI21bh1x1llbvwcAMqhJkyZxyimnVKgBQCa1LmgdZ+1X9eup1gVeTwHZR1gSAAAAAIDtT9euEX/+c6a7AIAqtW7dOn7zm99kug0ASOjapmv8ebDXU8COR1gSyCq//OUv4/bbb6/RnNzc3MjPz4/mzZtHu3btYrfddovevXtH375945BDDon8/K3/qNxnn30qrZ988snxX//1XzXqZ0suuuiimD59eoX673//++jbt2+lc2rz+aiOgQMHxsSJE+t9XQAAAAAAAAAAaAjCksAOr7y8PDZt2hSbNm2K1atXx4IFC+L111+PO++8M3bfffe44oor4tRTT63V2n/5y19i48aNUVBQUKce165dG6+99lqd1gAAAAAAAAAAgB1VbqYbgB1N8YaSWLh0TXyw8ItYuHRNFG8oyXRLVGHhwoUxbNiwuPbaa6O8vLzG84uLi+sl5Dht2rQoKfG1AgAAAAAAAAAAtWFnSWgEqVQq3v3os3j6r/+M/52zNMrLU+lrubk58e/77xrfOqp7HLBnx8jJyclgp9mnbdu2ceWVV1Z5TyqVitLS0li/fn0sW7Ys3nrrrfjHP/6RuOdPf/pTFBQUxDXXXFPjHp5//vk4/vjjazzv66ZOnVqn+V+pzuejOnr06FH3ZgAAAAAAAAAAoJEIS0IDm//Jqrjtwbdi4dK1lV4vL0/FX2d/Gn+d/Wnsvkur+Mk5h0TPLm0bt8ks1qJFizjnnHNqPO+ll16Kq666KoqKitK1+++/P0499dQ46KCDarTW9OnTo6SkJJo0aVLjPiK+PIL7r3/9a63mbq62nw8AAAAAAAAAANieOYYbGtDb7y+PEXe8tsWg5OYWLl0bI+54Ld5+f3kDd8bWHHfccXHnnXdGXl5eupZKpeK2226r1vxu3bql31+9enXMnDmz1r1MmzYtNm3alB4XFBTUei0AAAAAAKDxrFmzJn74wx8m3tasWZPptgAAYIckLAkNZP4nq2L8vbNiw6ayGs3bsKksxt87K+Z/sqphGqPa+vTpE2eccUaiNmvWrFixYsVW5/br1y8xfv7552vdx9eP4N5vv/2iY8eOtV4LAAAAAABoPCUlJfH0008n3kpKSjLdFgAA7JCEJaEBpFKpuO3Bt2oclPzKhk1l8V8PvhWpVKqeO6OmvvOd7yTG5eXl8eqrr2513gknnBD5+fnp8Ysvvhjl5eU1fn5RUVHiCO6TTz65xmsAAAAAAAAAAMCOTlgSGsC7H31W7aO3t+RfS9fGnI8+r6eOqK39998/mjRpkqh9+umnW53Xtm3b6NOnT3r8+eefx5tvvlnj529+BLewJAAAAAAAAAAA1JywJDSAZ/66oF7Wefr1f9bLOtRefn5+tG3bNlGrzjHcERWP4n7uuedq/Pxnn302/X6vXr2ia9euNV4DAAAAAAAAAAB2dMKSUM+KN5TEjDlL6mWtGe8uieINJfWyFrVXUpL8d1BQUFCteSeeeGLk5eWlxy+88EKNjlZ3BDcAAAAAAAAAANQPYUmoZ5+tWh/l5dUPxFWlvDwVn6/eUC9rUTvr16+PNWvWJGrt27ev1twOHTrEYYcdlh4vXbo0Zs+eXe1nO4IbAAAAAAAAAADqR36mG4Bss2FTWb2ut35jab2uR828+eabUV5enqjtv//+1Z7fr1+/mDlzZnr8/PPPR+/evas1d+rUqen3DzjggOjSpUu1nwsAAACQ9ebOjdja/6eZMyeiV6/G6QcAAGA7MXf53Nj/zqpfT825eE706uT1FJBd7CwJ9axZ07yt31QDzQtkmjPp/vvvT4wLCgri0EMPrfb8k046KXJz/+9H7fPPP1+teUVFRfHaa6+lx3aVBAAAAAAAAACA2hOWhHrWsW3zyM3NqZe18nJzokObZvWyFjX35z//OaZPn56onXXWWdG8efNqr7HTTjvFIYcckh4vXLgw3nvvva3O2/wI7v79+1f7mQAAAAAAAAAAQJIt66CeFTZrEv++/67x19mf1nmtIw/YNQqbNamHrqiJlStXxm9/+9v4/e9/n6i3aNEiLrzwwhqv169fv3jjjTfS4+effz723XffKud8/QjuAw88MDp37lzj51Zm8eLFsc8++9R6/h/+8Ic44ogj6qUXAAAAAAAAAABoLMKS0AC+dVT3eglLntK3Rz10s2Nbt25dPPjgg1XeU15eHuvWrYvPP/885s2bF2+//XaUlJRUuG/cuHGx66671riHfv36xfjx4yOVSkXEl2HJyy+/fIv3O4IbAAAAAAAAAADql7AkNIAD9uwYu+/SKhYuXVvrNbrt0ir237NDPXa1Y1q1alWMGTOmTmvk5ubGT3/60zjllFNqNX/nnXeOgw46KN5+++2IiPjwww/j448/jj322KPS+1966aX0Edw5OTmO4AYAAAAAAAAAgDoSloQGkJOTEz8555AYccdrsWFTWY3nN2uaF1eec0jk5OQ0QHfUxOGHHx7Dhg2Lgw8+uE7r9O/fPx2WjPhyd8mLLrqo0nufffbZ9Pu9e/eO3XbbrU7P/rq2bdvGlVdeWev53bt3r7deAAAAAAAAAACgsQhLQgPp2aVtjBzSJ8bfO6tGgclmTfNi5JA+0bNL24ZrjoScnJxo0qRJtGrVKjp16hQ9evSI3r17x9FHHx09etTPUegnnXRSTJgwIT3eUliyoY/gbtGiRZxzzjn1uiYAAAAAAAAAAGzrhCWhAR28T6eYcOl/xG0PvlWtI7m77dIqrjznEEHJetS5c+d46aWXMt1G7LbbbnHggQfG7NmzIyJi7ty58cknn0SXLl0S9zmCGwAAAAAAskd+fn78+7//e4UaAADQ+PyXODSwnl3axu0/PTbmfPR5PP6X+TFr3rLE9bzcnDjygF3jlL49Yv89Ozh6O4v169cvHZaMiHjhhRfiggsuSNwzderU9PsHHXRQ7LLLLo3WHwAAAAAAUL/atGkTjzzySKbbAAAAIiI30w3AjiAnJycO6NkxLv/OwRWu3Xn18fGz8w+PA3p2FJTMcv369UuMn3vuucS4oY/gBgAAAAAAAACAHZWwJGRYYTMbvO4ounbtGr169UqP33nnnVi+fHl6PH369Ni4cWNEOIIbAAAAAAAAAADqk7AkQCP6egAylUrFiy++mB5//QjuQw45JHbeeedG7Q0AAAAAAAAAALKVsCRAI9r8KO4XXnghIiKKi4sTR3DbVRIAAAAAAAAAAOqPsCRAI+rWrVvsu+++6fGsWbNizZo18fLLL8eGDRsiIiI3N7dCqBIAAAAAAAAAAKi9/Ew3ALCj6devX7z33nsREVFaWhovv/xyvPzyy+nrjuAGAAAAAIDsUFRUFOPHj0/URo4cGS1btsxQRwAAsOMSlgRoZP3794+f//zn6fFzzz0X//u//5sen3zyyZloCwAAAAAAqGcbN26M//7v/07Uhg0bJiwJAAAZ4BhugEa2xx57xN57750ev/jii1FUVBQRjuAGAAAAAAAAAICGICwJkAFbCkQedthhsdNOOzVyNwAAAAAAAAAAkN0cw812LVVWFqX//45824PSdZuiedmGZG3Nmigpa5qhjmouv2XLyMnLy3Qb271+/frFL3/5ywr1/v37Z6AbAAAAAAAAAADIbsKSbLc+++vr8fGv746S1asz3UqNXLHZ+L2L/5SRPmqrSZs2sceP/l90PKpvplvZru21116xxx57xMcff5yu5eXlOYIbAAAAAAAAAAAagGO42W7Nv+PO7S4omQ1KVq+O+Xfcmek2ssLmu0gedthh0bFjxwx1AwAAAAAAAAAA2cvOkkBW+fGPfxw//vGPG/2577//fo3nXHHFFXHFFZvvNbp1L730UrXvzdTnAwAAAAAAAAAAtiV2lmS71fPSi6NJmzaZbmOH06RNm+h56cWZbgMAAAAAAAAAAKDa7CzJdqvjUX2jw5FHRGlRUaZb2aHkt2wZOXl5mW4DAAAAAAAAAACg2oQl2a7l5OXZXRIAAAAAAAAAAIAqOYYbAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDV8jPdAAAAAAAA1FhBQcR++239HgDIoNzc3Nh7770r1AAgkwryC2K/nap+PVWQ7/UUkH2EJQEAAAAA2P707Bkxd26muwCAKrVr1y6mT5+e6TYAIKFn+54x9xKvp4Adj7+2BAAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFbLz3QDAAAAAAAAANmouLg47rzzzkTt4osvjsLCwgx1BAAAOy5hSQAAAAAAAIAGsH79+rj11lsTtSFDhghLAgBABjiGGwAAAAAAAAAAAMhqwpIAAFuQSqUy3QIAAAAAAAAAUA+EJcmIvLy8iIgoKyvLcCcAULlUKhXl5eUR8X+/twAAAAAAAACA7ZOwJBmRm/vll14qlYrS0tIMdwMAFZWWlqZ3lhSWBAAAAAAAAIDtm7AkGVFYWJh+f+3atRnsBAAqt3r16vT7X/+9BQAAAAAAAABsf/Iz3QA7ptatW8fnn38eEV+GJdu1a5fhjgDg/6RSqURYsk2bNhnsBgAAgErNnx9xxhlV3/PEExE9ezZOPwAAANuJ+SvnxxkPVf166omzn4ie7b2eArKLsCQZUVBQEE2aNImSkpJYt25dFBUVRcuWLTPdFgBEKpWKlStXxqZNmyLiy10lmzZtmuGuAAAAqGDjxoh587Z+DwAAAAkbSzfGvBVVv57aWOr1FJB9HMNNRuTk5CR26frkk0+iqKgogx0BwJdByeXLl8fy5cvTtbZt22auIQAAAAAAAACgXthZkozp2LFjbNy4MdauXRupVCoWLVoUhYWF0bp162jVqlXk5/vyBKDhlZeXR3FxcaxduzaKioqitLQ0fW2nnXaK1q1bZ7A7AAAAAAAAAKA+SKORMTk5OdG5c+dYvHhxrF27NiIiiouLo7i4OJYuXRo5OTmRl5eX4S4Baq+srCz9vp9n26aysrJIpVKVXtt1113tKgkAAAAAAAAAWUJYkoz6KjD52WefxerVq6OkpCR9LZVKJXb3AtjebNq0Kf1+06ZNM9gJ1ZWTkxOFhYXRvn37aNmyZabbAQAAAAAAAADqibAkGZeTkxM77bRT+ljuNWvWxPr166OsrCyxKxvA9mb9+vWRSqUiJycn8vP9yt0W5eXlRW5ubjRt2jRatWoVLVq0iNzc3Ey3BQAAAAAAAADUM8kNthk5OTnRrFmzaNasWaZbAagXs2fPjpKSksjPz4+99tor0+0AAAAAAAAAAOywhCUBAAAAAAAAGkBOTk60b9++Qg0AAGh8wpIAAAAAAAAADaB9+/bx7rvvZroNAAAgInIz3QAAAAAAAAAAAABAQxKWBAAAAAAAAAAAALKasCQAAAAAAAAAAACQ1YQlAQAAAAAAAAAAgKwmLAkAAAAAAAAAAABktfxMNwAAAAAAAACQjdavXx8PP/xwovad73wnmjdvnqGOAABgxyUsCQAAAAAAANAAiouLY9SoUYnaaaedJiwJAAAZ4BhuAAAAAAAAAAAAIKsJSwIAAAAAAAAAAABZTVgSAAAAAAAAAAAAyGrCkgAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGQ1YUkAAAAAAAAAAAAgqwlLAgAAAAAAAAAAAFlNWBIAAAAAAAAAAADIasKSAAAAAAAAAAAAQFYTlgQAAAAAAAAAAACymrAkAAAAAAAAAAAAkNXyM90AAAAAAADUWK9eEalUprsAgCp16NAhFi9enOk2ACChV6dekbrO6ylgx2NnSQAAAAAAAAAAACCrCUsCAAAAAAAAAAAAWU1YEgAAAAAAAAAAAMhqwpIAAAAAAAAAAABAVhOWBAAAAAAAAAAAALJafqYbAAAAAAAAAMhGGzdujOeffz5RO+mkk6KgoCBDHQEAwI5LWBIAAAAAAACgARQVFcVFF12UqM2ePVtYEgAAMsAx3AAAAAAAAAAAAEBWE5YEAAAAAAAAAAAAspqwJAAAAAAAAAAAAJDVhCUBAAAAAAAAAACArCYsCQAAAAAAAAAAAGS1/Ew3AAAAAAAANbZoUcTQoVXfc+utEV27Nk4/AAAA24lFqxfF0Oerfj1160m3Rtc2Xk8B2UVYEgAAAACA7c+aNRGPPFL1PWPGNEorAAAA25M1G9fEI/Oqfj015ugxjdMMQCNyDDcAAAAAAAAAAACQ1YQl+f/Yu/fwPOs6T/yfnNMkbdqmB8q2LJiWagsMVA7SsoCyMIOswhQKgie8FKFVh5/AOsAgFJGyO7KAjmidXRxHR6tUKgywsnWwl6xYOWgxpF2LjRxaWqBpekzJOb8/5iJ6JyFNmufQ3Hm9rqsX1/f73N/v837C9fTpnbxz3wAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqFec7AAAAAAAAAEAaTZgwIerq6vrMAQAAuacsCQAAAAAAAJAFhYWFUVNTk+8YAABAuA03AAAAAAAAAAAAkHLKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKRacb4DAAAAAAAAAKRRW1tbPPvss4m5E088MUpLS/OUCAAARi9lSQAAAAAAAIAs2Lt3byxatCgxV1dXFzU1NXlKBAAAo5fbcAMAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkWnE+nrShoSEeeOCBeOaZZ2Lz5s2xd+/eKCsri+nTp8e8efPigx/8YMybNy+nmerr6+NnP/tZ/OY3v4nNmzfH7t27o7u7OyZMmBD/4T/8hzj55JPjnHPOiXe9613Dep61a9fGo48+GuvWrYvXX3893nzzzaiqqoqjjjoqTj311Ljwwgtj+vTpGXpVAAAAAAAAAAAAQE7Lkvv27Ytly5bFqlWroru7O/FYR0dHbNy4MTZu3BgrVqyIs88+O26//faorq7OaqaGhoZYunRpPP300/0+vm3btti2bVs8++yz8Y1vfCPe+973xk033TTkQuPLL78c119/ffz2t7/t89iuXbti3bp1sW7duvjWt74VV111VXzmM5+JoqKig3pNAAAAAAAAAAAAwJ/k7DbcTU1Ncdlll8UDDzzQpyjZn5/97Gdx/vnnx0svvZS1TD/96U/jwgsvfNuiZH/WrFkTF154YTz11FODXlNXVxcXXXRRv0XJ3jo7O+Pee++Nyy+/PFpbWwf9HAAAAAAAAAAAAED/cnJlyY6OjliyZEls3LgxMT9r1qw488wzY9KkSdHY2Bhr1qyJTZs29Ty+bdu2WLJkSdx///1RVVWV0Uxr166N//pf/2u0t7f3yTR//vw4/PDDo7OzMzZv3hxPPPFEvPrqqz3H7Nq1KxYvXhw/+tGPYtasWQM+z7Zt2+KKK66IPXv29MwVFBTEe97znjjxxBOjqqoqXn755Xjssceiqamp55inn346brrppvjKV76SoVcMAAAAAAAAAAAAo1NOypLLly+PdevW9YxLSkri5ptvjosvvjhx3HXXXRcrV66M2267reeqig0NDbFs2bJYtmxZxvLs37+/T1Fy/Pjxcfvtt8d//s//uc/xnZ2d8aMf/SjuuOOOaGtri4iI5ubmuPrqq+Phhx8e8HbZ119/fezatatnfNhhh8Xdd98d8+bNSxx3ww03xB133BE/+MEPeub+9V//NRYsWBAXXHDBQb5SAAAAAAAAAAAAIOu34W5sbIz77rsvMfflL3+5T1HyLYsWLYo777wzCgoKeuYefPDBePnllzOW6Z/+6Z9i+/btPePKysr4wQ9+0G9RMiKiqKgoLrvssrj33nsTxciGhoZYtWrV2z7PmjVr4te//nXief7X//pffYqSERGlpaVxyy23xMc+9rHE/L333hsdHR2Dfm0AAAAAAAAAAABAUtbLkitWrIj9+/f3jE8//fQDXinxnHPOiY985CM9487OzvjWt76VsUw/+clPEuNrr702amtrD7ju9NNPj0svvXTAvf7ct7/97cR48eLFB7xt9/XXXx/vete7esavvPJKPPLIIwfMBgAAAAAAAAAAAPQv62XJ3mXCT3ziE4Nad8UVVySu4rh69erEbbMP1u9///vYvHlzz7iioiIuvPDCQa+/7LLLEuPnnnsu9u3b1+e4zZs3xzPPPNMzHjNmTJ+iZX+KioriiiuuSMw9+uijg84HAAAAAAAAAAAAJBVnc/M//OEP8eqrr/aMx48fH6eccsqg1k6dOjWOP/74+M1vfhMREXv37o21a9fG6aefPqxMGzZsSIyPP/74KC8vH/T62traqKysjObm5oj496tebtu2rc8VI5944ono7u7uGc+fPz+qqqoG9Rzve9/7orS0NNra2iIiYu3atbFv375BrwcAAAAASL3a2oj6+gMfAwB5VF1dHT//+c/7zAFAPtVOrI36xQOfT9VOdD4FpE9Wy5JPPfVUYvzud787cbXIAzn55JN7ypIR/15AHG5ZcuvWrYnx9OnTh7xHRUVFT1kyImL37t19jun92k8++eRB7z9mzJg49thje157e3t7rF27Ns4+++whZwUAAAAASKXy8oi5c/OdAgAGVFxcHLNnz853DABIKC8uj7lTnE8Bo09Wy5K///3vE+M5c+YMaX3v4+sP9FvCg/DZz342Pv3pT8drr70Wr732WowbN25I61taWqKpqSkx198evV/73CF+027OnDmJomh9fb2yJAAAAAAAAAAAAByErJYlGxoaEuN3vOMdQ1p/xBFHJMYvvvjisDNFRJSWlsYRRxzRZ//B+PWvfx2dnZ2JualTpybGbW1tsWXLlsTcUUcdNaTnmTFjRmKcqdcOAAAAAAAAAAAAo01hNjfvfcvr3qXCA5kyZUpivGvXrsTtr/Ph+9//fmI8d+7cqK6uTsy99tpriUJlSUlJ1NTUDOl5en+tXn311SEmBQAAAAAAAAAAACKyXJbsfbvqSZMmDWn9hAkTorAwGXHnzp3DznWw1q5dG0888URi7n3ve1+f43bs2JEYT5w4MQoKCob0XBMnTkyM8/m6AQAAAAAAAAAAYCTL2m24m5ubo62tLTFXVVU1pD0KCgpizJgxiatJ7tmzJyP5hmr37t3xxS9+MTFXVlYWF198cZ9jd+3alRgP9XVHRFRWVvZ5fgAAAAAAAGDk6OjoiIaGhsRcbW1tFBdn7ce0AADA28jav8JbW1v7zI0ZM2bI+1RUVCTKki0tLcPKdTA6Ozvj2muvjc2bNyfmP/nJT/a5VXhE39d+MK+795r+vp65tGnTpj5X+QRgYO3t7T3/raury3MaAMg9n4UAjHY+CwEYrZpbOvvMbdiwISrLi/KQJr927doVl156aWJuxYoVMX78+PwEYlTwHoRDg3NCgOHp6urK+J5ZK0u+9Zd+4skO4jekioqS/2Dr6Og46EwHo7u7O2688cb4v//3/ybmjz766Fi8eHG/a3pfUfNgXnfvNf19PXOps7MzOjv7/qMagMHJ99/jAJBvPgsBGO18FgIwmrS39/2ZUnt7e7QXZf6HnYe6/n622dHR4d8GZJX3IBx6/L0PcGjIWlmyv2LdwVyZsPeabDRG3053d3fccsst8eCDDybmx44dG1/72teitLS033W9Mx7M6y4oKOg3T3/zuVBUVOTKkgBD9OcnPSUlJXlMAgD54bMQgNHOZyEAo1VJZ9+fKZWUlERJyei7ql1/F1UpLi72bwOyynsQDg3OCQGGp6urK+MX98taWbK/f/h3dnYO+SqLvdv1ufoA6ezsjBtuuCEeeuihPs//9a9/PY466qi3Xdv7NR7M/7Tev2VWXFyct6JkRMTMmTOjqqoqb88PMBLV1dVFe3t7lJSUxHHHHZfvOACQcz4LARjtfBYCMFrt3tcaEa8k5ubMmRPVVWX5CZRHO3bs6DM3d+7cqKmpyUMaRgvvQTg0OCcEGJ59+/bFxo0bM7pn1i4V2N9VFw/mssK9S4NvdzXHTGppaYnPfe5zfYqSxcXFcffdd8d73vOeAdf3zjhSXjcAAAAAAAAAAACkUdbKkmPHju1zJcTm5uYh79N7TWVl5bByHUhTU1N87GMfi8cffzwxX1JSEnfddVecffbZB9xj7NixifH+/fuHnCPXrxsAAAAAAAAAAADSKmu34S4qKopx48bF7t27e+b27NkTU6dOHfQeLS0t0dbWlpjL5iXpX3rppbjiiivilVeSlyQvKyuLr33ta3HmmWcOap8JEyYkxn/+NRis3msmTpw45D0AAAAAAFLrjTcivvGNgY9ZsiRiypTc5AEAABgh3mh+I77xzMDnU0tOWhJTKp1PAemStbJkRMRhhx2WKP01NjbGrFmzBr1++/btiXFpaWlUV1dnLN+f++1vfxuLFy+OXbt2JearqqriG9/4RpxyyimD3mvatGmJ8e7du6OjoyOKiwf/5W5sbEyMJ0+ePOi1AAAAAACpt317xK23DnzMokXKkgAAAL1sb94et/5i4POpRXMWKUsCqZO123BHRMyYMSMx3rJly5DW9z7+yCOPHG6kfj3xxBPxiU98ok9RcvLkyfEv//IvQypKRkRUV1fHuHHjesZdXV2xdevWIe2Rq9cOAAAAAAAAAAAAaZfVsuTs2bMT44aGhiGt/+Mf/5gY19bWDjtTb48//ngsWbIkWlpaEvNHHnlkrFixIt71rncd1L69X/umTZuGtL731yobrx0AAAAAAAAAAABGg6yWJY877rjEuK6ubkjrn3vuucT4hBNOGG6khF/+8pdx9dVXR3t7e2L+L/7iL2LFihV9row5FMcee2xiPNTX3vv4efPmHXQWAAAAAAAAAAAAGM2yWpY86aSToqSkpGf8u9/9Lnbv3j2otZ2dnfHkk08m5ubPn5+xbC+88EL8zd/8TZ+i5IIFC+I73/lOTJw4cVj7L1iwIDF+4oknhpRt27ZtPeOJEyf2uVIlAAAAAAAAAAAAMDhZLUtWVlbGaaed1jPu6OiIVatWDWrt448/Hjt27OgZz5o1K2bNmpWRXG1tbXHttddGc3NzYv5973tfLF++PCoqKob9HCeffHKMHz++Z7x+/fpYv379oNbef//9ifG5554bBQUFw84EAAAAAAAAAAAAo1FWy5IRERdddFFivHz58ti6deuAa/bs2RNf+cpXEnMXX3xxxjLdfffd8cILLyTmTj755PjqV78apaWlGXmO0tLSOP/88xNzt912W7S1tQ24bv369fHDH/4wMZfJ1w4AAAAAAAAAAACjTdbLkmeddVa8853v7Bnv2rUrrrrqqmhsbOz3+Obm5rj66qvjlVde6ZmbNm1aXHLJJW/7HKtWrYrZs2cn/jz11FP9Hvvqq6/Gd7/73cTc1KlT42tf+1rGipJv+eQnPxllZWU943Xr1sWNN97Y59bfb3n55ZdjyZIlicf/8i//MvH1AwAAAAAAAAAAAIamONtPUFBQEEuXLo3LLrssurq6IiJi48aNccEFF8TVV18d5557blRVVUVra2usWbMmvvrVr8Yf//jHxB5f/OIXE6XD4fj2t78dHR0dibl58+bFY489dtB7nnLKKfGOd7yjz/zUqVPjc5/7XNx55509cw8//HC8/PLL8dnPfjbmz58fJSUlsXPnznjooYfi61//euzdu7fn2HHjxsX1119/0LkAAAAAAACA/Bk7dmysXLmyzxwAAJB7WS9LRkSccMIJsXTp0rj55pt75rZv3x433XRT3HTTTTF27NjYt29fdHd391l75ZVXxllnnZWRHO3t7fGTn/ykz/xPf/rT+OlPf3rQ+95xxx39liUj/v3qki+88EL867/+a89cXV1dfPrTn47CwsKoqKiIffv29VlXUlISf//3fx+HH374QecCAAAAAAAA8qe0tDTmz5+f7xgAAEDk4Dbcb7nkkkviS1/6UpSXl/d5bO/evX2KkoWFhfHZz342rrnmmoxlWL9+fTQ3N2dsv8EoLCyM//bf/lu/txHv6urqtyg5duzY+OpXvxrvfe97cxERAAAAAAAAAAAAUi1nZcmIfy9MPvLII3Huuef2W5p8y4IFC+L73/9+fO5zn8vo82/bti2j+w1WUVFRfOlLX4rvfOc7ceKJJ0ZhYf9f9tLS0li4cGE8/PDDGbuaJgAAAAAAAAAAAIx2ObkN95+bMWNG3HPPPbF///545pln4vXXX4+mpqYoLy+Pww8/PObNmxeTJk0a0p4LFy6MhQsXHvC4c889N84999yDjT5sp556apx66qnxxhtvxHPPPRfbt2+PvXv3xtixY+PII4+M448/PiorK/OWDwAAAAAAAAAAANIo52XJt1RUVMQZZ5yRr6fPqylTpsQ555yT7xgAAAAAAAAAAAAwKuStLAkAAAAAAACQZl1dXbFz587E3IQJE6KwsDBPiQAAYPRSlgQAAAAAAADIgp07d8Zxxx2XmKurq4uampo8JQIAgNHLrywBAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKRacb4DAAAAAADAkE2fHnH//Qc+BgDyqKqqKpYvX95nDgDyafq46XH/RQOfT00f53wKSB9lSQAAAAAARp7q6ohFi/KdAgAGVFZWFh/4wAfyHQMAEqrLq2PRXOdTwOjjNtwAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqFec7AAAAAAAAAEAa7dixI4477rjEXF1dXdTU1OQpEQAAjF6uLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKRacb4DAAAAAADAkO3eHbF69cDHnHNORHV1bvIAAACMELtbdsfqhoHPp86pPSeqy51PAemiLAkAAAAAwMizZUvExRcPfEx9vbIkAABAL1v2bImLfzzw+VT94nplSSB13IYbAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUK853AAAAAAAAAIA0qqioiNtvv73PHAAAkHvKkgAAAAAAAABZMGbMmLj88svzHQMAAAi34QYAAAAAAAAAAABSTlkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFKtON8BAAAAAAAAANKoqakpzjjjjMTcL37xi5g4cWKeEgEAwOilLAkAAAAAAACQBd3d3dHU1NRnDgAAyD234QYAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSrTjfAQAAAAAAYMgmT4645ZYDHwMAeTRmzJi45ppr+swBQD5Nrpwct5wx8PnU5ErnU0D6KEsCAAAAADDyTJkSsXRpvlMAwIAqKiri2muvzXcMAEiYUjkllp65NN8xAHLObbgBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUK853AAAAAAAAAIA02rlzZyxcuDAxt2rVqpgwYUKeEgEAwOilLAkAAAAAAACQBV1dXfHCCy/0mQMAAHLPbbgBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWK8x0AAAAAAACGrKUloqFh4GNqayPKy3OTBwAAYIRo6WiJhqaBz6dqJ9ZGebHzKSBdlCUBAAAAABh5Ghoijjlm4GPq6yPmzs1NHgAAgBGioakhjvnmwOdT9YvrY+4U51NAurgNNwAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqVac7wAAAAAAAAAAaVRWVhYf//jH+8wBAAC5pywJAAAAAAAAkAVVVVWxbNmyfMcAAADCbbgBAAAAAAAAAACAlFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUK853AAAAAAAAAIA02r17d3zyk59MzN13331RXV2dp0QAADB6KUsCAAAAAAAAZEFHR0esXbu2zxwAAJB7bsMNAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApFpxvgMAAAAAAMCQjRsXcdFFBz4GAPKopKQkzjvvvD5zAJBP48rGxUVzBj6fGlfmfApIH2VJAAAAAABGnhkzIlauzHcKDlH7W9qjcdeb0dLWGeWlRTFp/JioKFdOAnJv3Lhx8Y//+I/5jgEACTOqZ8TKRc6ngNFHWRIAAAAAABjxuru74/mGxnj0yRfj1/WvRVdXd89jhYUFceox0+L9C46MY2snRUFBQR6TAgAAAPmgLAkAAAAAAIxom7bsirtX/DZeeW1vv493dXXHk3Vb48m6rXHEYWPj85fOi5nTx+c2JAAAAJBXhfkOAAAAAAAAcLDWbXwjbrj3l29blOztldf2xg33/jLWbXwjy8kAAACAQ4myJAAAAAAAMCJt2rIrln3n6Whp6xzSupa2zlj2nadj05Zd2QkGAAAAHHKUJQEAAAAAgBGnu7s77l7x2yEXJd/S0tYZ96z4bXR3d2c4GQAAAHAoKs53AAAAAAAAgKF6vqFx0Lfefjsvv7Y36ht2xLEzJ2UoFUDSnj174rrrrkvM3XnnnTFu3Lg8JQIAgNFLWRIAAAAAABhx/veTL2Vkn0d/9aKyJJA17e3t8eijjybm7rjjjjylAQCA0c1tuAEAAAAAgBFlf0t7rK3flpG91j6/Lfa3tGdkLwAAAODQpSwJAAAAAACMKI273oyuru6M7NXV1R07drdkZC8AAADg0KUsCQAAAAAAjCgtbZ0Z3e/N1o6M7gcAAAAcepQlAQAAAACAEaW8tCij+40pK87ofgAAAMChR1kSAAAAAAAYUSaNHxOFhQUZ2auosCBqqsszshcAAABw6PKrkgAAAAAAjDzr10ccc8zAx9TXR8ydm5s85FRFeUmcesy0eLJu67D3es+x06KivCQDqQAAYGRY/8b6OOabA59P1S+uj7lTnE8B6eLKkgAAAAAAwIjz/gVHZmSf8+YflZF9AAAAgEObsiQAAAAAADDiHFs7KY44bOyw9viPh42NY2prMpQIAAAAOJQpSwIAAAAAACNOQUFBfP7SeVFeWnRQ68tLi+L/u3ReFBQUZDgZAAAAcChSlgQAAAAAAEakmdPHx42XnzzkwmR5aVHcePnJMXP6+OwEAwAAAA45ypIAAAAAAMCIdcLsKXHHZ04b9C25/+NhY+OOz5wWJ8yekuVkAAAAwKGkON8BAAAAAAAAhmPm9PHx9eveG/UNO+LBX2yKpze8nni8qLAg3nPstDhv/lFxTG2NW28DAADAKKQsCQAAAAAAjHgFBQVx7MxJccRhY+MjtzyWeOybf3tWTJtUmadkAAAAwKFAWRIAAAAAAEi1inI/DgHyo7i4OE499dQ+cwAAQO75lzgAAAAAAABAFlRXV8ePf/zjfMcAAAAiojDfAQAAAAAAAAAAAACySVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFKtON8BAAAAAAAAANJo3759sWzZssTcjTfeGFVVVXlKBAAAo5eyJAAAAAAAAEAWtLa2xj//8z8n5q699lplSQAAyAO34QYAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSrTjfAQAAAAAAYMjKyiLmzDnwMQCQR4WFhXH00Uf3mQOAfCorLos5kwc+nyordj4FpI+yJAAAAAAAI8/MmRHr1+c7BQAMaMKECbFmzZp8xwCAhJkTZ8b6Jc6ngNHHry0BAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACpVpzvAAAAAAAAAABptH///vjmN7+ZmFu8eHFUVFTkKREAAIxeypIAAAAAAAAAWfDmm2/GXXfdlZi7/PLLlSUBACAP3IYbAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABIteJ8BwAAAAAAgCHbtCni/PMHPuahhyJmzsxNHgAAgBFiU9OmOP+HA59PPfShh2LmROdTQLooSwIAAAAAMPK0tkZs2HDgYwAAAEho7WiNDdsHPp9q7XA+BaSP23ADAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApFpxvgMAAAAAAAAApFFBQUFMnDixzxwAAJB7ypIAAAAAAAAAWTBx4sR4/vnn8x0DAAAIt+EGAAAAAAAAAAAAUk5ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSrTjfAQAAAAAAAADS6M0334wf/ehHiblLLrkkxowZk6dEAAAweilLAgAAAAAAAGTB/v374+/+7u8Scx/4wAeUJQEAIA/chhsAAAAAAAAAAABINVeWBAAAAAAAAACADNnf0h5v7GqL5jfbo3JMd+xvaY+K8pJ8xwIY9ZQlAQAAAAAAAABgGLq7u+P5hsZ49MkX49f1r0VXV3fPY//w8NY49Zhp8f4FR8axtZOioKAgj0kBRi9lSQAAAAAAAAAAOEibtuyKu1f8Nl55bW+/j3d1dceTdVvjybqtccRhY+Pzl86LmdPH5zYkAFGY7wAAAAAAAAAAADASrdv4Rtxw7y/ftijZ2yuv7Y0b7v1lrNv4RpaTAdCbsiQAAAAAAAAAAAzRpi27Ytl3no6Wts4hrWtp64xl33k6Nm3ZlZ1gAPRLWRIAAAAAAAAAAIagu7s77l7x2yEXJd/S0tYZ96z4bXR3d2c4GQBvR1kSAAAAAAAAAACG4PmGxkHfevvtvPza3qhv2JGhRAAciLIkAAAAAAAAAAAMwf9+8qWM7PPor17MyD4AHJiyJAAAAAAAAAAADNL+lvZYW78tI3utfX5b7G9pz8heAAxMWRIAAAAAAAAAAAapcdeb0dXVnZG9urq6Y8fulozsBcDAlCUBAAAAAAAAAGCQWto6M7rfm60dGd0PgP4pSwIAAAAAAAAAwCCVlxZldL8xZcUZ3Q+A/ilLAgAAAAAAAADAIE0aPyYKCwsysldRYUHUVJdnZC8ABqaaDgAAAADAyDN3bkR3d75TAMCAampq4tVXX813DAAyrKK8JE49Zlo8Wbd12Hu959hpUVFekoFUgzd3ytzovsX5FDD6uLIkAAAAAAAAAAAMwfsXHJmRfc6bf1RG9gHgwJQlAQAAAAAAAABgCI6tnRRHHDZ2WHv8x8PGxjG1NRlKBMCBKEsCAAAAAAAAAMAQFBQUxOcvnRflpUUHtb68tCj+v0vnRUFBQYaTAfB2lCUBAAAAAAAAAGCIZk4fHzdefvKQC5PlpUVx4+Unx8zp47MTDIB+KUsCAAAAAAAAAMBBOGH2lLjjM6cN+pbc//GwsXHHZ06LE2ZPyXIyAHorzncAAAAAAAAAgDRqbW2N1atXJ+bOOeecKCsry1MiALJh5vTx8fXr3hv1DTviwV9siqc3vJ54vKiwIN5z7LQ4b/5RcUxtjVtvA+RJXsqSDQ0N8cADD8QzzzwTmzdvjr1790ZZWVlMnz495s2bFx/84Adj3rx5+YjWx0033RQrV66MiIjvfve7ccoppwx5j8985jPxb//2bwed4bTTTov77rvvoNcDAAAAAAAAubdv37646qqrEnN1dXXKkgApVFBQEMfOnBRHHDY2PnLLY4nHvvm3Z8W0SZV5SgbAW3Jalty3b18sW7YsVq1aFd3d3YnHOjo6YuPGjbFx48ZYsWJFnH322XH77bdHdXV1LiMm/OY3v4lVq1YNe5+NGzdmIA0AAAAAAAAAACNNRbkbvwIcCgpz9URNTU1x2WWXxQMPPNCnKNmfn/3sZ3H++efHSy+9lP1w/WhsbIzrrrsuOjs7h7VPc3NzbNmyJUOpAAAAAAAAAAAAgKHKSXW9o6MjlixZ0ucKi7NmzYozzzwzJk2aFI2NjbFmzZrYtGlTz+Pbtm2LJUuWxP333x9VVVW5iBoREXv37o1Pf/rTsXXr1mHv9cILLyTKoaecckqce+65Q9rj8MMPH3YOAAAAAAAAAAAAGK1yUpZcvnx5rFu3rmdcUlISN998c1x88cWJ46677rpYuXJl3HbbbdHa2hoREQ0NDbFs2bJYtmxZLqJGY2NjXHnllbF+/fqM7Ne7IHrWWWfFpZdempG9AQAAAAAAAAAAgAPL+m24Gxsb47777kvMffnLX+5TlHzLokWL4s4774yCgoKeuQcffDBefvnlrOaMiFi3bl389V//ddTX12dsz95lyaOPPjpjewMAAAAAAAAAAAAHlvUrS65YsSL279/fMz799NPjggsuGHDNOeecEx/5yEfie9/7XkREdHZ2xre+9a2sXV2yq6sr/uVf/iX+/u//Ptrb2zO69wsvvJAYK0sCAAAAAGTA5s0R11wz8DF33RUxY0Zu8gAAAIwQm3dvjmtWD3w+ddc5d8WMaudTQLpkvSz5k5/8JDH+xCc+Mah1V1xxRfzgBz+Izs7OiIhYvXp13HrrrVFSUpLRfE8//XTccccdsWHDhsR8RUVFVFZWxvbt24e1/5+XJWtqaqKmpmZY+wEAAAAAEBF79kT8+McDH7N0aU6iAAAAjCR7WvfEjzcMfD619IyluQkDkENZvQ33H/7wh3j11Vd7xuPHj49TTjllUGunTp0axx9/fM947969sXbt2ozmu+WWW+KjH/1on6LktGnTYsWKFXHUUUcNa/+tW7fGnj17esazZs0a1n4AAAAAAAAAAADA0GW1LPnUU08lxu9+97ujqKho0OtPPvnkxPiJJ57ISK63PPfcc33mPvjBD8ZDDz0U73znO4e9/8aNGxNjt+AGAAAAAAAAAACA3Mvqbbh///vfJ8Zz5swZ0vrex9fX1w8709s58sgj4/rrr4/3vve9GdtTWRIAAAAAAAAAAADyL6tlyYaGhsT4He94x5DWH3HEEYnxiy++OOxMvU2ePDk+9alPxYc//OEoKSnJ6N4DlSX37NkT9fX1sX379uju7o7JkyfHzJkzY+rUqRnNAAAAAAAAAAAAAKNdVsuSW7duTYyHWgScMmVKYrxr165obm6OysrKYWeLiPjCF74QJ510UpSWlmZkv97+vCxZUFAQtbW18eijj8aKFSvi2Wefje7u7sTxBQUFMXfu3PjoRz8a559/fhQUFGQlFwAAAAAAAAAAAIwmhdncvKmpKTGeNGnSkNZPmDAhCguTEXfu3DnsXG9ZsGBB1oqSbW1t8fLLL/eMx4wZEx/72MfimmuuiWeeeaZPUTIioru7O+rr6+Nv//Zv46KLLupTNgUAAAAAAAAAAACGLmtlyebm5mhra0vMVVVVDWmPgoKCGDNmTGJuz549w86WC5s2bYqOjo6e8f79+2P9+vWDXl9fXx8XX3xx/P73v89GPAAAAAAAAAAAABg1snYb7tbW1j5zvYuPg1FRURHNzc0945aWlmHlypU/vwX3n5syZUpccsklcdZZZ8X06dOjsLAwXnvttXjyySfju9/9bmzevLnn2O3bt8fixYvjgQceiIkTJ+Yqer82bdrU5yqfAAysvb295791dXV5TgMAueezEIDRzmdhdpVt2hSzD3DMxo0bo7WzMyd5OHQ0t/T9f75hw4aoLC/KQxoYnbwP/6SrqytWrFiRmNu8eXO8+uqreUrEaOA9CPk1Et6Dm/ZsOuAxG1/YGJ2vOZ8C8qerqyvje2atLPnWNwITT1Y89KcrKkp+WPz51RoPZf2VJc8777y47bbborKyMjFfW1sbtbW18aEPfShuv/32+OEPf9jz2NatW+OWW26Jf/iHf8h65oF0dnZGp28qAhy0/j4XAWA08VkIwGjnszDzigbxveKOjg5f+1Govb3v97Lb29ujvSjzP2QB+ud9mNT7Z4N+7ka2eQ9Cfo2E9+BgujfOp4A0ylpZsr9/4B/MlQl7r8lGYzQb9u3bF+Xl5T1Xwvwv/+W/xP/4H/9jwDWlpaVx6623RltbW6xatapnfvXq1bFhw4aYM2dOVjMPpKioyJUlAYboz08eSkpK8pgEAPLDZyEAo53PwuwazC/nFxcX+9qPQiWdfb+XXVJSEiUlh86VfCDtvA8hv7wHIb9GwnvQ+RQwEnR1dWX8l4yyVpbs7y/Wzs7OIV9dsndLfaT8RfzlL385brvttti+fXts3rx5SEXHL37xi7FmzZrYuXNnz9yKFSvitttuy0bUQZk5c2ZUVVXl7fkBRqK6urpob2+PkpKSOO644/IdBwByzmchAKOdz8IsKzrwDxpnz54dMXduDsJwKNm9rzUiXknMzZkzJ6qryvITCEYh70PIL+9ByK+R8B4seqMo4vGBj5l99OyYO8X5FJA/+/bt6/fuzsORtUsFlpaW9pk7mMvz9r70b3/7HqoKCgpiypQp8e53vzvGjBkz6HUVFRVxySWXJOZ+9atfZToeAAAAAAAAAAAAjApZK0uOHTs2CgoKEnPNzc1D3qf3msrKymHlGinmz5+fGG/ZsiWamprylAYAAAAAAAAAAABGrqzdhruoqCjGjRsXu3fv7pnbs2dPTJ06ddB7tLS0RFtbW2KupqYmYxkPZTNnzuwz19TUFBMnTsxDGgAAAAAAAGCo2tra4tlnn03MnXjiiSPqbnoAAJAWWStLRkQcdthhibJkY2NjzJo1a9Drt2/fnhiXlpZGdXV1xvIdysaNG9dnbs+ePXlIAgAAAAAAAByMvXv3xqJFixJzdXV1o+YCMQAAcCjJ2m24IyJmzJiRGG/ZsmVI63sff+SRRw430ojR2traZ66qqioPSQAAAAAAAAAAAGBky2pZcvbs2YlxQ0PDkNb/8Y9/TIxra2uHnSkXurq6oqmpKf7whz/Er3/96/j1r3895D0aGxv7zE2YMCET8QAAAAAAAAAAAGBUyeptuI877rjEuK6ubkjrn3vuucT4hBNOGG6knFixYkV86Utf6hnX1NTEr371qyHt0ftrNXny5Jg8eXJG8gEAAAAAAAAAAMBoktUrS5500klRUlLSM/7d734Xu3fvHtTazs7OePLJJxNz8+fPz2i+bDn66KMT4x07dsQLL7wwpD1+/vOfJ8YnnXTSsHMBAAAAAAAAAADAaJTVsmRlZWWcdtppPeOOjo5YtWrVoNY+/vjjsWPHjp7xrFmzYtasWRnPmA3HHntsVFZWJuZWrlw56PUvv/xyrF69OjF3wQUXZCIaAAAAAAAAAAAAjDpZLUtGRFx00UWJ8fLly2Pr1q0DrtmzZ0985StfScxdfPHFGc+WLeXl5fGXf/mXibkf/vCH0dDQcMC17e3t8YUvfCE6Ozt75o466qg4/fTTM54TAAAAAAAAAAAARoOslyXPOuuseOc739kz3rVrV1x11VXR2NjY7/HNzc1x9dVXxyuvvNIzN23atLjkkkve9jlWrVoVs2fPTvx56qmnMvciDsKVV16ZuAV5W1tbXHnllYnX1Vtzc3MsWbIknnvuucT8LbfcEgUFBdmKCgAAAAAAAAAAAKmW9bJkQUFBLF26NAoL//RUGzdujAsuuCBWrlwZ+/bti4iI1tbWeOyxx+Kiiy6KX/3qV4k9vvjFL0ZZWVm2o2bUkUceGYsXL07Mbd68ORYuXBjf+ta3ElfXbGpqih/+8Ifx/ve/P5544onEmo9+9KNx6qmn5iQzAAAAAAAAAAAApFFxLp7khBNOiKVLl8bNN9/cM7d9+/a46aab4qabboqxY8fGvn37oru7u8/aK6+8Ms4666xcxMy4z3zmM7F58+b4yU9+0jO3d+/euOuuu+Kuu+6KioqKiIjYv39/v+v/6q/+Km644YacZAUAAAAAAAAAAIC0yvqVJd9yySWXxJe+9KUoLy/v89jevXv7FCULCwvjs5/9bFxzzTW5ipgVd9xxR3z+85+PoqKiPo/t37+/36JkYWFhXHXVVXH33Xf3uw4AAAAAAAAAAAAYvJyVJSP+vTD5yCOPxLnnnttvafItCxYsiO9///vxuc99LofpsqOgoCCuuuqqePjhh2PhwoUxZsyYtz22tLQ0zjvvvHjwwQfj85//fOLW5QAAAAAAAAAAAMDBycltuP/cjBkz4p577on9+/fHM888E6+//no0NTVFeXl5HH744TFv3ryYNGnSkPZcuHBhLFy4MONZv/e972Vsr9ra2rjjjjvi1ltvjbq6unjppZdi586d0dnZGePGjYujjjoqjj/++AHLlAAAAAAAAAAAAMDQ5bws+ZaKioo444wz8vX0eVNaWhonnnhinHjiifmOAgAAAAAAAAAAAKOC+zwDAAAAAAAAAAAAqZa3K0sCAAAAAMBBq62NqK8/8DEAkEfV1dXx85//vM8cAORT7cTaqF888PlU7UTnU0D6KEsCAAAAADDylJdHzJ2b7xQAMKDi4uKYPXt2vmMAQEJ5cXnMneJ8Chh93IYbAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFKtON8BAAAAAAAAANKoo6MjGhoaEnO1tbVRXOzHtAAAkGv+FQ4AAAAAAACQBbt37473ve99ibm6urqoqanJUyIAABi93IYbAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABIteJ8BwAAAAAAgCF7442Ib3xj4GOWLImYMiU3eQAAAEaIN5rfiG88M/D51JKTlsSUSudTQLooSwIAAAAAMPJs3x5x660DH7NokbIkAABAL9ubt8etvxj4fGrRnEXKkkDquA03AAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACpVpzvAAAAAAAAAABpNHbs2Fi5cmWfOQAAIPeUJQEAAAAAAACyoLS0NObPn5/vGAAAQLgNNwAAAAAAAAAAAJByypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkWnG+AwAAAAAAAACkUVdXV+zcuTMxN2HChCgsdE0bAADINWVJAAAAAAAAgCzYuXNnHHfccYm5urq6qKmpyVMiAAAYvfzKEgAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqhXnOwAAAAAAAAzZ9OkR999/4GMAII+qqqpi+fLlfeYAIJ+mj5se91808PnU9HHOp4D0UZYEAAAAAGDkqa6OWLQo3ykAYEBlZWXxgQ98IN8xACChurw6Fs11PgWMPm7DDQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApFpxvgMAAAAAAAAApNGOHTviuOOOS8zV1dVFTU1NnhIBAMDo5cqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqhXnOwAAAAAAAAzZ7t0Rq1cPfMw550RUV+cmDwAAwAixu2V3rG4Y+HzqnNpzorrc+RSQLsqSAAAAAACMPFu2RFx88cDH1NcrSwIAAPSyZc+WuPjHA59P1S+uV5YEUsdtuAEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASLXifAcAAAAAAAAASKOKioq4/fbb+8wBAAC5pywJAAAAAAAAkAVjxoyJyy+/PN8xAACAcBtuAAAAAAAAAAAAIOWUJQEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1YrzHQAAAAAAAAAgjZqamuKMM85IzP3iF7+IiRMn5ikRAACMXsqSAAAAAAAAAFnQ3d0dTU1NfeYAAIDccxtuAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWK8x0AAAAAAACGbPLkiFtuOfAxAJBHY8aMiWuuuabPHADk0+TKyXHLGQOfT02udD4FpI+yJAAAAAAAI8+UKRFLl+Y7BQAMqKKiIq699tp8xwCAhCmVU2LpmUvzHQMg59yGGwAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASLXifAcAAAAAAAAASKOdO3fGwoULE3OrVq2KCRMm5CkRAACMXsqSAAAAAAAAAFnQ1dUVL7zwQp85AAAg99yGGwAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSrTjfAQAAAAAAYMhaWiIaGgY+prY2orw8N3kAAABGiJaOlmhoGvh8qnZibZQXO58C0kVZEgAAAACAkaehIeKYYwY+pr4+Yu7c3OQBAAAYIRqaGuKYbw58PlW/uD7mTnE+BaSL23ADAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqxfkOAAAAAAAAAJBGZWVl8fGPf7zPHAAAkHvKkgAAAAAAAABZUFVVFcuWLct3DAAAINyGGwAAAAAAAAAAAEg5ZUkAAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASLXifAcAAAAAAAAASKPdu3fHJz/5ycTcfffdF9XV1XlKBAAAo5eyJAAAAAAAAEAWdHR0xNq1a/vMAQAAuec23AAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKopSwIAAAAAAAAAAACppiwJAAAAAAAAAAAApJqyJAAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqFec7AAAAAAAADNm4cREXXXTgYwAgj0pKSuK8887rMwcA+TSubFxcNGfg86lxZc6ngPRRlgQAAAAAYOSZMSNi5cp8pwCAAY0bNy7+8R//Md8xACBhRvWMWLnI+RQw+rgNNwAAAAAAAAAAAJBqypIAAAAAAAAAAABAqilLAgAAAAAAAAAAAKmmLAkAAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrF+Q4AAAAAAAAAkEZ79uyJ6667LjF35513xrhx4/KUCAAARi9lSQAAAAAAAIAsaG9vj0cffTQxd8cdd+QpDQAAjG5uww0AAAAAAAAAAACkmrIkAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKRacb4DAAAAAADAkK1fH3HMMQMfU18fMXdubvIAAACMEOvfWB/HfHPg86n6xfUxd4rzKSBdXFkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUK853AAAAAAAAAIA0Ki4ujlNPPbXPHAAAkHv+JQ4AAAAAAACQBdXV1fHjH/843zEAAIBwG24AAAAAAAAAAAAg5ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVivMdAAAAAAAAACCN9u3bF8uWLUvM3XjjjVFVVZWnRAAAMHopSwIAAAAAAABkQWtra/zzP/9zYu7aa69VlgQAgDxwG24AAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUU5YEAAAAAAAAAAAAUk1ZEgAAAAAAAAAAAEg1ZUkAAAAAAAAAAAAg1YrzHQAAAAAAAIasrCxizpwDHwMAeVRYWBhHH310nzkAyKey4rKYM3ng86myYudTQPooSwIAAAAAMPLMnBmxfn2+UwDAgCZMmBBr1qzJdwwASJg5cWasX+J8Chh9/NoSAAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasX5DgAAAAAAAACQRvv3749vfvObibnFixdHRUVFnhIBAMDopSwJAAAAAAAAkAVvvvlm3HXXXYm5yy+/XFkSAADywG24AQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVCvOdwAAAAAAABiyTZsizj9/4GMeeihi5szc5AEAABghNjVtivN/OPD51EMfeihmTnQ+BaSLsiQAAAAAACNPa2vEhg0HPgYAAICE1o7W2LB94POp1g7nU0D6uA03AAAAAAAAAAAAkGrKkgAAAAAAAAAAAECqKUsCAAAAAAAAAAAAqaYsCQAAAAAAAAAAAKSasiQAAAAAAAAAAACQasqSAAAAAAAAAAAAQKoV5zsAAAAAAAAAQBoVFBTExIkT+8wBAAC5l5eyZENDQzzwwAPxzDPPxObNm2Pv3r1RVlYW06dPj3nz5sUHP/jBmDdvXj6i9XHTTTfFypUrIyLiu9/9bpxyyikHvVdXV1c8/vjjsXr16qirq4vt27dHW1tbjBs3Lmpra+M//af/FBdeeGHU1NRkKj4AAAAAAACQJxMnToznn38+3zEAAIDIcVly3759sWzZsli1alV0d3cnHuvo6IiNGzfGxo0bY8WKFXH22WfH7bffHtXV1bmMmPCb3/wmVq1alZG9nn/++bj++utj06ZNfR7bsWNH7NixI55++um4995742//9m/jsssuy8jzAgAAAAAAAAAAwGhXmKsnampqissuuyweeOCBPkXJ/vzsZz+L888/P1566aXsh+tHY2NjXHfdddHZ2TnsvdasWROXXnppv0XJ3lpaWuLWW2+Na6+9dlBfJwAAAAAAAAAAAGBgObmyZEdHRyxZsiQ2btyYmJ81a1aceeaZMWnSpGhsbIw1a9YkCoXbtm2LJUuWxP333x9VVVW5iBoREXv37o1Pf/rTsXXr1mHvtX79+vibv/mbaG9v75krKSmJ008/PY455pgoKyuLhoaGeOyxx6K5ubnnmEceeSSmT58en//854edAQAAAAAAAAAAAEaznJQlly9fHuvWresZl5SUxM033xwXX3xx4rjrrrsuVq5cGbfddlu0trZGRERDQ0MsW7Ysli1blouo0djYGFdeeWWsX79+2Hu1t7fHtddeG21tbT1zs2bNiq9+9atRW1ubOPaGG26IG2+8MVavXt0zt3z58jjttNPipJNOGnYWAAAAAAAAAAAAGK2yfhvuxsbGuO+++xJzX/7yl/sUJd+yaNGiuPPOO6OgoKBn7sEHH4yXX345qzkjItatWxd//dd/HfX19RnZ70c/+lG8+OKLPeOpU6fGt7/97T5FyYiIsWPHxte+9rU4++yzE/Nf+9rXMpIFAAAAAAAAAAAARquslyVXrFgR+/fv7xmffvrpccEFFwy45pxzzomPfOQjPePOzs741re+la2I0dXVFd/97nfjox/9aLzxxhsZ2bO7uzv+6Z/+KTF3/fXXx5QpU952TUFBQfz3//7fY/LkyT1zTz/9dDz77LMZyQQAAAAAAADkzptvvhnf+c53En/efPPNfMcCAIBRKetlyZ/85CeJ8Sc+8YlBrbviiiuiqKioZ7x69epob2/PaLaIfy8jXnjhhXH77bcn9q+oqEiUFofqqaeeii1btvSMp02bFn/1V391wHWVlZXxsY99LDH3yCOPHHQOAAAAAAAAID/2798ff/d3f5f48+cXmgEAAHInq2XJP/zhD/Hqq6/2jMePHx+nnHLKoNZOnTo1jj/++J7x3r17Y+3atRnNd8stt8RHP/rR2LBhQ2J+2rRpsWLFijjqqKMOeu9f/OIXifHZZ58dhYWD+3L3LlX+27/9W3R3dx90FgAAAAAAAAAAABjNslqWfOqppxLjd7/73YmrRR7IySefnBg/8cQTGcn1lueee67P3Ac/+MF46KGH4p3vfOew9u792gdbEo2IOOKII+Kwww7rGW/fvj3+3//7f8PKAwAAAAAAAAAAAKNVVsuSv//97xPjOXPmDGl97+Pr6+uHnentHHnkkbF8+fL4yle+EtXV1cPaq7OzMzZt2pSYG+prf9e73pUYZ/O1AwAAAAAAAAAAQJoVZ3PzhoaGxPgd73jHkNYfccQRifGLL7447Ey9TZ48OT71qU/Fhz/84SgpKcnInlu2bInW1taecXl5eUybNm1Ie+TitQMAAAAAAAAAAMBokNWy5NatWxPjqVOnDmn9lClTEuNdu3ZFc3NzVFZWDjtbRMQXvvCFOOmkk6K0tDQj+72lv9ddUFAwpD16f61effXVYecCAAAAAAAAAACA0Sirt+FuampKjCdNmjSk9RMmTIjCwmTEnTt3DjvXWxYsWJDxomRExI4dOxLjmpqaIe8xceLExDiTrxsAAAAAAAAAAABGk6yVJZubm6OtrS0xV1VVNaQ9CgoKYsyYMYm5PXv2DDtbtu3atSsxHurrjog+V8/cvXv3cCIBAAAAAAAAAADAqJW123C3trb2metdfByMioqKaG5u7hm3tLQMK1cu9H7tB/O6e6/p7+uZS5s2bepzlU8ABtbe3t7z37q6ujynAYDc81kIwGjnszC7yjZtitkHOGbjxo3R2tmZkzwcOppb+v4/37BhQ1SWF+UhDYxO3od/0vsiKxER69evj/Hjx+c8C6OH9yDk10h4D27as+mAx2x8YWN0vuZ8Csifrq6ujO+ZtbLkW98ITDxZ8dCfrqgo+WHR0dFx0JlypfcVNQ/mdfde09/XM5c6Ozuj0zcVAQ5avv8eB4B881kIwGjnszDzigbxveKOjg5f+1Govb3v97Lb29ujvSjzP2QB+ud9+Cf9/WzT5xPZ5j0I+TUS3oOD6d74vALSKGtlyf6KdQdzZcLea7LRGM203q/9YF53QUFBYtzd3T2sTMNVVFTkypIAQ/TnJw8lJSV5TAIA+eGzEIDRzmdhdg3ml9SLi4t97Uehks6+38suKSmJkpJD50o+kHbeh3/S3+eVzyeyzXsQ8mskvAedTwEjQVdXV8Yv7pe1smR/f7F2dnYO+SqLvVvqI+Ev4t4ZD+Z/Wu8Wf75f98yZM6OqqiqvGQBGmrq6umhvb4+SkpI47rjj8h0HAHLOZyEAo53PwiwrOvAPGmfPnh0xd24OwnAo2b2vNSJeSczNmTMnqqvK8hMIRiHvwz/ZsWNHn7m5c+dGTU1NHtIwWngPQn6NhPdg0RtFEY8PfMzso2fH3CnOp4D82bdvX2zcuDGje2btUoGlpaV95g7m8ry9S4P97Xuo6Z1xtLxuAAAAAAAAAAAAOBRlrSw5duzYPreSbm5uHvI+vddUVlYOK1cujB07NjHev3//kPcYia8bAAAAAAAAAAAADkVZK0sWFRXFuHHjEnN79uwZ0h4tLS3R1taWmBsJl6SfMGFCYrx79+4h79F7zcSJE4eVCQAAAAAAAAAAAEar4mxufthhhyVKf42NjTFr1qxBr9++fXtiXFpaGtXV1RnLly3Tpk1LjHfs2DHkPRobGxPjyZMnDysTAAAAAECqzJ0b0d2d7xQAMKCampp49dVX8x0DABLmTpkb3bc4nwJGn6xdWTIiYsaMGYnxli1bhrS+9/FHHnnkcCPlRO/X/cYbb/S5QuaBjNTXDgAAAAAAAAAAAIearJYlZ8+enRg3NDQMaf0f//jHxLi2tnbYmXJh7Nixcfjhh/eMOzs748UXXxzSHr2/ViPltQMAAAAAAAAAAMChJqtlyeOOOy4xrqurG9L65557LjE+4YQThhspZ4499tjEeCivvaWlJTZu3NgzLiwsjOOPPz5T0QAAAAAAAAAAAGBUyWpZ8qSTToqSkpKe8e9+97vYvXv3oNZ2dnbGk08+mZibP39+RvNl04IFCxLjJ554YtBr165dG+3t7T3jOXPmRHV1dcayAQAAAAAAAAAAwGiS1bJkZWVlnHbaaT3jjo6OWLVq1aDWPv7447Fjx46e8axZs2LWrFkZz5gtZ511VhQXF/eM16xZE2+88cag1v7oRz9KjN///vdnNBsAAAAAAAAAAACMJlktS0ZEXHTRRYnx8uXLY+vWrQOu2bNnT3zlK19JzF188cUZz5ZNkyZNijPPPLNn3N7eHl/+8pcPuG7NmjWxZs2annFZWVlccMEFWUgIAAAAAAAAZFNra2s8/PDDiT+tra35jgUAAKNS1suSZ511Vrzzne/sGe/atSuuuuqqaGxs7Pf45ubmuPrqq+OVV17pmZs2bVpccsklb/scq1atitmzZyf+PPXUU5l7EQdp8eLFUVBQ0DP+P//n/8Sdd94Z3d3d/R5fV1cX1113XWLuwx/+cNTU1GQ1JwAAAAAAAJB5+/bti6uuuirxZ9++ffmOBQAAo1LWy5IFBQWxdOnSKCz801Nt3LgxLrjggli5cmXPyUBra2s89thjcdFFF8WvfvWrxB5f/OIXo6ysLNtRM+6YY46JD33oQ4m5//k//2d86lOfit/85jfR2dkZERGvv/56/MM//EN8+MMfTpwcTZ8+PZYsWZLTzAAAAAAAAAAAAJA2xbl4khNOOCGWLl0aN998c8/c9u3b46abboqbbropxo4dG/v27ev3iotXXnllnHXWWbmImRU33HBDvPTSS7F27dqeuV/+8pfxy1/+MoqLi6O0tDT279/fZ11lZWXcc889MXbs2FzGBQAAAAAAAAAAgNTJ+pUl33LJJZfEl770pSgvL+/z2N69e/sUJQsLC+Ozn/1sXHPNNbmKmBVlZWXxjW98I973vvf1eayjo6PfouSUKVPi29/+dhx77LG5iAgAAAAAAAAAAACplrOyZMS/FyYfeeSROPfcc/stTb5lwYIF8f3vfz8+97nP5TBd9lRUVMQ3v/nNuOeee2Lu3Llve1xVVVV8/OMfj4cffjiOP/743AUEAAAAAAAAAACAFMvJbbj/3IwZM+Kee+6J/fv3xzPPPBOvv/56NDU1RXl5eRx++OExb968mDRp0pD2XLhwYSxcuDDjWb/3ve9ldL9zzz03zj333Ni8eXM8//zzsX379mhpaYlx48bFzJkz4y/+4i+itLQ0o88JAAAAAAAAAAAAo13Oy5JvqaioiDPOOCNfT59XM2bMiBkzZuQ7BgAAAADAyLV5c8Q11wx8zF13RfheLAAAQMLm3ZvjmtUDn0/ddc5dMaPa+RSQLnkrSwIAAAAAwEHbsyfixz8e+JilS3MSBQAAYCTZ07onfrxh4POppWcszU0YgBwqzHcAAAAAAAAAAAAAgGxSlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABIteJ8BwAAAAAAAABIowkTJkRdXV2fOQAAIPeUJQEAAAAAAACyoLCwMGpqavIdAwAACLfhBgAAAAAAAAAAAFJOWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUK853AAAAAAAAAIA0amtri2effTYxd+KJJ0ZpaWmeEgEAwOilLAkAAAAAAACQBXv37o1FixYl5urq6qKmpiZPiQAAYPRyG24AAAAAAAAAAAAg1ZQlAQAAAAAAAAAAgFRTlgQAAAAAAAAAAABSTVkSAAAAAAAAAAAASDVlSQAAAAAAAAAAACDVlCUBAAAAAAAAAACAVFOWBAAAAAAAAAAAAFJNWRIAAAAAAAAAAABINWVJAAAAAAAAAAAAINWUJQEAAAAAAAAAAIBUU5YEAAAA/n/27j1Ky7reG//nnjMzwACDCG3AAyAqh5RtptjK1C1tc5cuFX102yPlsp2HrIy2eUgtFbdbS9ulYktLn57CNOlIj+lTLE0lscRg8AlkUpEQOQ4MDDPM4f79sX9M3jPDwAz3PTdzzeu1Fmvv7/e+vt/rPdTVcMF7rgsAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABItKJ8BwAAAAAAgG4bNy6iunrvxwBAHlVWVsbvfve7DnMAkE/jho2L6su7vp8aN8z9FJA8ypIAAAAAAPQ9ZWURkyblOwUAdKmoqCgmTpyY7xgAkKGsqCwmjXA/BfQ/XsMNAAAAAAAAAAAAJJqyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAIlWlO8AAAAAAAAAAEnU3NwcNTU1GXPjxo2LoiL/TAsAAL3Nn8IBAAAAAAAAcmDr1q1x6qmnZswtXbo0qqqq8pQIAAD6L6/hBgAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEq0o3wEAAAAAAKDb1q+PuP/+ro+54oqIESN6Jw8AAEAfsX7H+rj/5a7vp674wBUxosL9FJAsypIAAAAAAPQ9GzZEfO1rXR8zc6ayJAAAQDsbdmyIrz3b9f3UzKNnKksCieM13AAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJpiwJAAAAAAAAAAAAJFpRvgMAAAAAAAAAJNGgQYPiiSee6DAHAAD0PmVJAAAAAAAAgBwoKSmJ6dOn5zsGAAAQXsMNAAAAAAAAAAAAJJyyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAIlWlO8AAAAAAAAAAEnU2toaW7ZsyZgbOnRoFBR4pg0AAPQ2ZUkAAAAAAACAHNiyZUtMnTo1Y27p0qVRVVWVp0QAANB/+ZElAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEK8p3AAAAAAAA6LbRoyMef3zvxwBAHg0cODDmzp3bYQ4A8mn04NHx+Hld30+NHux+CkgeZUkAAAAAAPqeysqImTPznQIAulRaWhof//jH8x0DADJUllXGzEnup4D+x2u4AQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARCvKdwAAAAAAAACAJNq0aVNMnTo1Y27p0qVRVVWVp0QAANB/ebIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaEX5DgAAAAAAAN22dWvE0093fcyMGRGVlb2TBwAAoI/Y2rA1nq7p+n5qxrgZUVnmfgpIFmVJAAAAAAD6njVrIs4/v+tjqquVJQEAANpZs21NnP+Tru+nqi+vVpYEEsdruAEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASrSjfAQAAAAAAkqa+oSnW1+6KHTubomJAOuobmqK8rDjfsQAAAACg31KWBAAAAADIgnQ6HctqNsaCF96IP1Svi9bWdNtn3/7l2jhx8qj42EmHxpRxwyOVSuUxKQDQW8rLy+P222/vMAcAAPQ+ZUkAAAAAgP20ak1t3DPvlVi9rq7Tz1tb0/HC0rXxwtK1MXbkoPjihdNi/OghvRsSAOh1AwYMiFmzZuU7BgAAEBEF+Q4AAAAAANCXLVmxPq677/k9FiXbW72uLq677/lYsmJ9jpMBAAAAALspSwIAAAAA9NCqNbUx55HF0bCrpVvrGna1xJxHFseqNbW5CQYAAAAAZFCWBAAAAADogXQ6HffMe6XbRcndGna1xL3zXol0Op3lZAAAAABAe8qSAAAAAAA9sKxm4z6/entP3lpXF9U1m7KUCAAAAADYE2VJAAAAAIAe+PULb2ZlnwUvvpGVfQAAAACAPSvKdwAAAAAAgL6mvqEpFlW/k5W9Fi17J+obmqK8rDgr+wEAB47NmzfHySefnDH37LPPxrBhw/KUCAAA+i9lSQAAAACAbtpYuzNaW9NZ2au1NR2btjYoSwJAAqXT6di8eXOHOQAAoPd5DTcAAAAAQDc17GrJ6n47G5uzuh8AAAAAkElZEgAAAACgm8pKCrO634BSLwECAAAAgFxSlgQAAAAA6KbhQwZEQUEqK3sVFqSiqrIsK3sBAAAAAJ1TlgQAAAAA6KbysuI4cfKorOx1wpRRUV5WnJW9AAAAAIDOKUsCAAAAAPTAx046NCv7nDn9sKzsAwAAAADsmbIkAAAAAEAPTBk3PMaOHLRfexwyclBMHleVpUQAAAAAwJ4oSwIAAAAA9EAqlYovXjgtykoKe7S+rKQwvnDhtEilUllOBgAAAAC0pywJAAAAANBD40cPietnHd/twmRZSWFcP+v4GD96SG6CAQAAAAAZlCUBAAAAAPbDsRNHxB1XfmifX8l9yMhBcceVH4pjJ47IcTIAAAAAYLeifAcAAAAAAOjrxo8eEt+ZfUpU12yKnz27Kha/9m7G54UFqThhyqg4c/phMXlclVdvAwAAAEAvU5YEAAAAAMiCVCoVU8YPj7EjB8XFNz+V8dkD154Wo4ZX5CkZAAAAAOA13AAAAAAAOVZe5ufWAQAAACCflCUBAAAAAAAAAACARPPjzAAAAAAA9D0HHRRx8817PwYA8mjAgAFxzTXXdJgDgHw6qOKguPnkru+nDqpwPwUkj7IkAAAAAAB9z4gREbfcku8UANCl8vLy+NKXvpTvGACQYUTFiLjlI7fkOwZAr/MabgAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGK8h0AAAAAAAAAIIm2bNkS55xzTsbc/PnzY+jQoXlKBAAA/ZeyJAAAAAAAAEAOtLa2xsqVKzvMAQAAvc9ruAEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0YryHQAAAAAAALqtoSGipqbrY8aNiygr6508AAAAfURDc0PUbO76fmrcsHFRVuR+CkgWZUkAAAAAAPqempqIyZO7Pqa6OmLSpN7JAwAA0EfUbK6JyQ90fT9VfXl1TBrhfgpIFq/hBgAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0YryHQAAAAAAAAAgiUpLS+OSSy7pMAcAAPQ+ZUkAAAAAAACAHBg4cGDMmTMn3zEAAIDwGm4AAAAAAAAAAAAg4ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRivIdAAAAAAAAACCJtm7dGpdeemnG3MMPPxyVlZV5SgQAAP2XsiQAAAAAAABADjQ3N8eiRYs6zAEAAL3Pa7gBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARCvKdwAAAAAAAOi2wYMjzjtv78cAQB4VFxfHmWee2WEOAPJpcOngOO/oru+nBpe6nwKSR1kSAAAAAIC+Z8yYiCeeyHcKAOjS4MGD47vf/W6+YwBAhjGVY+KJme6ngP7Ha7gBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEK8p3AAAAAAAAAIAk2rZtW8yePTtj7u67747BgwfnKREAAPRfypIAAAAAAAAAOdDU1BQLFizImLvjjjvylAYAAPo3r+EGAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASrSjfAQAAAAAAoNuWL4+YPLnrY6qrIyZN6p08AAAAfcTy9ctj8gNd309VX14dk0a4nwKSxZMlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABItKJ8BwAAAAAAAABIoqKiojjxxBM7zAEAAL3Pn8QBAAAAAAAAcqCysjJ+8pOf5DsGAAAQXsMNAAAAAAAAAAAAJJyyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkWlG+AwAAAAAAAAAk0fbt22POnDkZc9dff30MHDgwT4kAAKD/UpYEAAAAAAAAyIHGxsZ49NFHM+a+9KUvKUsCAEAeeA03AAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJVpSPk9bU1MSTTz4ZL7/8crz99ttRV1cXpaWlMXr06Jg2bVp84hOfiGnTpvVqps2bN8f8+fPjxRdfjJUrV0ZtbW0UFhbGiBEjYvLkyfHRj340Tj/99CgsLOz23nPmzIlHH320x9kOO+yweOqpp3q8HgAAAAAAAAAAAPqzXi1Lbt++PebMmRPz58+PdDqd8Vlzc3OsWLEiVqxYEfPmzYvTTz89br/99qisrMxppnQ6HY8++mjcc8890dDQkPFZU1NTrF69OlavXh2//vWvY8KECfHNb34zjjjiiG6dY8WKFdmMDAAAAAAAAAAAAHRDr72Ge/PmzXHRRRfFk08+2aEo2ZlnnnkmzjrrrHjzzTdzlqm1tTWuvfbauOOOOzoUJTvz+uuvx8yZM+OZZ57p1nlWrlzZ04gAAAAAAAAAAADAfuqVJ0s2NzfHFVdc0eEJixMmTIiPfOQjMXz48Ni4cWMsXLgwVq1a1fb5O++8E1dccUU8/vjjMXDgwKznuuuuu+LnP/95xtzw4cNjxowZMXbs2Ni+fXv86U9/ikWLFrV93tDQEF/+8pfjscceiyOPPHKv51i/fn1s3ry5bTxx4sS48MILu5Uz10/XBAAAAAAAAAAAgCTrlbLk3LlzY8mSJW3j4uLiuOmmm+L888/POG727NnxxBNPxK233hqNjY0REVFTUxNz5syJOXPmZDXT4sWL4/vf/37G3IUXXhjXXXddlJaWZsy/8sor8cUvfjHWrVsXERE7d+6Mz3/+87FgwYIoKur6t7B9QfSEE07odlkSAAAAAAAAAAAA6Lmcv4Z748aN8fDDD2fM3XbbbR2KkrvNnDkz7r777kilUm1zP/vZz+Ktt97Kaq4777wz43Xg5557btxyyy0dipIREdOmTYsf/OAHMWTIkLa5N998s8NTKTvTvix5xBFH9Dw0AAAAAAAAAAAA0G05f7LkvHnzor6+vm384Q9/OM4+++wu18yYMSMuvvji+MEPfhARES0tLfHggw9m7emSL730UlRXV7eNq6qq4oYbbuhyzdixY+PWW2+Nz33uc21zc+fOjXPOOSej2NneypUrM8bKkgAAAAAAWVBaGnH00Xs/BgDyqKCgoMO/DxYU5Px5NgDQpdKi0jj6oK7vp0qL3E8ByZPzsuRPf/rTjPGnPvWpfVp32WWXxY9+9KNoaWmJiIinn346vva1r0VxcfF+Z5o/f37GeObMmVFRUbHXdTNmzIjDDz88/vrXv0ZExOrVq2PZsmUxderUPa5575MlU6lUjB8/voepAQAAAABoM358xPLl+U4BAF0aOnRoLFy4MN8xACDD+GHjY/kV7qeA/ienP7b0+uuvx9/+9re28ZAhQ+KDH/zgPq09+OCD45hjjmkb19XVxaJFi/Y7Uzqdjueeey5j7p//+Z/3ef1HP/rRjPHTTz+9x2Obm5ujpqambTx69OgoLy/f53MBAAAAAAAAAAAA+y+nZcmXXnopY/yP//iPUVhYuM/rjz/++Ixx+5JjT7z++uuxefPmtvHgwYPjyCOP3Of17cueXWX661//Gk1NTW1jr+AGAAAAAAAAAACA3pfTsuRf/vKXjPHRRx/drfXtj6+urs56pqOOOipSqdQ+rz/qqKMyxqtWrYqGhoZOj33vK7gjIiZMmLDP5wEAAAAAAAAAAACyoyiXm7/3FdQREYcffni31o8dOzZj/MYbb2Q902GHHdat9UOGDInBgwfHtm3bIiKipaUlVq9e3elTI9uXJSdOnNj2/9fX10d1dXW8++670dzcHFVVVXHYYYfFmDFjupUHAAAAAAAAAAAA6FpOy5Jr167NGB988MHdWj9ixIiMcW1tbezYsSMqKiqylmnkyJHd3uPggw9uK0vu3nNfypITJkyI5557Ln74wx/G888/H83NzR3WjB8/Ps4///y46KKLori4uNvZAAAAAAAAAAAAgEw5LUtu3rw5Yzx8+PBurR86dGgUFBREa2tr29yWLVv2qyy5v5l25+pqz91WrlyZMf76178eixcv7nLvVatWxZw5c+KHP/xh/Nd//VcceeSR3c4HAAAAAAAA5F99fX088MADGXOXX355lJeX5ykRAAD0XzkrS+7YsSN27dqVMTdw4MBu7ZFKpWLAgAGxY8eOtrn3PtGxJ7Zs2ZIx7knxsv2azjJt3bo11q1blzG3t6Lke7311ltx0UUXxXe+852YPn16tzMCAAAAAAAA+bVz58745je/mTE3a9YsZUkAAMiDnJUlGxsbO8wNGDCg2/uUl5dnlCUbGhr2K1f7AmdPbkTar+ksU/tXcO9WWVkZ5557bpxxxhkxevToKC8vj3fffTcWL14c//t//+/4y1/+0nbsjh074uqrr44nn3wyDjnkkG7nBAAAAAAAAAAAAHJYlmxqaup4sqLun66wsDBj3Nzc3ONMER3Lku33z1amzsqSJ5xwQnzjG9/o8OrvQw45JA455JA499xz44EHHoj/+q//avusrq4urrnmmvjJT34SqVSq21mzZdWqVVFQUJC38wP0Rbu/FzY1NcXSpUvznAYAep/vhQD0VzsaWjrMvfbaa1FR1v2/iwS6zzUI+ec6/Lva2toOc8uXL48hQ4b0ehb6D9cg5JdrECA7Wltbs75nzsqSLS0d/8e/J2W79mv29zehfa6elCX3JdPWrVujvLw86uvrIyLiuOOOi4ceeiiKi4u73PfKK6+MdDod3/72t9vmq6ur47e//W380z/9U7ezZktLS0un/5kCsG86+yECAOhPfC8EoD9paur492hNTU3RVJj9v+AFOnINQv65Dv+us4euNDc3u08mp1yDkF+uQYADV87Kkp09RbKlpaXbT5dsf6PQVdmwJ7l68qTK9ms6y3TVVVfFVVddFZs3b4633347xo4du8/Zr7jiivjNb34TK1eubJv70Y9+lNeyZGFhoSdLAnTTe7+H7e/3LwDoi3wvBKC/Km7p+PdoxcXFUVzsKSLQG1yDkH+uw7/r7N9Gi4qK3CeTU65ByC/XIEB2tLa2Zv3hfjkrS5aUlHSYa2pqitLS0m7t076Y2Nm++5OrJz+11X5NV5mGDRsWw4YN69b+BQUF8clPfjK++tWvts396U9/il27du33199T48ePj4EDB+bl3AB91dKlS6OpqSmKi4tj6tSp+Y4DAL3O90IA+qut2xsjYnXG3NFHHx2VA7v3d6NAz7gGIf9ch3+3adOmDnOTJk2KqqqqPKShv3ANQn65BgGyY/v27bFixYqs7pmzsuSgQYMilUpFOp1um9uxY0e3C3c7duzIGFdUVOxXrsGDB2eMd78mO5+ZOjN9+vSMcUNDQ6xYsSKmTJmS9XMBAAAAAPQ5q1ZFnHVW18f8/OcR48f3Th4AAIA+YtXmVXHWY13fT/38f/w8xg9zPwUkS87KkoWFhTF48ODYunVr29y2bdvi4IMP3uc9GhoaYteuXRlz+/tTVkOHDs0Yb9u2rdt7tF+Ti5/8Gj16dJSVlUVDQ0Pb3ObNm7N+HgAAAACAPqmxMeK11/Z+DAAAABkamxvjtQ1d3081NrufApKnIJebjxw5MmO8cePGbq3fsGFDxrikpCQqKyvzmqmzNcOHD9+vTHvS/imYPSl2AgAAAAAAAAAAQH+X07LkmDFjMsZr1qzp1vr2xx966KH7G2m/MzU1NcW7776bMZeNXJ1pbPdTz919hTkAAAAAAAAAAACQ47LkxIkTM8Y1NTXdWv/Xv/41Yzxu3Li8Z3rzzTejpaWlbVxVVdXh1d7pdDpqa2ujpqYmXn755Xj22We7nXPXrl0dniTZ/jwAAAAAAAAAAADA3hXlcvOpU6dmjJcuXdqt9a+++mrG+Nhjj93fSDF58uQoLCxsKzyuXLkyGhoaoqysLGuZnnvuufjMZz7TNi4oKIg//vGPUVFRsc85ly1bFul0um1cVFQURxxxxD6vBwAAAAAAAAAAAP5bTp8s+YEPfCCKi4vbxn/+859j69at+7S2paUlXnjhhYy56dOn73emgQMHZpQ4m5qa4sUXX9zn9b///e/3mmnChAkZ49bW1li8eHG3cv7ud7/LGE+aNCnKy8u7tQcAAAAAAAAAAACQ47JkRUVFfOhDH2obNzc3x/z58/dp7W9/+9vYtGlT23jChAkdSog9NWPGjIzx448/vk/r1q9fn1FiLCoq6rBXRMT73ve+OOSQQzLmnnjiiX3Ot3Xr1g7Hn3XWWfu8HgAAAAAAAAAAAPi7nJYlIyLOO++8jPHcuXNj7dq1Xa7Ztm1b3HXXXRlz559/ftYynXXWWVFSUtI2XrhwYYcnOXbmtttui6amprbxKaecEgcddFCnx37iE5/IGP/2t7+NRYsW7fUc6XQ6vvrVr2Y8gXPIkCFx9tln73UtAAAAAAAAcOBIpVIxbNiwjF+pVCrfsQAAoF/KeVnytNNOiyOPPLJtXFtbG5/97Gdj48aNnR6/Y8eO+PznPx+rV69umxs1alRccMEFezzH/PnzY+LEiRm/XnrppT0eX1VV1WG/2bNnx5///OdOj0+n0/GNb3wjfvOb37TNFRQUxOc+97k9nuPiiy+OIUOGZMx94QtfiGXLlu1xTVNTU9xwww0Z54mI+Pd///eoqKjY4zoAAAAAAADgwDNs2LBYtmxZxq9hw4blOxYAAPRLOS9LplKpuOWWW6Kg4O+nWrFiRZx99tnxxBNPxPbt2yMiorGxMZ566qk477zz4sUXX8zY46tf/WqUlpZmNdfVV18dI0aMaBvv2LEj/vVf/zW+9a1vxbp16yIioqWlJV555ZW47LLL4rvf/W7G+ksuuSQmTpy4x/2HDBkS1113XcZcbW1tXHTRRXHXXXfFX//617b5urq6+OUvfxlnnXVWPPnkkxlrTjvttDj33HN7/HUCAAAAAAAAAABAf1fUGyc59thj45ZbbombbrqpbW7Dhg1x4403xo033hiDBg2K7du3Rzqd7rD23/7t3+K0007LeqbBgwfH/fffH7NmzWorbDY1NcX9998f999/f5SXl0dTU1PGa7d3O/744+Oaa67Z6znOPvvsWL16ddx3331tc7t27YqHHnooHnrooSgtLY2SkpKoq6vrdP1xxx0Xd999dw+/QgAAAAAAAAAAACCiF54sudsFF1wQX//616OsrKzDZ3V1dR2KkgUFBXHVVVftUymxp6ZMmRIPPfRQjBw5ssNn9fX1nRYlTznllHjwwQejpKRkn85x9dVXx2233dbp193Y2LjHouR5550XDz/8cJSXl+/TeQAAAAAAAAAAAIDO9VpZMuK/C5O/+tWv4owzzui0PLjbSSedFD/84Q/jc5/7XM4zHXvssbFgwYL49Kc/HVVVVXs8bsKECXHnnXfG3Llzu11gnDlzZjz11FPxyU9+MgYNGrTH4woLC+MjH/lI/OhHP4rbb7+9y98jAAAAAAAAAAAAYN/0ymu432vMmDFx7733Rn19fbz88svx7rvvxubNm6OsrCze9773xbRp02L48OHd2vOcc86Jc845p8eZBg4cGNdee23Mnj07lixZEm+//XZs2LAhCgsLo6qqKqZOnRqHH354j/ePiBg1alTceOONcd1118Vrr70Wr7/+etTW1kZjY2MMGjQoxo4dG8cee2yXZUoAAAAAAAAAAACg+3q9LLlbeXl5nHzyyfk6facKCwvjuOOOi+OOOy6n55gyZUpMmTIlZ+cAAAAAAAAA8m/nzp3x4x//OGPuggsuiAEDBuQpEQAA9F95K0sCAAAAAAAAJFl9fX3ccMMNGXMf//jHlSUBACAPCvIdAAAAAAAAAAAAACCXlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARCvKdwAAAAAAAOi2SZMi0ul8pwCALlVVVcXf/va3fMcAgAyTRkyK9M3up4D+R1kSAAAAAAAAAACAxKhvaIqNtTujYVdLlJUUxvAhA6K8rDjfscgzZUkAAAAAAAAAAAD6tHQ6HctqNsaCF96IP1Svi9bWvz9BtaAgFSdOHhUfO+nQmDJueKRSqTwmJV+UJQEAAAAAAAAAAOizVq2pjXvmvRKr19V1+nlrazpeWLo2Xli6NsaOHBRfvHBajB89pHdDkncF+Q4AAAAAAAAAAAAAPbFkxfq47r7n91iUbG/1urq47r7nY8mK9TlOxoFGWRIAAAAAAAAAAIA+Z9Wa2pjzyOJo2NXSrXUNu1piziOLY9Wa2twE44DkNdwAAAAAAAAAOdDY2BhPP/10xtyMGTOitLQ0T4kAAJIjnU7HPfNe6XZRcreGXS1x77xX4tuzT4lUKpXldByIlCUBAAAAAAAAcmD79u3x2c9+NmNu6dKlypIAAFmwrGbjPr96e0/eWlcX1TWbYsr44VlKxYHMa7gBAAAAAAAAAADoU379wptZ2WfBi29kZR8OfMqSAAAAAAAAAAAA9Bn1DU2xqPqdrOy1aNk7Ud/QlJW9OLApSwIAAAAAAAAAANBnbKzdGa2t6azs1dqajk1bG7KyFwc2ZUkAAAAAAAAAAAD6jIZdLVndb2djc1b348CkLAkAAAAAAAAAAECfUVZSmNX9BpQWZXU/Dkz+UwYAAAAAoO95++2Ia67p+phvfjNizJjeyQMAANBHvL317bjm6a7vp74545sxptL9FAeu4UMGREFBKiuv4i4sSEVVZVkWUnGgU5YEAAAAAKDv2bYt4ic/6fqYW27plSgAAAB9ybbGbfGT17q+n7rl5Ft6Jwz0UHlZcZw4eVS8sHTtfu91wpRRUV5WnIVUHOi8hhsAAAAAAAAAAIA+5WMnHZqVfc6cflhW9uHApywJAAAAAAAAAABAnzJl3PAYO3LQfu1xyMhBMXlcVZYScaBTlgQAAAAAAAAAAKBPSaVS8cULp0VZSWGP1peVFMYXLpwWqVQqy8k4UClLAgAAAAAAAAAA0OeMHz0krp91fLcLk2UlhXH9rONj/OghuQnGAUlZEgAAAAAAAAAAgD7p2Ikj4o4rP7TPr+Q+ZOSguOPKD8WxE0fkOBkHmqJ8BwAAAAAAAAAAAICeGj96SHxn9ilRXbMpfvbsqlj82rsZnxcWpOKEKaPizOmHxeRxVV693U8pSwIAAAAAAAAAANCnpVKpmDJ+eIwdOSguvvmpjM8euPa0GDW8Ik/JOFAoSwIAAAAAAADkwNChQ2Pp0qUd5gAA6F3lZWpyKEsCAAAAAAAA5ERBQUFUVVXlOwYAABARBfkOAAAAAAAAAAAAAJBLypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkWlG+AwAAAAAAAAAk0a5du+KPf/xjxtxxxx0XJSUleUoEAAD9l7IkAAAAAAAAQA7U1dXFzJkzM+aWLl0aVVVVeUoEAAD9l9dwAwAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJpiwJAAAAAAAAAAAAJJqyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkWlG+AwAAAAAAQLeNGxdRXb33YwAgjyorK+N3v/tdhzkAyKdxw8ZF9eVd30+NG+Z+CkgeZUkAAAAAAPqesrKISZPynQIAulRUVBQTJ07MdwwAyFBWVBaTRrifAvofr+EGAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgEQryncAAAAAAAAAgCRqbm6OmpqajLlx48ZFUZF/pgUAgN7mT+EAAAAAAAAAObB169Y49dRTM+aWLl0aVVVVeUoEAAD9l9dwAwAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiVaU7wAAAAAAANBt69dH3H9/18dccUXEiBG9kwcAAKCPWL9jfdz/ctf3U1d84IoYUeF+CkgWZUkAAAAAAPqeDRsivva1ro+ZOVNZEgAAoJ0NOzbE157t+n5q5tEzlSWBxPEabgAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEq0o3wEAAAAAAAAAkmjQoEHxxBNPdJgDAAB6n7IkAAAAAAAAQA6UlJTE9OnT8x0DAAAIr+EGAAAAAAAAAAAAEk5ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgEQryncAAAAAAAAAgCRqbW2NLVu2ZMwNHTo0Cgo80wYAAHqbsiQAAAAAAABADmzZsiWmTp2aMbd06dKoqqrKUyIAAOi//MgSAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJpiwJAAAAAAAAAAAAJJqyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiFeU7AAAAAAAAdNvo0RGPP773YwAgjwYOHBhz587tMAcA+TR68Oh4/Lyu76dGD3Y/BSSPsiQAAAAAAH1PZWXEzJn5TgEAXSotLY2Pf/zj+Y4BABkqyypj5iT3U0D/4zXcAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJ5jXcAAAAAAlT39AUG2t3RsOuligrKYzhQwZEeVlxvmMBAAAAAEDeKEsCAAAAJEA6nY5lNRtjwQtvxB+q10Vra7rts4KCVJw4eVR87KRDY8q44ZFKpfKYFAAAAAAAep+yJAAAAEAft2pNbdwz75VYva6u089bW9PxwtK18cLStTF25KD44oXTYvzoIb0bEgAAAAAA8qgg3wEAAAAA6LklK9bHdfc9v8eiZHur19XFdfc9H0tWrM9xMgAAYNOmTfEP//APGb82bdqU71gAANAvKUsCAAAA9FGr1tTGnEcWR8Oulm6ta9jVEnMeWRyr1tTmJhgAAAAAABxglCUBAAAA+qB0Oh33zHul20XJ3Rp2tcS9816JdDqd5WQAAAAAAHDgUZYEAAAA6IOW1Wzc51dv78lb6+qiusYrAAEAAAAASD5lSQAAAIA+6NcvvJmVfRa8+EZW9gEAAAAAgAOZsiQAAABAH1Pf0BSLqt/Jyl6Llr0T9Q1NWdkLAAAAAAAOVEX5DgAAAABA92ys3Rmtrems7NXamo5NWxuivKw4K/sB9JqtWyOefrrrY2bMiKis7J08AAAAfcTWhq3xdE3X91Mzxs2IyjL3U0CyKEsCAAAA9DENu1qyut/Oxuas7gfQK9asiTj//K6Pqa5WlgQAAGhnzbY1cf5Pur6fqr68WlkSSByv4QYAAADoY8pKCrO634BSP08LAAAAAECyKUsCAAAA9DHDhwyIgoJUVvYqLEhFVWVZVvYCAAAAAIADlbIkAAAAQB9TXlYcJ04elZW9TpgyKsrLirOyFwAAAAAAHKiUJQEAAAD6oI+ddGhW9jlz+mFZ2QcAAAAAAA5kypIAAAAAfdCUccNj7MhB+7XHISMHxeRxVVlKBAAAAAAABy5lSQAAAIA+KJVKxRcvnBZlJYU9Wl9WUhhfuHBapFKpLCcDAAAAAIADj7IkAAAAQB81fvSQuH7W8d0uTJaVFMb1s46P8aOH5CYYAAAAAAAcYIryHQAAAACAnjt24oi448oPxT3zXonV6+r2evwhIwfFFy6cpigJAAC9oLy8PG6//fYOcwAAQO9TlgQAAADo48aPHhLfmX1KVNdsip89uyoWv/ZuxueFBak4YcqoOHP6YTF5XJVXbwMAQC8ZMGBAzJo1K98xAACAUJYEAAAASIRUKhVTxg+PsSMHxcU3P5Xx2QPXnhajhlfkKRkAAAAAAORfQb4DAAAAAJBb5WV+XhYAAAAAgP5NWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEK8p3AAAAAAAAAIAk2rx5c5x88skZc88++2wMGzYsT4kAAKD/UpYEAAAAAAAAyIF0Oh2bN2/uMAcAAPQ+r+EGAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEq0o3wEAAAAAAKDbDjoo4uab934MAOTRgAED4pprrukwBwD5dFDFQXHzyV3fTx1U4X4KSB5lSQAAAAAA+p4RIyJuuSXfKQCgS+Xl5fGlL30p3zEAIMOIihFxy0duyXcMgF7nNdwAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiFeU7AAAAAAAAAEASbdmyJc4555yMufnz58fQoUPzlAgAAPovZUkAAAAAAACAHGhtbY2VK1d2mAMAAHqf13ADAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIV5TsAAAAAAAB0W0NDRE1N18eMGxdRVtY7eQAAAPqIhuaGqNnc9f3UuGHjoqzI/RSQLMqSAAAAAAD0PTU1EZMnd31MdXXEpEm9kwcAAKCPqNlcE5Mf6Pp+qvry6pg0wv0UkCxeww0AAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIV5TsAAAAAAAAAQBKVlpbGJZdc0mEOAADofcqSAAAAAAAAADkwcODAmDNnTr5jAAAA4TXcAAAAAAAAAAAAQMIpSwIAAAAAAAAAAACJpiwJAAAAAAAAAAAAJJqyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAohXlOwAAAAAAAABAEm3dujUuvfTSjLmHH344Kisr85QIAAD6L2VJAAAAAAAAgBxobm6ORYsWdZgDAAB6n9dwAwAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIpSwIAAAAAAAAAAACJpiwJAAAAAAAAAAAAJFpRvgMAAACQPPUNTbG+dlfs2NkUFQPSUd/QFOVlxfmOBQAAAAAAQD+lLAkAAEBWpNPpWFazMRa88Eb8oXpdtLam2z779i/XxomTR8XHTjo0powbHqlUKo9JAQAAAAAA6G+UJQEAANhvq9bUxj3zXonV6+o6/by1NR0vLF0bLyxdG2NHDoovXjgtxo8e0rshAQAAAAAA6LeUJQEAANgvS1asjzmPLI6GXS37dPzqdXVx3X3Px/Wzjo9jJ47IcToAILEGD44477y9HwMAeVRcXBxnnnlmhzkAyKfBpYPjvKO7vp8aXOp+CkgeZUkAAAB6bNWa2m4VJXdr2NUScx5ZHHdc+SFPmAQAembMmIgnnsh3CgDo0uDBg+O73/1uvmMAQIYxlWPiiZnup4D+pyDfAQAAAOib0ul03DPvlW4XJXdr2NUS9857JdLpdJaTAQAAAAAAQCZlSQAAAHpkWc3GWL2ubr/2eGtdXVTXbMpSIgAAAAAAAOicsiQAAAA98usX3szKPgtefCMr+wAAAAAAAMCeKEsCAADQbfUNTbGo+p2s7LVo2TtR39CUlb0AAAAAAACgM8qSAAAAdNvG2p3R2prOyl6trenYtLUhK3sBAAAAAABAZ4ryHQAAAIC+p2FXS1b329nYnNX9AAAA4ECwbdu2mD17dsbc3XffHYMHD85TIgAA6L+UJQEAAOi2spLCrO43oNTtKQAAAMnT1NQUCxYsyJi744478pQGAAD6t7z8a1RNTU08+eST8fLLL8fbb78ddXV1UVpaGqNHj45p06bFJz7xiZg2bVqvZtq8eXPMnz8/XnzxxVi5cmXU1tZGYWFhjBgxIiZPnhwf/ehH4/TTT4/Cwv37B8FFixbFggULYsmSJfHuu+/Gzp07Y+DAgXHYYYfFiSeeGOeee26MHj06S18VAABAbgwfMiAKClJZeRV3YUEqqirLspAKAAAAAAAAOterZcnt27fHnDlzYv78+ZFOZ/6DWnNzc6xYsSJWrFgR8+bNi9NPPz1uv/32qKyszGmmdDodjz76aNxzzz3R0NCQ8VlTU1OsXr06Vq9eHb/+9a9jwoQJ8c1vfjOOOOKIbp/nrbfeiq985SvxyiuvdPistrY2lixZEkuWLIkHH3wwPvvZz8aVV16538VMAACAXCkvK44TJ4+KF5au3e+9TpgyKsrLirOQCgAAAAAAADpX0Fsn2rx5c1x00UXx5JNPdihKduaZZ56Js846K958882cZWptbY1rr7027rjjjg5Fyc68/vrrMXPmzHjmmWe6dZ6lS5fGeeed12lRsr2Wlpa47777YtasWdHY2Nit8wAAAPSmj510aFb2OXP6YVnZBwAAAAAAAPakV54s2dzcHFdccUWsWLEiY37ChAnxkY98JIYPHx4bN26MhQsXxqpVq9o+f+edd+KKK66Ixx9/PAYOHJj1XHfddVf8/Oc/z5gbPnx4zJgxI8aOHRvbt2+PP/3pT7Fo0aK2zxsaGuLLX/5yPPbYY3HkkUfu9RzvvPNOXHbZZbFt27a2uVQqFSeccEIcd9xxMXDgwHjrrbfiqaeeis2bN7cds3jx4rjxxhvjrrvuysJXCgAAkH1Txg2PsSMHxep1dT3e45CRg2LyuKospgIAAAAAAICOeqUsOXfu3FiyZEnbuLi4OG666aY4//zzM46bPXt2PPHEE3Hrrbe2PVWxpqYm5syZE3PmzMlqpsWLF8f3v//9jLkLL7wwrrvuuigtLc2Yf+WVV+KLX/xirFu3LiIidu7cGZ///OdjwYIFUVTU9W/hV77ylaitrW0bjxw5Mu65556YNm1axnHXXXdd3HHHHfGjH/2obe4Xv/hFnHTSSXH22Wf34CsEAADIrVQqFV+8cFpcd9/z0bCrpdvry0oK4wsXTotUKpWDdAAAAAAAAPB3OX8N98aNG+Phhx/OmLvttts6FCV3mzlzZtx9990Z/1j2s5/9LN56662s5rrzzjszXgd+7rnnxi233NKhKBkRMW3atPjBD34QQ4YMaZt78803OzyVsr2FCxfGH/7wh7ZxRUVFPPTQQx2KkhERJSUlcfPNN8f//J//M2P+vvvui+bm5n39sgAAiIj6hqZYvW5brFy9JVav2xb1DU35jgSJNX70kLh+1vFRVlLYrXVlJYVx/azjY/zoIbkJBgAk3/LlEalU17+WL893SgAAgAPO8vXLI/W1VJe/lq93PwUkT87LkvPmzYv6+vq28Yc//OG9PilxxowZcfHFF7eNW1pa4sEHH8xappdeeimqq6vbxlVVVXHDDTd0uWbs2LFx6623ZszNnTs3o3DZ3ve+972M8eWXXx4TJkzo8jxf+cpX4qijjmobr169On71q191uQYAgIh0Oh1LV22IOx5dHBd+9f/ElXctjC9967m48q6FceFX/0/8x6Mvx9JVG7r88xvQM8dOHBF3XPmhGDty0D4df8jIQXHHlR+KYyeOyHEyAAAAAAAA+G85L0v+9Kc/zRh/6lOf2qd1l112WRQW/v3JJE8//XQ0NWXniUDz58/PGM+cOTMqKir2um7GjBlx+OGHt41Xr14dy5Yt6/TYt99+O15++eW28YABA+LCCy/c6zkKCwvjsssuy5hbsGDBXtfBe3maFuRffUNTrK/dFWs27or1tbtch5Bjq9bUxlV3L4wbHngxXlz6TrS2ZhYiW1vT8cLStXHDAy/GVXcvjFVravMTFBJs/Ogh8Z3Zp8Scy0+K448+uMPnhQWpOOn974s5l58U3559iidKAgAAAAAA0KuKcrn566+/Hn/729/axkOGDIkPfvCD+7T24IMPjmOOOSb+9Kc/RUREXV1dLFq0KD784Q/vV6Z0Oh3PPfdcxtw///M/7/P6j370o/HAAw+0jZ9++umYOnVqh+Oee+65jKcWTZ8+PQYOHLhP5zj11FOjpKQkdu3aFRERixYtiu3bt+/zevqndDody2o2xoIX3og/VK/LKIkUFKTixMmj4mMnHRpTxg3PeM09kD1dXYff/uVa1yHkyJIV62POI4ujYVfLPh2/el1dXHff83H9rOM91Q6yLJVKxZTxw2PsyEFx8c1PZXz2wLWnxajhe/8hNQAAAAAAAMiFnD5Z8qWXXsoY/+M//mPG0yL35vjjj88Yty859sTrr78emzdvbhsPHjw4jjzyyH1e377suadM7b/29l9LVwYMGBBTpkxpGzc1NcWiRYv2eT39j6dpQf65DiE/Vq2p7VZRcreGXS0x55HFrkXoReVlOf1ZPQAAAAAAAOhSTsuSf/nLXzLGRx99dLfWtz++uro665mOOuqobj3d66ijjsoYr1q1KhoaGvZ6nkmTJnUjZW6+dpJpyYr1cd19z8fqdXX7dPzup2ktWbE+x8mg/3AdQn6k0+m4Z94r3S5K7tawqyXunfdKxtPAAQAAAAAAAEimnJYla2pqMsaHH354t9aPHTs2Y/zGG29kPdNhhx3WrfVDhgyJwYMHt41bWlpi9erVGcfs2rUr1qxZs1/nGTNmTMY4G187yeNpWpB/rkPIn2U1G/e5pLwnb62ri+qaTVlKBAAAAAAAAMCBKqdlybVr12aMDz744G6tHzFiRMa4trY2duzYkdVMI0eO7PYe7b+O9nuuW7cuWlr+XpopLi6Oqqqq/TrH3/72t26mJOk8TQvyz3UI+fXrF97Myj4LXvRDKQAAAAAAAABJV5TLzTdv3pwxHj58eLfWDx06NAoKCqK1tbVtbsuWLVFRUZG3TLtzdbXnpk2ZTycaNmxYt171vXvNe23ZsqVb60m+bD5Na8r47l8HgOsQ8qm+oSkWVb+Tlb0WLXsn6huaorysOCv7AQAAAMBuRUVFceKJJ3aYAwAAel/O/iS+Y8eO2LVrV8bcwIEDu7VHKpWKAQMGZDxNctu2bfuVq33psCfFy/Zr2meqra3NGHf36+7sHFu3bu32HiTb3p6mlUq3Rlnrri6PiYh4euHyOPKgY7ITCvqZZ373WgxoadjvfVyH0H3vrq+L0qad2dmsJWL9mvXxDwd1/89sQOead+zq8D2yedu2aGopyVMi6F9cg5B/rsNeUlcXe/uRp6a6ugh/t9rvuAYh/1yHf1ceEfMefrjDfJPvT+SQaxDyqy9cg03b9/5AmKbtddFU6vsVfdN7r8OGgpJIp3L68mX6kJyVJRsbGzvMDRgwoNv7lJeXZ5QlGxr2r5TSvsBZXl7eo0zv1T5T+6+9J193+zWd/X7Sf+3taVoTt78ZMzYsjop9KXG9EbH4V1kMB/3ICf//r/3mOoQe+XwW9/rblx6Pv2VxP6DjNfqXyx/PSw7or1yDkH+uw9wbsG1bTNvLMcuu+2rsHDy4V/JwYHENQv65DiG/XIOQXwf6NfjXsm0RR3d9zLLrvho7GtxP0Xftvg53FJbF0wcdn9csHDhyVpZsamrqeLIePFK+sLAwY9zc3NzjTBEdy5Lt989Gpvbn6MnX3X5NZ7+fvWnVqlVRUKBlfaBYX7srWlvTe/z8jPWLoqw1v/+dAQAAAAAAAACAfKpoaYgz1i+K1177cFSUdb8nRv60trZmfc+clSVbWlo6zPWkbNd+zf7+JrTP1ZOy5N4ytR/35OtOpVId5tLpdKfzvaGlpaXT/0zJjx07FSEBAAAAAAAAAGBvyooLoqSwNZqasl++o2/JWVmys6cptrS0dPspi+2fqFhcXJzVXD15UmX7Ne0ztT9HT0qG7c9RVFSUt6JkxH+XSj1Z8sBRMWDPT5WMiPg/I07c99dwAwAAAAAAAABAAqUqKqL0X87Y784Zva+1tTXrD/fLWVmypKSkw1xTU1OUlpZ2a5/2pcHO9t2fXD15vXX7Ne33zMY5sv1176/x48fHwIED85qBv6tvaIpv/3LtHl/FvWLgobGyYmyUte7q9PP3KkylYu51p0V5ac7+5wASqb6xOf7tjt9Ga7rr8vK+cB1Czyx/Y1PMeeTl/d7nhlnHx9GHDctCIqC95a+9Fs1NTVFUXByTjj4633EAoNf5Xphj/+//RZz4f7s8ZModt0YcdVQvBQKgPd8LAejPDuTvgxWb/l/ED/Z+PzWpyv0UfV/RwIGR6sGbh8m/7du3x4oVK7K6Z85aGYMGDYpUKhXp95RIduzY0e3C3Y4dOzLGFRUV+5Vr8ODBGeP6+vpu77G3TIMGDcr5OejfysuK48TJo+KFpWv3eEw6VRA7C8v2utdJ739fVI6oymY86BcqI+KYYw7r8jrcV65D6Jn3v39wHPQPb8bqdXU93uOQkYNi6vsPzesTvCHJCioqItXUFAXFxVFcWZnvOADQ63wvzLF2fw/bmeJBgyL83gPkje+F//0PvHPmzMmYu/766z2kBKAfOJC/DxY37sP91MBBB1xugP2Vs/cqFxYWdigmbtu2rVt7NDQ0xK5dmU/Gq6ravzLJ0KFD9ytTZ2vaZ2p/jq1bt3b7bwgiVgAAJUBJREFUHO3XDBvmaUdk+thJh2ZlnzOnH5aVfaA/ch1CfqVSqfjihdOirKRnPwlWVlIYX7hwmqIkAAAAADnT2NgYjz76aMavxsbGfMcCAIB+KWdlyYiIkSNHZow3btzYrfUbNmzIGJeUlETlfrbW9zdTZ2uGDx+eMR41alTGeOvWrR1eq93dcxx00EHdWk/yTRk3PMaO3PtPe3TlkJGDYvI4T7ODnnIdQv6NHz0krp91fLcLk2UlhXH9rONj/OghuQkGAAAAAAAAwAElp2XJMWPGZIzXrFnTrfXtjz/00EP3N9J+Z2pqaop33303Y659rsrKyoynara2tsbatd17TWsuvnaSxdO0IP9ch3BgOHbiiLjjyg/tc3n5kJGD4o4rPxTHThyR42QAAAAAAAAAHChyWpacOHFixrimpqZb6//6179mjMeNG5f3TG+++Wa0tLS0jauqqjq8druz86xatapb52mfKxtfO8njaVqQf65DODCMHz0kvjP7lJhz+Ulx0tT3RUFBZgm5sCAVJ73/fTHn8pPi27NPce0BAAAAAAAA9DNFudx86tSpGeOlS5d2a/2rr76aMT722GP3N1JMnjw5CgsL2wqPK1eujIaGhigrK8tqpilTpsTLL7/cNl66dGmceuqp+5yz/e/VtGnT9nkt/cvup2ndM++VWL2ubq/HHzJyUHzhwmlKIpBFrkM4MKRSqZgyfnhMGT886huaYtPWhtjZ2BwDSouiqrIsysuK8x0RAAAAAAAAgDzJaVnyAx/4QBQXF0dTU1NERPz5z3+OrVu3RmVl5V7XtrS0xAsvvJAxN3369P3ONHDgwJg6dWosWbIkIv77tdovvvjiPhcZf//73+9TppNOOim+973vtY2fe+65+MIXvrBP51i5cmW88847beNhw4Z1eFIlvNfup2lV12yKBS+8EYuq34nW1nTb54UFqThhyqg4c/phMXlclVf+Qg64DuHAUl5WrBwJAAAAAAAAQJucliUrKiriQx/6UCxcuDAiIpqbm2P+/PnxqU99aq9rf/vb38amTZvaxhMmTIgJEyZkJdeMGTPaypIREY8//vg+lSXXr18fv/vd79rGRUVFMWPGjE6PPf7442PIkCFRW1sbERHLly+P5cuXx6RJk/Z6nscffzxjfMYZZyjVsFeepgX51/46fHHxn2PHzqaoGFAc049/v+sQAAAAAAAAACBPCnJ9gvPOOy9jPHfu3Fi7dm2Xa7Zt2xZ33XVXxtz555+ftUxnnXVWlJSUtI0XLlyYUYLck9tuu63tKZkREaecckocdNBBnR5bUlISZ511VsbcrbfeGrt27eryHMuXL4/HHnssYy6bXzv9Q3lZcYw5eFAcMXZojDl4kIIW5EF5WXGMGFISo4eXxIghJa5DAAAAAAAAAIA8ynlZ8rTTTosjjzyybVxbWxuf/exnY+PGjZ0ev2PHjvj85z8fq1evbpsbNWpUXHDBBXs8x/z582PixIkZv1566aU9Hl9VVdVhv9mzZ8ef//znTo9Pp9PxjW98I37zm9+0zRUUFMTnPve5PZ4jIuLSSy+N0tLStvGSJUvi+uuvzyhcvtdbb70VV1xxRcbnH/3oRzN+/wAAAAAAAAAAAIDuyXlZMpVKxS233BIFBX8/1YoVK+Lss8+OJ554IrZv3x4REY2NjfHUU0/FeeedFy+++GLGHl/96lczSofZcPXVV8eIESPaxjt27Ih//dd/jW9961uxbt26iIhoaWmJV155JS677LL47ne/m7H+kksuiYkTJ3Z5joMPPrhDofKXv/xlXHTRRfHss8+2lSK3bNkSjzzySJx77rlt546IGDx4cHzlK1/Zr68TAAAAAAAAAAAA+rui3jjJscceG7fcckvcdNNNbXMbNmyIG2+8MW688cYYNGhQbN++PdLpdIe1//Zv/xannXZa1jMNHjw47r///pg1a1ZbYbOpqSnuv//+uP/++6O8vDyampo6fQrk8ccfH9dcc80+nefSSy+NlStXxi9+8Yu2uaVLl8ZnPvOZKCgoiPLy8rbzv1dxcXH853/+Z7zvfe/r4VcIAAAAAAAAAAAARPTCkyV3u+CCC+LrX/96lJWVdfisrq6uQ1GyoKAgrrrqqn0uJfbElClT4qGHHoqRI0d2+Ky+vr7TouQpp5wSDz74YJSUlOzTOQoKCuI//uM/On2NeGtra6dFyUGDBsW3vvWtOOWUU/bpHAAAAAAAAAAAAMCe9VpZMuK/C5O/+tWv4owzzui0NLnbSSedFD/84Q87vMI6F4499thYsGBBfPrTn46qqqo9HjdhwoS48847Y+7cuVFeXt6tcxQWFsbXv/71eOSRR+K4447LeCX5e5WUlMQ555wTv/zlL3PyNE0AAAAAAAAAAADoj3rlNdzvNWbMmLj33nujvr4+Xn755Xj33Xdj8+bNUVZWFu973/ti2rRpMXz48G7tec4558Q555zT40wDBw6Ma6+9NmbPnh1LliyJt99+OzZs2BCFhYVRVVUVU6dOjcMPP7zH++924oknxoknnhjr16+PV199NTZs2BB1dXUxaNCgOPTQQ+OYY46JioqK/T4PAAAAAAAAAAAA8He9Xpbcrby8PE4++eR8nb5ThYWFcdxxx8Vxxx2X0/OMGDEiZsyYkdNzAAAAAAAkWmlpxNFH7/0YAMijgoKCOOKIIzrMAUA+lRaVxtEHdX0/VVrkfgpInryVJQEAAAAAoMfGj49YvjzfKQCgS0OHDo2FCxfmOwYAZBg/bHwsv8L9FND/+LElAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0YryHQAAAAAAAAAgierr6+OBBx7ImLv88sujvLw8T4kAAKD/UpYEAAAAAAAAyIGdO3fGN7/5zYy5WbNmKUsCAEAeeA03AAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaEX5DgAAAAAAAN22alXEWWd1fczPfx4xfnzv5AEAAOgjVm1eFWc91vX91M//x89j/DD3U0CyKEsCAAAAAND3NDZGvPba3o8BAAAgQ2NzY7y2oev7qcZm91NA8ngNNwAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiFeU7AAAAAAAAAEASpVKpGDZsWIc5AACg9ylLAgAAAAAAAOTAsGHDYtmyZfmOAQAAhNdwAwAAAAAAAAAAAAmnLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiVaU7wAAAAAAAAAASbRz58748Y9/nDF3wQUXxIABA/KUCAAA+i9lSQAAAAAAAIAcqK+vjxtuuCFj7uMf/7iyJAAA5IHXcAMAAAAAAAAAAACJpiwJAAAAAAAAAAAAJJqyJAAAAAAAAAAAAJBoypIAAAAAAAAAAABAoilLAgAAAAAAAAAAAImmLAkAAAAAAAAAAAAkmrIkAAAAAAAAAAAAkGjKkgAAAAAAAAAAAECiKUsCAAAAAAAAAAAAiaYsCQAAAAAAAAAAACSasiQAAAAAAAAAAACQaMqSAAAAAAAAAAAAQKIV5TsAB6aWlpaMcX19fZ6SAPRdra2tbf93+/bteU4DAL3P90IA+jvfC3OstTXi/e/f+zF+7wHyxvfCiIaGhjjqqKM6zPXX3w+A/uRA/j7Y2tga7x/a9f1Ua+OBlxvoX9r31dr32XoilU6n0/u9C4mzfv36ePvtt/MdAwAAAAAAAAAAgH5uzJgxMWLEiP3aw2u4AQAAAAAAAAAAgERTlgQAAAAAAAAAAAASrSjfATgwDRkyJGNcWloahYWF+QkDAAAAAAAAAABAv9HS0hKNjY1t4/Z9tp5IpdPp9H7vAgAAAAAAAAAAAHCA8hpuAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARFOWBAAAAAAAAAAAABJNWRIAAAAAAAAAAABINGVJAAAAAAAAAAAAINGUJQEAAAAAAAAAAIBEU5YEAAAAAAAAAAAAEk1ZEgAAAAAAAAAAAEg0ZUkAAAAAAAAAAAAg0ZQlAQAAAAAAAAAAgERTlgQAAAAAAAAAAAASTVkSAAAAAAAAAAAASDRlSQAAAAAAAAAAACDRlCUBAAAAAAAAAACARCvKdwAAAAD6vtbW1nj22Wfj97//fSxZsiQ2bNgQtbW1UVpaGkOHDo3x48fHCSecEGeccUYcfPDB+Y4LAL3u0ksvjeeffz4iIv7hH/4hfve73+U5EQAAAAD0L6l0Op3OdwgASIqampp48skn4+WXX46333476urqorS0NEaPHh3Tpk2LT3ziEzFt2rR8xwSArPrtb38b//mf/xlvvvnmXo8tLS2NCy64IK655poYMGBA7sMBwAHgiSeeiBtvvLFtrCwJQJK1trbGH//4x3jqqafi1VdfjfXr10dtbW0MHDgwRo0aFR/4wAfiE5/4REyePDnfUQEgJ5YsWRJPPfVUvPzyy7Fu3brYtm1bVFRURFVVVRxzzDFx8sknx+mnnx4FBV4GC9DblCUBIAu2b98ec+bMifnz58fevrWefvrpcfvtt0dlZWUvpQOA3Lnzzjvje9/7XrfXHXXUUTF37twYOXJkDlIBwIFj3bp18S//8i9RV1fXNqcsCUBSVVdXx0033RTLly/f67Gnnnpq3H777TFs2LBeSAYAubd27dq44YYb4sUXX9zrsYcddljccsstccIJJ/RCMgB2U5YEgP20efPmmDVrVqxYsWKf14waNSoeeeSROPTQQ3MXDABy7Dvf+U58+9vfzpgrKCiI4447LqZNmxZVVVWxc+fOWLlyZTz33HOxbdu2jGOPOOKIeOyxx6KioqI3YwNAr7rsssviueeey5hTlgQgiR577LH4+te/Hi0tLfu85uCDD44f/vCHMWbMmBwmA4DcW7p0aXzmM5+JLVu27POawsLCuPHGG+Oiiy7KYTIA3ktZEgD2Q3Nzc1x88cWxZMmSjPkJEybERz7ykRg+fHhs3LgxFi5cGKtWrco4Zty4cfH444/HwIEDezMyAGTFsmXLYubMmRlPVD766KPjP/7jP2LixIkdjq+rq4tvfOMbMW/evIz5888/P2699dac5wWAfJg/f35cd911HeaVJQFImp/85Cdx4403ZtwjFhcXxymnnBJTpkyJkpKSePvtt+OZZ56Jd999N2PtIYccEj/96U/9IB0AfdbatWvjvPPOi02bNmXMH3rooXHqqafGqFGjYvv27fHHP/4xXnzxxYzvl6lUKr7zne/EP/3TP/V2bIB+SVkSAPZD+ydqFRcXx0033RTnn39+h2OfeOKJuPXWW6OxsbFt7txzz405c+b0SlYAyKZLLrkk/vCHP7SNjzrqqPjRj34U5eXlXa675557Yu7cuW3jwsLC+NWvfhWHH354zrICQD68++678S//8i8dnqwcoSwJQLIsX748LrjggmhqamqbmzZtWtx1110xevTojGMbGxvj3nvvje9973sZ85deemn8+7//e6/kBYBsu+qqq+KZZ55pGxcWFsaXv/zluOSSS6KgoCDj2FdffTWuvvrqjB8eGDp0aDzzzDMxaNCgXssM0F8V7P0QAKAzGzdujIcffjhj7rbbbuu0KBkRMXPmzLj77rsjlUq1zf3sZz+Lt956K6c5ASDb1q5dm1GUTKVSceedd+61KBkR8fnPfz7jyZMtLS3xi1/8Iic5ASCfbr755rai5HvvAwEgaW6++eaMouT06dPj0Ucf7VCUjIgoLS2Na6+9Nj796U9nzM+bNy927NiR86wAkG2vv/56RlEyIuIrX/lKfOpTn+pQlIyIOOaYY+L73/9+xhOVt2zZEv/rf/2vnGcFQFkSAHps3rx5UV9f3zb+8Ic/HGeffXaXa2bMmBEXX3xx27ilpSUefPDBXEUEgJz4v//3/2aMP/jBD3b66u3OFBQUxIUXXpgx9/zzz2ctGwAcCH72s5/FwoUL28YXXHBBHtMAQO4sXLgwli1b1jY+6KCD4t57742SkpIu11199dUxbNiwtnF9fX2He00A6AvavzXgiCOOiE9+8pNdrhk3blx86lOfyphrX7gEIDeUJQGgh376059mjNvf1OzJZZddFoWFhW3jp59+OuMnrwHgQPfaa69ljE844YRurZ86dWrGeM2aNfudCQAOFOvXr485c+a0jSdPnhyXXnppHhMBQO78+Mc/zhjPnj07Kisr97puwIABceaZZ2bMvfrqq9mMBgC94i9/+UvGeMaMGfv0doEzzjijwz7+vRAg94ryHQAA+qLXX389/va3v7WNhwwZEh/84Af3ae3BBx8cxxxzTPzpT3+KiIi6urpYtGhRfPjDH85JVgDItnfeeSdj3Nmr1boyYMCAjPHuV5QCQBLcfPPNsXXr1oiI+P/au/cgq+vyD+DPsuxy21WWO65cMmA10VIxQ6BGaKaYyULDIGoqQkAbyJQwZ3QaBIEaZaYLiSQgOZXBEJYjmjRAmJKNhdxCIUUJlPvucpVdWPb3hz/P+GVX4bCXA4fX6y+e55zPZ978dWbPeb6fT15eXkybNq3Wq9cA4Fx38ODB+Pvf/56qO3fuHF/60pdOe/0Xv/jF2LVrVxQVFUWbNm3i8ssvb4iYANCgSktLE3XHjh1Pa12XLl0SdXV1dZSWlp72egDOjGFJADgD//znPxP1Nddckzgt8lQ+/elPp4YlIyKef/55w5IAnDN+85vfxKFDh2Lnzp2xc+fO6NmzZ1rrTx62LCwsrM94AJAxTz31VOIKtrFjx0ZJSYlTlAHISqtWrYrjx4+n6sGDB0fTpqf/02OfPn2iT58+DRENABpNXl5eoj548OBprauoqKjRS+e3RgDOjEeaAeAMnHyk/ic+8Ym01p/8/g0bNtQ5EwA0poKCgujRo0f0798/7aedX3jhhUTdqVOn+owGABmxd+/emDp1aqru1atXjB07NoOJAKBhvfLKK4m6b9++GUoCAJnTvXv3RP3Bw1I+ypo1axJ1YWFhtG3btp5SAfBhDEsCwBl44403EvUll1yS1vquXbsm6jfffLPOmQDgXPDuu+/G4sWLEz0/qAGQDSZNmhTl5eUR8d5pINOmTYv8/PzMhgKABvSf//wnUaf7QDkAZIMbbrghUa9cuTK2bNlyynVz585N1J/97GcjJyenXrMBUJNruAHgDLzzzjuJOt0TtTp06JCoy8vL4/Dhw9GqVas6ZwOAs9ns2bNTgyTvGzRoUGbCAEA9WbJkSfz1r39N1d/5znfiiiuuyGAiAGh4W7duTf27ZcuW0a5du1RdVlYWf/7zn2PlypWxefPm2L9/fxQUFETnzp2jf//+ceONN0avXr0yERsA6tX1118fV1xxRaxfvz4iIo4fPx7f//7347HHHov27dvXumbGjBnx0ksvperc3NwYM2ZMo+QFON8ZlgSAM1BaWpqoP/hF4OkoKiqKJk2axIkTJ1K9srIyw5IAZLV169bFnDlzEr3LLrssrr322gwlAoC627dvX0yZMiVVd+/ePe64444MJgKAhldZWRm7d+9O1e8Pg5w4cSIeffTRmDVrVrz77ruJNWVlZVFWVhYbN26MOXPmxNChQ+Puu++OwsLCRs0OAPUpJycnZsyYEcOHD0/9fvjf//43hgwZEqNHj45BgwZFx44d4+jRo7FmzZp47LHHYtWqVYk97r777rj00kszER/gvGNYEgDSdPjw4aisrEz0CgoK0tojJycnWrRoEYcPH071Dhw4UC/5AOBstGfPnhg/fnwcO3Ys0f/Rj36UoUQAUD/uv//+KCsri4j3/tabOnVqNGvWLMOpAKBhlZWVRXV1daouKCiIioqKGD9+fKxcufKU60+cOBELFy6MtWvXxpw5c2rcxAMA55Ju3brFwoUL44c//GGsWbMmIiL27t0b06dPj+nTp3/ousLCwrjvvvtiyJAhjRMUAMOSAJCuioqKGr0WLVqkvU/Lli0Tw5JHjx6tUy4AOFvt378/Ro0aFTt37kz0hw0bFn379s1QKgCou2eeeSaee+65VD1ixIjo06dPBhMBQOMoLy9P1Pn5+TFx4sTEoORFF10UN9xwQ3Tp0iWOHTsWmzdvjhUrVsShQ4dS79m0aVOMHDkyFi1adEbfsQLA2aJLly7xhz/8IR555JH4xS9+kbhdrja9e/eOhx9+ODp27NhICQGIMCwJAGk7+USsiIimTdP/SM3NzU3Ux48fP+NMAHC2OnDgQNx6662xadOmRP/yyy+Pe++9N0OpAKDuSktLE9dvFxcXx4QJEzKYCAAaz8kPfm/YsCH1vWleXl5MnDgxvvnNb9b4DrS8vDymTp0aTz31VKr3+uuvx+TJkz/y5C0AONutWbMmfvrTn8bq1atP6/0bNmyIW265Je6888646aabGjgdAO8zLAkAaaqqqqrRa9KkSdr7nLzmVE+YAcC5Zt++fTFq1Kh49dVXE/3i4uKYNWuWK0oBOKdNnjw5SktLU/WUKVOiVatWGUwEAI3n5AfK369zc3Nj1qxZMWDAgFrXtW7dOh588MFo0aJFLFiwINV/8sknY9SoUdGjR4+GCw0ADeS3v/1tTJs2LfEbYm5ubvTp0yeuueaaKCoqioMHD8arr74aL774Yhw5ciQiInbt2hX33HNPvPDCC/GTn/wk8vLyMvVfADhvGJYEgDTVdopkVVVV2qdLnvyFoj+AAMgm27Zti9GjR8ebb76Z6Ldv3z7mzp3rehkAzmlLly6NZ599NlV/9atfjX79+mUwEQCcHW6//fYPHZT8oPvuuy9efvnl2LJlS0REVFdXx7x582LatGkNHREA6tWSJUsStw5ERHzqU5+KBx54IHr27Fnj/aWlpTFjxoxYtGhRqvf0009Hs2bNfA4CNIL0j8ECgPNcfn5+jV5tV3OfysnXbte2LwCci9avXx/Dhw+vMSjZoUOHePzxx+NjH/tYhpIBQN2VlZXFpEmTUnWHDh3innvuyVwgAMiA2h4cLywsjJEjR57W+vz8/Pjud7+b6D3//PP1kg0AGktZWVlMnjw50fvMZz4Tjz/+eK2DkhERbdq0ialTp8Zdd92V6P/xj3+Mv/3tbw0VFYD/Z1gSANJUWFgYOTk5id7hw4fT3ufkNa5rAyAbLF++PL71rW/F3r17E/3i4uL43e9+F5dcckmGkgFA/ZgyZUrs27cvVU+aNCkuuOCCDCYCgMbXvHnzGr1+/fpFQUHBae8xaNCgRL1nz55466236hoNABrNwoULo7y8PFVfeOGF8bOf/SyaNWt2yrVjx46t8Vk4c+bM+o4IwElcww0AacrNzY0LLrgg9u/fn+odOHAgretEjx49GpWVlYle27Zt6y0jAGTC73//+3jggQeiqqoq0e/Ro0fMnTs3OnXqlKFkAFA//vGPf8SSJUtSdXFxcezevTueeOKJj1z3wR/PIt57eO7kNdddd52HCgA4ZxQVFdXo9e7dO6092rRpE507d44dO3akejt27Iju3bvXNR4ANIqlS5cm6hEjRtT6GflhfvCDH8SyZctS9fr16+N///tfdO3atd4yApBkWBIAzkCnTp0Sw5J79+790OP0a7Nnz55EnZ+fHxdeeGG95QOAxjZz5sz45S9/WaN/1VVXxezZs33OAZAVPjjMERHx9ttvJ67kPl3l5eU11k2fPt2wJADnjDZt2kSTJk3ixIkTqV7r1q3T3qeoqCjx+VpWVlYf8QCgwR0/fjw2bdqU6A0cODCtPXr16hXdunWLrVu3pnpr1qwxLAnQgFzDDQBnoEuXLol6+/btaa0/+f2elgbgXPbQQw/VOig5cODAmD9/vkFJAACALJOXlxedO3dO9I4ePZr2Pk2aJH+qrK6urlMuAGgs+/fvj2PHjiV63bp1S3ufkx+a27VrV51yAfDRDEsCwBkoKSlJ1G+88UZa67ds2ZKoP/7xj9c5EwBkwsyZM+PRRx+t0R82bFjMnDkzmjdvnoFUAAAANLRevXol6t27d6e9x4EDBxK1h+0AOFd88HTl9+Xm5qa9T6tWrRJ1ZWXlGWcC4NRcww0AZ+DKK69M1OvWrUtr/Zo1axL1VVddVddIANDonnzyyVpPlLztttvizjvvzEAiAGhYN998c9x8881pr9u+fXsMGjQoVRcXF8fy5cvrMxoANLpPfvKTsWLFilR98neep3LkyJF4++23Ez038ABwrigqKoqcnJzEqcg7duyInj17prVPaWlpom7btm295AOgdk6WBIAzcO2110ZeXl6qXrt2bezfv/+01lZVVcWLL76Y6F1//fX1mg8AGtpbb70VkydPrtGfMGGCQUkAAIDzQP/+/RP1v//97xoDHx/lX//6V1RVVaXq9u3bx8UXX1xv+QCgITVt2jSKi4sTvZdeeimtPY4fPx7r169P9Lp27VrnbAB8OMOSAHAGWrVqlfgy8Pjx47F48eLTWrts2bLYt29fqu7Zs2faT5kBQCZVVVXFxIkT48iRI4n+2LFjY8yYMRlKBQAAQGPq3bt3YqCjqqoq5s+ff9rrn3jiiUQ9cODA+ooGAI1iwIABiXrx4sWJkyZPZenSpXHw4MFU3bJly+jTp0+95QOgJsOSAHCGhg4dmqgfeeSReOeddz5yzYEDB+LBBx9M9L72ta/VezYAaEjPPPNMrFu3LtEbMGCAEyUBAADOIzk5OfGNb3wj0Zs3b168/vrrp1y7YsWKWL58eaI3fPjwes0HAA3tK1/5SqLeuHHjaT84UFZWFg899FCi94UvfCHy8/PrKx4AtcipTmesHQBIqa6ujiFDhsRrr72W6pWUlMS8efOiXbt2Nd5/+PDhGDduXKxatSrV69y5czz33HPRrFmzRskMAPXhxhtvjM2bNyd6t99+e3Ts2LFOexYUFNQ1GgCclbZv3x6DBg1K1cXFxTUGRADgXFRZWRmDBw+O7du3p3rt27ePOXPmxKWXXlrrmtWrV8fo0aPj0KFDqd7nP//5+NWvftXgeQGgvt12222xYsWKVJ2Xlxf33ntvfP3rX//QNXv27Invfe97iQfS8/Pz4y9/+UuNq70BqF+GJQGgDl555ZUYMWJEnDhxItVr37593HHHHTF48OAoKCiIioqKWLFiRfz85z+PLVu2JNY//PDDiR/MAOBst3bt2gY5FXnZsmVx8cUX1/u+AHA2MCwJQDZbvXp1fPvb347KyspUr2XLljFy5Mi46aabokuXLhERsW3btliwYEHMnz8/jh07lnpv69atY/HixYZDADgn7dy5M4YOHRp79uxJ9Pv16xcjRoyI6667LgoLCyPivc/CZ599NubOnRvl5eWJ999///1OWQZoBIYlAaCOFixYED/+8Y9rfa2wsDAOHToUtX3cjh07Nu66666GjgcA9erXv/51zJgxo973NSwJQDYzLAlAtlu5cmWMHz8+KioqarzWqlWrqK6ujiNHjtR4rVmzZjF79uzo27dvY8QEgAaxbt26GD16dI0ByPcVFBREZWVl4sGCDxozZkxMmDChARMC8L4mmQ4AAOe6YcOGxeTJk6N58+Y1Xjt48GCNQckmTZrEuHHjDEoCcE7asWNHpiMAAABwlvnc5z4Xc+fOja5du9Z47fDhw7UOSnbs2DHmzZtnUBKAc96VV14ZixYtissuu6zW1w8dOlTroGSLFi1i+vTpBiUBGpGTJQGgnmzbti1mzJgRK1asiKNHj9b6nn79+sW4cePi6quvbuR0AAAAAAANq6KiIubOnRt/+tOfYuvWrbW+p23btnHLLbfErbfemrqWFACywYkTJ+Lpp5+O+fPnx8aNG2u9eS4iok2bNvHlL385Ro8eHe3atWvklADnN8OSAFDPjhw5Ei+//HLs2rUrSktLo3nz5nHRRRfF1Vdf7Q8eAAAAAOC88Nprr8WWLVti9+7dUVFREa1bt46SkpLo3bt3NG3aNNPxAKBBlZaWxurVq2PPnj2xf//+aN68eRQVFUVJSUmUlJRETk5OpiMCnJcMSwIAAAAAAAAAAABZrUmmAwAAAAAAAAAAAAA0JMOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFYzLAkAAAAAAAAAAABkNcOSAAAAAAAAAAAAQFb7P22RDRCCByd7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 747, + "width": 1317 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "n, p = 9, 0.7\n", + "x = np.arange(-1, 10)\n", + "y = sts.binom(n, p).pmf(x)\n", + "\n", + "fig, ax = plt.subplots(figsize=(16,9))\n", + "ax.stem(x, y, label=\"PMF\")\n", + "ax.axvline(n * p, ls=\"--\", color=\"k\", label=\"E[X]\")\n", + "ax.axvline(n * p ** 2, ls=\"--\", linewidth=3, color=\"red\", label=\"E[X] - Var[X]\")\n", + "ax.axvline(n * p * (2 - p), ls=\"--\", linewidth=3, color=\"green\", label=\"E[X] + Var[X]\")\n", + "ax.legend();" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).pdf b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).pdf new file mode 100644 index 0000000..15c41d7 Binary files /dev/null and b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).pdf differ diff --git a/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).slides.html b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).slides.html new file mode 100644 index 0000000..ef17a96 --- /dev/null +++ b/Seminar_materials/seminar_06/Seminar 6 (Expectation and Variance).slides.html @@ -0,0 +1,7928 @@ + + + + + + + +Seminar 6 (Expectation and Variance) slides + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + diff --git a/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).html b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).html new file mode 100644 index 0000000..b7699b6 --- /dev/null +++ b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).html @@ -0,0 +1,7802 @@ + + + + + +Seminar 7 (Continuous Random Variables) + + + + + + + + + + + + +
+ + + + + + + + + + + + + + + + + + + + + + +
+ + diff --git a/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).ipynb b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).ipynb new file mode 100755 index 0000000..9822cd0 --- /dev/null +++ b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).ipynb @@ -0,0 +1,456 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a8f7b639", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "# Seminar 7" + ] + }, + { + "cell_type": "markdown", + "id": "7bb7a2e9", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of random variables\n", + "\n", + "A **random variable** is a function from sample space to the real numbers $X: S \\to \\mathbb{R}$." + ] + }, + { + "cell_type": "markdown", + "id": "concrete-petroleum", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of distributions\n", + "\n", + "For a random variable $X: S \\to \\mathbb{R}$, its distribution acts on numbers in $\\mathbb{R}$ in the same way as probability function $P$ acts on outcomes." + ] + }, + { + "cell_type": "markdown", + "id": "increasing-delaware", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of functions describing distributions\n", + "\n", + "- For any distribution we have **cumulative distribution function** (CDF) $F_X(x) = \\mathbb{P}(X \\leqslant x)$\n", + "- For discrete distributions we have **probability mass function** (PMF) $\\mathbb{P}_X(x) = \\mathbb{P}(X = x)$" + ] + }, + { + "cell_type": "markdown", + "id": "printable-haiti", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Probability density function\n", + "\n", + "- If $X$ has a discrete distribution, then $F_X$ has a countable number of jumps $p_i = \\mathbb{P}(X = x_i)$ and at $x = x_i$ it is continuous\n", + "- If $X$ has absolutely continuous distribution, then $F_X$ is differentiable a.e. and can be recovered from its derivative:\n", + " $$\n", + " F_X(x) = \\int\\limits_{-\\infty}^x f_X(t) dt\n", + " $$\n", + " \n", + " where $f_X(t)$ is the probability density function and $f_X(t) = F'_X(x)$ a.e." + ] + }, + { + "cell_type": "markdown", + "id": "vocational-chinese", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 1\n", + "\n", + "We say that random variable $X$ is distributed uniformly on $[a, b]$ and write $X \\sim U([a, b])$ if\n", + "$$\n", + "f_X(x) = \\begin{cases}\n", + "\\frac{1}{b-a}, a \\leqslant x \\leqslant b, \\\\\n", + "0, \\text{else}\n", + "\\end{cases}\n", + "$$\n", + "\n", + "What is $F_X(x)$?" + ] + }, + { + "cell_type": "markdown", + "id": "1214e30a-1cc4-41ea-974e-12e44e8b6716", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "$$\n", + "F_X(x) = \\int\\limits_{-\\infty}^{x} \\frac{1}{b - a} {\\rm d} x = \\frac{1}{b - a} \\int\\limits_{a}^{x} {\\rm d} x = \\frac{x - a}{b - a}\n", + "$$\n", + "\n", + "e.g. if $X \\sim U([0, 1])$, then $F_X(x) = x$." + ] + }, + { + "cell_type": "markdown", + "id": "adjusted-acrylic", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Continuous convolution formula\n", + "\n", + "Consider $X$ and $Y$ independent random variables with PDFs $f_X$ and $f_Y$ respectively. Then, their sum $Z = X + Y$ has absolutely continuous distribution with density\n", + "$$\n", + "f_Z(z) = \\int f_X(x) f_Y(z-x) dx\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "local-minnesota", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 2\n", + "\n", + "Let $X, Y \\sim U([0, 1])$ and $Z = X + Y$. Find $f_Z(z)$." + ] + }, + { + "cell_type": "markdown", + "id": "wireless-commerce", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 2\n", + "\n", + "$$\n", + "f_Z(z) = \\int\\limits_{0}^1 f_X(x) f_Y(z-x) dx = \\int\\limits_{0}^1 f_Y(z-x) dx = \\begin{cases}\n", + "z, & 0 \\leqslant z \\leqslant 1, \\\\\n", + "2 - z, & 1 \\leqslant z \\leqslant 2, \\\\\n", + "0, & \\text{else}\n", + "\\end{cases}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "95675940", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Functions of continuous random variables\n", + "\n", + "Random variables transform like functions, i.e. if $Y = \\varphi(X)$, then $Y(\\omega) = \\varphi(X(\\omega))$.\n", + "\n", + "For a smooth $\\varphi$, the density will be:\n", + "$$\n", + "f_Y(y) = \\sum\\limits_{\\varphi(x) = y} \\frac{f_X(x)}{|\\varphi'(x)|}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "79501593-45f8-4864-82d6-d607ed7fd24d", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## LOTUS for continuous random variables\n", + "\n", + "If $X$ is a continuous r.v. with PDF $f_X(x)$ and $g(\\cdot)$ is a function, then,\n", + "$$\n", + "\\mathbb{E}[g(X)] = \\int g(x) f_X(x) {\\rm d} x\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "alpine-motor", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 3\n", + "\n", + "Let $X$ be a **normally distributed** random variable with parameters $m$ and $\\sigma^2$:\n", + "$$\n", + "f_X(x) = \\frac{1}{\\sqrt{2 \\pi \\sigma^2}} \\exp \\left( - \\frac{(x - m)^2}{2\\sigma^2} \\right)\n", + "$$\n", + "\n", + "Find PDF of $Y = X^2$." + ] + }, + { + "cell_type": "markdown", + "id": "narrow-seven", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 3\n", + "\n", + "According to the formula,\n", + "$$\n", + "f_Y(y) = \\sum\\limits_{x^2 = y} \\frac{f_X(x)}{|\\varphi'(x)|} = \\sum\\limits_{x = \\pm \\sqrt{y}} \\frac{f_X(x)}{|2 x|} = \\frac{f_X(-\\sqrt{y}) + f_X(\\sqrt{y})}{2 \\sqrt{y}}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "9eb4d737", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of expectation\n", + "\n", + "- If $X$ is discrete, then\n", + " $$\n", + " \\mathbb{E}\\left[X\\right] = \\sum_k x_k \\mathbb{P}(X = x_k)\n", + " $$\n", + "- If $X$ is continuous, then\n", + " $$\n", + " \\mathbb{E}\\left[X\\right] = \\int_{-\\infty}^{+\\infty} x f_X(x) dx\n", + " $$" + ] + }, + { + "cell_type": "markdown", + "id": "3d0c668e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Recap of variance\n", + "\n", + "We call **variance** the following quantity of a r.v. $X$ with finite expectation:\n", + "$$\n", + "\\mathbb{V}\\text{ar}(X) = \\mathbb{E}\\left[\\left(X - \\mathbb{E}[X]\\right)^2\\right]\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "e3c846bd", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 4\n", + "\n", + "Find the expectation and variance of uniform distribution. Draw its CDF and PDF." + ] + }, + { + "cell_type": "markdown", + "id": "8d720d76", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 4\n", + "\n", + "Let $X \\sim U[a, b]$, then $f_X(x) = \\frac{1}{b - a}$\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[X\\right] = \\int\\limits_a^b x \\frac{1}{b - a} dx = \\frac{1}{b - a} \\left( \\frac{b^2}{2} - \\frac{a^2}{2} \\right) = \\frac{a+b}{2}\n", + "$$\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[X^2\\right] = \\int\\limits_a^b x^2 \\frac{1}{b - a} dx = \\frac{1}{b - a} \\left( \\frac{b^3}{3} - \\frac{a^3}{3} \\right) = \\frac13 \\frac{b^3-a^3}{b-a}\n", + "$$\n", + "\n", + "$$\n", + "\\mathbb{V}\\text{ar}\\left(X\\right) = \\frac13 \\frac{b^3-a^3}{b-a} - \\frac14 (a+b)^2 = \\frac{(b-a)^2}{12}\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "a91aa7b8-fc96-4d2e-a1d3-54585fc63ce4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Universality of Uniform distribution\n", + "\n", + "Let $X$ be an r.v. with CDF $F$. Find the distribution of r.v. $Y = F(X)$.\n", + "\n", + "$$\n", + "F_Y(y) = \\mathbb{P}\\left(Y \\leqslant y\\right) = \\mathbb{P}\\left(F(X) \\leqslant y\\right) = \\mathbb{P}\\left(X \\leqslant F^{-1}(y)\\right) = F(F^{-1}(y)) = y\n", + "$$\n", + "\n", + "What does it mean about distribution of $Y$?," + ] + }, + { + "cell_type": "markdown", + "id": "91f94c99-1101-44af-b499-f4b2b29374b5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "fragment" + }, + "tags": [] + }, + "source": [ + "It means $Y \\sim U([0, 1])$" + ] + }, + { + "cell_type": "markdown", + "id": "965368f4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Example 5\n", + "\n", + "Find the expectation and variance of normal distribution. Draw its CDF and PDF." + ] + }, + { + "cell_type": "markdown", + "id": "6f19bfc8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "slide" + }, + "tags": [] + }, + "source": [ + "## Solution 5\n", + "\n", + "$Z \\sim \\mathcal{N}(0,1)$ means it has PDF $\\varphi(z) = \\frac{1}{\\sqrt{2 \\pi}} e^{-z^2/2}$. To prove that it is correct PDF:\n", + "\n", + "$$\n", + "\\left( \\int\\limits_{-\\infty}^\\infty \\varphi(x) dx\\right)\\left( \\int\\limits_{-\\infty}^\\infty \\varphi(y) dy\\right) = \\frac{1}{2\\pi} \\int\\limits_{-\\infty}^\\infty\\int\\limits_{-\\infty}^\\infty e^{-(x^2+y^2)} dxdy = \\frac{1}{2\\pi} \\int\\limits_0^\\infty \\int\\limits_0^{2\\pi} e^{-r^2} rdrd\\theta = \\int\\limits_0^\\infty e^{-t^2} dt = 1\n", + "$$\n", + "\n", + "$$\n", + "\\Phi(z) = \\frac{1}{\\sqrt{2\\pi}}\\int\\limits_{-\\infty}^z e^{-z^2/2} dz\n", + "$$\n", + "\n", + "$$\n", + "\\mathbb{E}\\left[Z^2\\right] =\\frac{1}{\\sqrt{2\\pi}} \\int\\limits_{-\\infty}^\\infty z^2 e^{-z^2/2} dz = \\frac{2}{\\sqrt{2\\pi}} \\int\\limits_0^\\infty z^2 e^{-z^2/2} dz = - \\frac{2}{\\sqrt{2\\pi}} \\left(\\left.ze^{-z^2/2}\\right|_0^\\infty - \\int\\limits_0^\\infty e^{-z^2/2} dz\\right) = 1\n", + "$$" + ] + } + ], + "metadata": { + "celltoolbar": "Slideshow", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).pdf b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).pdf new file mode 100644 index 0000000..1a56f51 Binary files /dev/null and b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).pdf differ diff --git a/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).slides.html b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).slides.html new file mode 100644 index 0000000..1f52777 --- /dev/null +++ b/Seminar_materials/seminar_07/Seminar 7 (Continuous Random Variables).slides.html @@ -0,0 +1,7812 @@ + + + + + + + +Seminar 7 (Continuous Random Variables) slides + + + + + + + + + + + + + + + + + +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ + + diff --git a/home_assignments/MSAI_Prob24_HW6_7.pdf b/home_assignments/MSAI_Prob24_HW6_7.pdf new file mode 100644 index 0000000..9695656 Binary files /dev/null and b/home_assignments/MSAI_Prob24_HW6_7.pdf differ